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Abstract

We propose Max-Margin Riffled Independence Model
(MMRIM), a new method for image tag ranking modeling
the structured preferences among tags. The goal is to pre-
dict a ranked tag list for a given image, where tags are or-
dered by their importance or relevance to the image con-
tent. Our model integrates the max-margin formalism with
riffled independence factorizations proposed in [10], which
naturally allows for structured learning and efficient rank-
ing. Experimental results on the SUN Attribute and La-
belMe datasets demonstrate the superior performance of
the proposed model compared with baseline tag ranking
methods. We also apply the predicted rank list of tags to
several higher-level computer vision applications in image
understanding and retrieval, and demonstrate that MMRIM
significantly improves the accuracy of these applications.

1. Introduction
Image understanding is a central problem in computer

vision and has been extensively studied over the past

decade. A number of recognition algorithms have been pro-

posed to simultaneously recognize multiple objects and at-

tributes from an image [5, 8, 7]. Most of these systems treat

all objects and attributes as equally important. However,

there is evidence humans do not perceive them as such.

Psychologists have shown that we tend to only memorize

the overall scene and a few visually important objects and

properties after looking at pictures [17]. Consider the image

shown in Fig. 1. Although more than a dozen of tags are as-

sociated with the image, it is arguable only a few of them are

perceptually important to humans. In this paper, our goal is

to rank tags according to their importance or relevance to

the image content. We demonstrate that tag ranking leads

towards better image understanding.

Predicting the importance of image content is a challeng-

ing problem in computer vision and has been addressed by

relatively small amount of work [21, 1]. Spain and Per-

ona [21] take an object-centric stance, predicting the impor-

tance of objects in an image. We consider a wider range

Figure 1: Image tag ranking. Not all tags associated with an

image are equally important. The goal of this paper is to rank tags

according to their importance or relevance to the image content.

of image tags including both objects and attributes. Berg et

al. [1] consider prediction of importance for objects, scenes

and attributes, and study the influence of relations among

objects in the same scene on people’s perception of impor-

tance in images, which is similar to our goals. However,

instead of modeling importance prediction as a binary de-

cision problem, we predict image tags with multiple impor-

tance levels.

Understanding tag importance in images can potentially

facilitate a variety of web-based applications that involve

image tags. With the increasing popularity of social photo

sharing websites like Flickr, tons of images with user-

specified tags are available. However, these massive quanti-

ties of tags are collected in extremely uncontrolled settings,

thus lots of irrelevant tags can be associated with images.

This limits the benefits of these tags in potential applica-

tions such as visual search and image organization. In com-

puter vision, a variety of methods has been developed to

explore the correspondences between tags and images, for

automatic image annotation [2, 3, 9, 20, 22]. However, none

of these methods considers the relevance of tags to the im-

age content. Our work is inspired by the recent research

that explores the ordering of tags associated with an image.

Hwang and Grauman [12, 13] observe that human taggers

usually name prominent tags first, and gradually expand to

irrelevant tags. This implicit cue is used to improve object
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localization and image retrieval. Liu et al. [15] develop an

unsupervised tag ranking scheme on Flickr images with as-

sociated tag lists. Tag relevance is estimated based on prob-

ability density estimation followed by a random walk refine-

ment. In contrast to all of the above mentioned work, our

method directly learns the ordering of tags from the training

data. So when given a new image, our model can predict an

ordered list of tags for the image, where the tags are ranked

according to the importance to the image content.

In this paper, we address the problem of tag ranking.

Compared to the familiar problem of image ranking, tag

ranking outputs a rank list for each image, and the tags are

more closely correlated than images. For example, given

four tags “bear”, “furry”, “stripe” and “zebra”, knowing

“stripe” is preferable to “furry” will indicate that “zebra”

is preferable to “bear”. These complex and structured re-

lations can be represented by a densely connected graph,

where nodes are tags and edges indicate the pairwise inter-

actions between tags. This naturally forms a problem of

learning with structured output. Structured output learn-

ing has been utilized for document ranking [4] and image

ranking [19] for optimizing specific ranking measures. We

demonstrate it for tag ranking, a natural structured output

problem.

As with many challenging learning problems, learning to

rank tags involves intractably large state spaces, e.g. rank-

ing n tags results in n! possible permutations. In order to

achieve efficient inference, Huang and Guestrin [10] pro-

posed a generalized notion of probabilistic independence

on permutations (called riffled independence) for ranking

applications. Riffled independence for ranking is similar

to shuffling a deck of cards, one ranks two disjoint sets of

items independently, then interleaves the ranked items to-

gether to form a full ranking. The interleaving stage charac-

terizes riffled independence for rankings and distinguishes it

from other probabilistic independence assumptions. In [11],

a structure learning algorithm is proposed to automatically

discover groups of items that are riffled independently.

We propose a novel max-margin learning framework for

training tag ranking models with riffled independence as-

sumptions. We introduce an efficient inference algorithm

for predicting the rank list of tags. We call our approach the

Max-Margin Riffled Independence Model (MMRIM). To the

best of our knowledge, this is the first max-margin learning

framework designed for the problem of image tag ranking

modeling structured preferences among tags.

2. Riffled Independence for Rankings
We first cover background on the riffled independence

proposed in [10]. We use a simple example to illustrate this

idea. Suppose we have six tags associated with an image:

tree (T), furry (F), bear (B), grass (G), stripe (S) and zebra

(Z). Our goal is to sort the tags into an ordered list, which

(a) (b)

Figure 2: Illustration of the hierarchical riffle independent decom-

position algorithm [11]. The algorithm consists of two steps: (a)

top-down decomposition and (b) bottom-up ranking and interleav-

ing. “T, F, B, G, S, Z” represents six image tags “tree, furry, bear,

grass, stripe and zebra” respectively.

ends up in an intractably large state space of n! (6! in this

example) possible rankings for n items. The idea of rif-

fled independence is to decompose the original set of tags

into two subsets and rank them independently: {Z, B, S,

F} (which represents “animal”) and {T, G} (which repre-

sents “plant”). The two ranked subsets are then interleaved

to form a full ranking: {Z, B, S, G, F, T}. The intuition of

riffle independence is that the relative ranks of items in one

subset is independent from items in the other subset, e.g.

knowing “bear” ranks first gives no information on whether

“grass” is preferable to “tree”. This endeavor reduces the

state space to k!+(n−k)!+(
n
k

)
if we consider two subsets

with k and n− k items respectively.

In order to automatically discover riffled independent

groupings of items from the data, Huang and Guestrin [11]

proposed the hierarchical riffle independent decomposition

algorithm. The algorithm first performs a top-down decom-
position that recursively partitions the full set of tags into

riffled independent groups (see Fig. 2 (a)). We continue to

use the same example to illustrate it. One can imagine that

“animal” is further decomposed into: “furry bear” ({F, B})
and “zebra with stripes” ({S, Z}). To generate a full rank-

ing, the algorithm then performs a bottom-up ranking and
interleaving (see Fig. 2 (b)). The algorithm first ranks “furry

bear” {B, F} and “zebra with stripes” {Z, S} independently,

then interleaves them to generate the ranking for “animal”

({Z,B, S, F}). Finally, “plant” is ranked as {G, T} and in-

terleaved with the rankings of the first subset to form a full

ranking: {Z, B, S, G, F, T}.
We can summarize this example with three important

riffle independence properties: 1) tags within each subset

have strong correlations. For example, knowing “stripe”

is preferable to “furry” indicates that “zebra” ranks higher

than “bear”. 2) The absolute rank of a tag in one subset

gives no information about the relative ranks of tags in an-

other subset. For example, knowing bear (B) ranks first

among all the six tags does not tell that grass (G) is preferred

to tree (T). Based on this intuition, one can rank tags in each

subset independently. 3) Tags from different subsets are re-
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Figure 3: An example of the riffled independence graph struc-
ture. The graph structure is obtained from the riffled indepen-

dence tree in Fig. 2 (a). The structure consists of three levels,

where tags form into larger groups from bottom up. The bot-

tom level captures the preferences among tags within each leaf

set (blue lines), such as whether “tree” is preferable to “grass”.

The middle and top levels capture the preferences between tags in

different groups (red lines), such as whether “furry” in “animal” is

preferred over “grass” in “plant”, where the preference is not only

determined by their tag labels (“furry” versus “grass”), but also

the group preferences (“animal” versus “plant”). The full rank list

predicted from the tags is shown on the left side.

lated through group-level interactions. This interaction tells

whether one group is preferable to another.

3. Max-Margin Riffled Independence Model

In this section, we introduce the Max-Margin Riffled In-

dependence Model (MMRIM). A graphical representation

of the model is shown in Fig. 3. We first run the hierarchical

riffle independent decomposition algorithm [11] to discover

the structures as well as the latent groupings from the image

tags. We model two types of preferences (or interactions)

between image tags: preferences among tags (which we call

tag preferences) and preferences among groups (which we

call group preferences). We build a Riffled Independence

Model (RIM) to capture these preferences. Note that learn-

ing a RIM is the same as learning a Markov Random Field

(MRF), where a Structured SVM is applied. However, in-

ference in RIM is different from MRF (see Sec. 4).

3.1. Model Formulation

We first describe the notation used in this paper. The

input to our learning module is a set of 〈X,Y,R〉 triplets,

where X denotes an image, Y denotes the annotations

(tags) associated with the image, and R denotes the tag

ranks. Suppose there are V tags in an image, we write

xi for the feature vector for tag i. The entire image can

be represented as a collection of feature vectors X =
(x1, x2, . . . , xV ). The tags associated with the image are

represented as Y = (y1, y2, . . . , yV ), where yi ∈ Y is the

label of tag i andY is the set of all possible tag labels. Given

an image X with annotations Y , the output of our model is

tag ranks that arrange the annotations into an ordered list.

We map the rank list to a vector R = (r1, r2, . . . , rV ),
where ri ∈ R denotes the rank for tag i in the current im-

age andR denotes the set of ranks. The higher the rank, the

more this tag is relevant to the image.

We build a graph G = (V, E) to capture the preferences

among tags. The graph is obtained by running the hierar-

chical riffle independent decomposition algorithm [11]. An

example graph structure is shown in Fig. 3. The graph con-

sists of two types of edges: edges connect nodes in the leaf

sets (denoted by Ea) and edges connect nodes in the larger

subsets (denoted by Eb), where E = {Ea, Eb}. In Ea, all

pairs of tags within the same leaf set are connected (see the

blue lines in Fig. 3). In Eb, all pairs of tags from two differ-

ent groups are connected (see the red lines in Fig. 3).

Besides obtaining the graph structure G, the hierarchical

riffle independent decomposition algorithm also discovers

the latent groupings. Take Fig. 3 for example, furry (F),

bear (B), stripe (S) and zebra (Z) are grouped into “animal”,

while tree (T) and grass (G) are grouped into “plant”. The

group labels of the tags associated with an image are repre-

sented asH = (h1, h2, . . . , hV ), where hi ∈ H is the group

label of tag i and H is the set of all possible group labels.

Intuitively, group is a mid-level representation of tags, and

denotes a latent coalition of tags.

We define the score of labeling image X with tags Y in

the order of R as:

θ�Φ(X,Y,R) = α�φ(X,Y,R) + β�ψ(X,Y,R) (1)

where

α�φ(X,Y,R) =
∑

(i,j)∈E,ri>rj

(αyi · xi − αyj · xj) (2)

β�ψ(X,Y,R) =
∑

(i,j)∈Eb,ri>rj

(βhi
· xi − βhj

· xj) (3)

The potential functions in Eq. 2 and Eq. 3 capture tag pref-
erences and group preferences respectively. xi is the feature

vector of tag i, here we adopt a simpler approach by setting

xi to the output score of an independently trained classifier.

Intuitively, one can see that both Eq. 2 and Eq. 3 represent

the summation of weighted differences of the confidence

scores between every pair of tags, under the condition that

the i-th tag is ranked higher than the j-th tag (ri > rj).

αyi
and βhi

are standard linear models for ranking tag yi
and group hi respectively. The potential function on groups

(Eq. 3) captures the intuition that the preferences of groups

(e.g.“animal” � “plant”) suggests the preferences of tags

(e.g. “bear” � “grass”).

3.2. Max-Margin Learning

Assume we are given a collection of training images

Xn, annotations Y n and rankings Rn, we want to train the

model parameters θ that tends to correctly predict the tag
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ranks R∗. We formulate this as an optimization problem.

min
θ,ξ≥0

1

2
||w||2 + C

∑

n

ξn

θ�Φ(Xn, Y n, Rn)− θ�Φ(Xn, Y n, R∗) ≥ Δ (Rn, R∗)− ξn,
∀n, (4)

where Δ (Rn, R∗) is a loss function measuring the cost in-

curred by predicting R∗ when the ground truth is Rn. In

order to tractably solve the loss-augmented inference (of-

ten called finding the most violated constraint) in structured

SVM learning, the loss function needs to be decomposable

over the graph structure G. Here we introduce a new loss

function that is decomposable over the riffled independence

graph structure shown in Fig. 3.

Riffled independence tree loss: The loss function decom-

poses over the riffle independent graph structures in the fol-

lowing form:

Δ (Rn, R) =
∑

(i,j)∈Ea,rni >rnj

γ(r∗i >r∗j ) +
∑

(i,j)∈Eb,rni >rnj

γ(r∗i >r∗j )(5)

where γ(ri > rj) is 0 if ri > rj and 1 otherwise. The

first term shows the penalties on the rankings of the leaf

sets, and the second term is the penalties on the rankings

of the higher levels of the structure. This form of learning

problem is known as structural SVM, and many well-tuned

solvers can be applied to solve this problem. Here we use

the bundle optimization solver in [6].

4. Riffle Independent Tag Rank Prediction
Given the model parameters θ and tags Y , the inference

problem is to find the best rank list R∗ for an image I . It

requires solving the following optimization problem:

max
R∈R

θ�Φ(X,Y,R) (6)

For inference, we use a bottom-up strategy to generate the

full ranking R∗. Following the riffled independence prop-

erty, the inference consists of two stages: 1) Predict the

rankings independently for each leaf set. 2) Interleave

groups of ranked tags into larger groups recursively in a

stagewise fashion to generate the full ranking. An example

of the inference procedure is shown in Fig. 2 (b). In order

to better explain the inference procedure, we first split Eq. 2

into the following two potential functions:

α�φ(X,Y,R, Ea) =
∑

(i,j)∈Ea,ri>rj

(αyi
· xi − αyj

· xj) (7)

α�φ(X,Y,R, Eb) =
∑

(i,j)∈Eb,ri>rj

(αyi · xi − αyj · xj) (8)

where Eq. 7 and Eq. 8 respectively capture the preferences

among tags within the same leaf set, and from different

groups. Ea and Eb correspond to the blue links and red links

in Fig. 3 respectively.

Then we separate the inference problem into the follow-

ing two subsequent optimization problems:

max
Ra

α�φ(X,Y,Ra, Ea) (9)

max
R

α�φ(X,Y,R, Eb) + β�ψ(X,Y,R) (10)

Eq. 9 represents the first stage of inference, where tags

in each leaf set are ranked independently, and Ra denotes

the local rank lists of all leaf sets. Suppose that there are

K leaf sets, then Ra = {R1
a, . . . , R

K
a }, where Rk

a de-

notes then local rank list of the k-th leaf set. Similarly,

Ea = {E1a , . . . , EKa }, where Eka denotes the edges of the

k-th leaf set, and here we assume the tags in a leaf set

are fully connected. Since we infer the local rank list

for each leaf set independently, Eq. 9 can be written as:

maxRk
a
α�φ(X,Y,Rk

a, Eka ), for k = 1 to K. In the exam-

ple of Fig. 2 (b), this stage corresponds to ranking tags “B,

F”, “Z, S” and “G, T” independently in the three leaf sets.

The leaf sets have group labels “bear”, “zebra” and “plant

respectively.

Eq. 10 represents the interleaving stage of inference. Af-

ter the first stage, tags within each leaf set are ordered into

local rank lists. So the input to the second stage is the lo-

cal rank lists Ra, and the output is the full rank list R. In

this stage, groups of tags are recursively interleaved to form

larger groups in a stagewise fashion. We also refer to the

example of Fig. 2 (b): the tags in the groups “bear” and

“zebra” are interleaved to form the larger group “animal”,

then the tags in ‘animal” are interleaved with tags in “plant”

to form the full rank list.

We now explain how we solve the two-stage inference

problem. In the first stage, the problem of finding optimal

local rank listRk
a for the k-th leaf set can be formulated into

an integer linear programming (ILP) problem. We introduce

variables zijst for all edges (i, j) ∈ Eka : zijst = 1 if the i-th
and j-th tags are assigned with ranks s and t respectively,

and zero otherwise. We use φij to represent the potential

function in Eq. 2 that involve the edge (i, j) ∈ Eka . The ILP

can be written as:

max
z

∑

(i,j)∈Ek
a

M∑

s=1

M∑

t=1

φijzijst (11a)

s.t. ∀i ∈ Vk
a

M∑

s=1

zis = 1, zis ∈ {0, 1} (11b)

∀(i, j) ∈ Eka zijst ≤ zis, zijst ≤ zjt (11c)

∀(i, j) ∈ Eka zijst ≥ zis + zjt − 1 (11d)

∀(i, j) ∈ Eka zijst ≥ 0, ∀s > t zijst = 0 (11e)

where M is the total number of ranks. The constraints in

Eq. 11b guarantee that every tag is assigned to only one
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rank. The constraints in Eq. 11c-11e correspond to the lin-

earization of the quadratic constraint zijst = zis · zjt. We

use the GNU Linear Programming Kit (GLPK) to solve the

ILP. Note that here we do not enforce the mutual exclusivity

constraints which ensure tags i and j map to different ranks.

This is because in terms of image tag ranking, it is common

that two tags are equally important to an image according

to human’s perception.

After we obtain the local rank lists Ra for each leaf set,

we can solve the optimization problem in Eq. 10, where we

interleave the groups of ranked tags into larger groups in a

stagewise fashion. In Fig. 2, this corresponds to interleaving

the rank list of “bear” and “zebra”, and finally interleaving

“animal” and “plant” to form the full rank list. For each

“interleaving” operation, we simply enumerate all possible

rankings and find the optimal one. For example, suppose

that two ranked groups have k and n − k tags respectively,

and M is the total number of ranks, then the “interleaving”

operation involves enumerating over
(
M
k

)
+

(
M

n−k

)
possible

states.

The inference is particularly efficient for tag ranking,

which takes around 0.1 sec per image with 15 tags in MAT-

LAB on a 2.8GHZ CPU 8GB RAM PC. In contrast, ranking

tags over a fully connected graph takes around 5 min per

image under the same settings.

5. Applications of Tag Ranking
We have described an algorithm for learning a model

(MMRIM) for tag ranking. The most direct application is

to use the model to rank the randomly permuted tags asso-

ciated with each testing image, which we call tag ranking.

However, not all images in the real world are annotated.

Thus we also use the model to simultaneously predict the

tag list and rank the tags for an unannotated image. We

call this task image auto-annotation. Furthermore, we also

demonstrate that the predicted rank list of tags help improve

higher-level computer vision tasks, such as image retrieval

and tag-based image search. We define the four different

applications as follows:

• Tag Ranking: Given an image and its associated tag

list, our goal is to rank the tags according to their im-

portance or relevance to the image content.

• Image Auto-Annotation: Automatically predict the tag

list for a given image without any annotations. Com-

pared to the existing work on image auto-annotation,

our method further provides a ranked tag list.

• Image Retrieval: Given a novel query image, we first

use our model to predict an ordered list of tags for

it. Then we use the χ2 kernels described in [12] to

compute the similarities between the features of the

query image and all images in the database. Images

are ranked based on the similarities. Now we describe

the details of extracting features from an image. We

construct the feature vector by concatenating the im-

age features and the rank features. The details of im-

age features will be introduced in the next section. The

rank features are computed in the following:

η =
1∑
i ri

[r1, . . . , rV ] (12)

where ri denotes the rank for tag i in the query image,

and V is the total number of tags associated with the

query image. We expect the top ranked images share

similar importance levels of objects and attributes with

the query image rather than only similar categories.

• Relative Tag-based Image Search: Existing keyword

based image search methods restrict queries to cate-

gorical labels (e.g. “ocean, mountain, tree, ship”), and

thus fail to capture the semantic relationships between

tags. We propose to use relative tags as queries. As

opposed to the presence of tags, relative tags indicate

the strength of a tag w.r.t. the other tags, e.g. “more

ocean than mountain, more ship than tree”. Relative

tags are more informative and descriptive compared to

the traditional keywords. Given relative queries, e.g.

“more ocean than mountain, more ship than tree”, we

will be able to depict a picture in mind with detailed

importance levels of tags, e.g. “a ship in an ocean,

backed by trees and mountains”.

6. Experiments
We test our model on two datasets: SUN Attribute [16]

and LabelMe [18]. The SUN Attribute dataset contains

14,340 images and 102 scene attributes spanning from ma-

terials, surface properties, lighting, functions and affor-

dances, to spatial envelope properties. The LabelMe dataset

consists of mostly office and street scenes of 3825 images

with an average of 23 tags per image. Different from SUN

Attribute where tags correspond to attributes, the tags in

LabelMe are objects. For both datasets, we evaluate our

method on the four different scenarios outlined above.

Implementation details. We first show how to construct

the ground truth tag ranks. Tags for both datasets were

collected in previous work. In SUN Attribute, the num-

ber of positive labels (votes) each attribute received from

AMT workers is provided [16]. The number of votes indi-

cates how confident an attribute presents in an image, and

we use it as the ground truth tag ranks. In this way, each

tag in an image is labeled with one of four importance lev-

els: Most Relevant (3 votes), Relevant (2 votes), Less Rel-

evant (1 vote) and Irrelevant (0 votes). We construct the

tag list for an image by using the attributes receive more

than zero votes. In order to mimic real annotations from
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the Internet, we further add three noisy tags to the tag list

of each image. The noisy tags are randomly sampled from

the tags that receive zero votes. For LabelMe, we use the

3825 images compiled in [13], where the tag rank list as-

sociated with each image are also provided. We quantize

the tag rank list associated with each image into three lev-

els: Most Relevant, Relevant and Less Relevant. We also

randomly sample three irrelevant tags and add them to the

tag list of each image. Thus tag lists for both datasets are

labeled with four importance levels, from Irrelevant to Most

Relevant (|R| = 4).

Following [16], we extract four types of image features:

Gist, HOG 2×2, self-similarity, and geometric context color

histogram for the SUN Attribute Dataset. We train an SVM

classifier for each attribute. Our SVM classifiers use a com-

bination of kernels generated from the four types of fea-

tures (see [23] for feature and kernel details). For LabelMe,

we extract three types of image features: Gist, color his-

tograms, and bag-of-words histograms following [12]. We

train SVM classifiers with χ2 kernels on these features for

each tag (see [12] for feature and kernel details). We use

the output score of an independently trained classifier as the

tag’s feature vector of our model (xi in Eq. 2).

We use the Normalized Discounted Cumulative Gains

(NDCG) [4] to measure the performance of the tag rank-

ing approaches. It is defined as: NDCG@K =
1
Z

∑K
i=1

2rel(i)−1
log(1+i) . Where K is called truncation level, Z is

the normalization constant to make sure the optimal ranking

gets an NDCG score of 1, and rel(i) is the relevance of the

i-th ranked instance.

Baselines. In order to comprehensively evaluate the per-

formance of the proposed model, we define the following

baseline methods to compare with. For the first baseline

(called “SVM”), we ignore the tag relations and directly use

the classifier scores for ranking. To obtain the tag rank list

for an image, we directly sort the output scores of SVM

classifiers for each tag. For the second baseline (called

“rankSVM”), we use the rankSVM [14] solver for learn-

ing. To obtain the rank list for an image, we sort the output

scores obtained from the individual tag rankers. The poten-

tial function for an individual tag ranker is: αyi
· xi, where

xi is the feature vector of the i-th tag and yi is the tag cate-

gory label.

In the following, we show the experimental results of our

method for each of the four scenarios outlined above.

6.1. Tag Ranking

We compare the NDCG scores of our method and the

baselines in Fig. 4. Here we use four relevance levels for

computing NDCG: Most relevant, Relevant, Less relevant

and irrelevant. We can see that our method significantly out-

performs the baselines on both datasets. At the truncation

level of 4 (NDCG@4), we see our method yields around

(a) (b)

Figure 4: Comparison of tag ranking results of different methods

on SUN Attribute dataset and Labelme dataset respectively.

7.5% improvement over both rankSVM and SVM on SUN

Attribute; a 1.7% improvement over rankSVM and 3.5%
improvement over SVM on LabelMe. In comparison, the

improvements on LabelMe are relatively smaller than SUN

Attribute. This is because the ground truth ranks on two

datasets are provided according to different strategies. The

ground truth ranks in SUN Attribute are obtained by voting

the presence of the attributes, the process is controlled and

important attributes normally receive more votes. But for

LabelMe, the tag ranks provided in [13] are obtained in a

less controlled setting, by the order in which tags are added

to the image. The order usually reflects the importance of

tags but is subjective to the AMT workers. Some visualiza-

tions of the tag ranking results for MMRIM and rankSVM

are shown in Fig. 5.

6.2. Image Auto-Annotation

In the first experiment, we assume each image is asso-

ciated with a list of annotations. Now we demonstrate that

our method is also capable of predicting an ordered list of

tags for an unannotated image. In this scenario, rather than

reordering the given annotations during testing, we assume

each image is associated with the whole tag vocabulary, and

predict an ordered list of the whole vocabulary for each test-

ing image. We expect to rank the most relevant tags to the

top and irrelevant tags to the bottom of the rank list. In this

case, inference is carried out over the whole vocabulary for

each image. In practice, in order to increase the efficiency,

we reduce the search space (R in Eq. 6) by the following

strategy. For each testing image, we calculate the χ2 sim-

ilarities between the testing image and all training images

based on their image features, and use the annotations from

the top k neighbors to construct the search space R̃ for the

testing image. Here we set k to 5. This procedure greatly

reduces the running time of inference.

Fig. 6 (a),(b) shows the comparison of our method and

the baselines in terms of Precision at K. Our method out-

performs all baselines, and its Prec@4 score is 6.0% and

1.0% better than the second best method (SVM) on SUN

Attribute and LabelMe respectively. In order to compare

with [12], we also report the auto-annotation accuracy using

F1 score on LabelMe with the same experimental settings.
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Figure 5: Examples of tag ranking results using our method and rankSVM on SUN Attribute. The tags are ordered according to the

relevance to the image content. We use red, orange and blue to denote three ground truth ranking levels: most relevant, relevant and less

relevant, respectively. Due to space constraint, we only visualize the top 9 tags for each image.

Method F1 score

SVM 0.4621

Rank SVM 0.4352

Our method 0.5162
best result in [12] 0.4585

Table 1: Comparison of image auto-annotation accuracies (F1

score) on LabelMe dataset.

We can see that our method is significantly better than the

best result reported in [12].

6.3. Image Retrieval

We use all test images as queries and all training images

as the database. The ground truth ranking is obtained by

sorting the images in the database according to the agree-

ment between the ground truth rank features of the database

image and the query image. In SUN Attribute, we compute

the agreement as: rel(i) = 〈η(i),η(q)〉
‖η(i)‖‖η(q)‖ , where rel(i) rep-

resents the relevance of the i-th ranked instance and η is the

rank feature (Eq. 12). In LabelMe, we use the strategy in-

troduced in [12] (called “tag rank similarity”) to compute

the ground truth ranking.

Fig. 6 (c),(d) plots the comparison of NDCG scores of

our method and the baselines. Again, our method outper-

forms the baselines noticeably on both datasets. In order

to show that the rank features η in Eq. 12 improve im-

age retrieval, we develop a baseline “visual” by only using

image features to compute the χ2 similarities 1. Our ap-

proach clearly improves over the baseline “visual”. SVM

and rankSVM are similar to “visual” on SUN Attribute, and

1For image retrieval, we use the features provided by the authors of [12]

and the baseline “visua” defined in this paper is the same as the baseline

“visual-only” defined in [12]. In discussions with the authors of [12] we

were unable to clarify the source of the difference in results.

slightly better than “visual” on LabelMe. This is likely due

to the inaccuracies of rank features predicted by SVM and

rankSVM.

6.4. Relative Tag based Image Search

A relative tag query consists of M pairs of tags with

preferences, e.g. {“ocean � mountain”, “natural � man-

made”}. We consider queries with double and triple pairs

of tags, and we generate the query set by randomly sam-

pling from the tags in the training set. In the end, we obtain

200 queries for each query type.

Fig. 6 (e)-(h) shows the comparison of our method and

the baselines in terms of NDCG scores. From the figure, it is

clear that MMRIM is better than the other methods for both

types of queries, at all values of K. At a truncation level of

40 (NDCG@40) for double and triple pairs of queries, MM-

RIM is respectively, 2.1% and 2.2% better than SVM, the

second best method in SUN Attribute, and 5.1% and 3.1%
better than rankSVM, the second best method in LabelMe.

7. Conclusion

We have presented the Max-Margin Riffled Indepen-

dence Model (MMRIM) that integrates the max-margin cri-

terion and riffled independence partitions within the same

framework for image tag ranking. Furthermore, our ap-

proach models the correlations between different tags lead-

ing to improved tag ranking performance. Besides tag rank-

ing, we also apply our model to three higher-level com-

puter vision applications: image auto-annotation, image re-

trieval and relative tag based image search. Our experimen-

tal results on two benchmark datasets demonstrate that our

method makes consistent improvements over the baselines.

310731073109



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Performance of different methods in higher-level computer vision applications including: image auto-annotation ((a),(b)), image

retrieval ((c),(d)), relative image search ((e)-(h)).
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