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Abstract

Recently active learning has attracted a lot of attention
in computer vision field, as it is time and cost consuming
to prepare a good set of labeled images for vision data
analysis. Most existing active learning approaches em-
ployed in computer vision adopt most uncertainty measures
as instance selection criteria. Although most uncertainty
query selection strategies are very effective in many circum-
stances, they fail to take information in the large amount of
unlabeled instances into account and are prone to query-
ing outliers. In this paper, we present a novel adaptive ac-
tive learning approach that combines an information den-
sity measure and a most uncertainty measure together to
select critical instances to label for image classifications.
Our experiments on two essential tasks of computer vision,
object recognition and scene recognition, demonstrate the
efficacy of the proposed approach.

1. Introduction

Image classification has a long history in computer vi-
sion research, and it remains a major challenge due to the
broad intra-class diversity of images caused by shape, color,
size, or environmental conditions. To build a robust im-
age classifier, it typically requires a large number of labeled
training instances. For example, 10,000 instances of hand-
writing digits are used for training classifiers in [33]. It is
time and cost consuming to prepare such a large set of la-
beled training instances. On the other hand, one fascinating
characteristic of human vision system is that we can catego-
rize image objects with only few labeled training instances.
Is it possible for a computer to achieve this with the solid
support of machine learning techniques? This is the mo-
tivation of this research. We aim to develop an effective
active learning method to build a competitive classifier with
a limited amount of labeled training instances.

Training a good classifier with minimal labeling cost is a
critical challenge posed in machine learning research. Ran-

domly selecting unlabeled instances to label is inefficient
in many situations, since non-informative or redundant in-
stances might be selected. Aiming to reduce labeling effort,
active learning methods have been adopted to control the
labeling process. Recently, active learning has been studied
in computer vision [3, 14, 13, 15, 16], focusing on pool-
based setting. These works however merely evaluate the in-
formativeness of instances with most uncertainty measures,
which assume an instance with higher classification uncer-
tainty is more critical to label. Although the most uncer-
tainty measures are effective on selecting informative in-
stances in many scenarios, they only capture the relation-
ship of the candidate instance with the current classification
model and fail to take the data distribution information con-
tained in the unlabeled data into account. This may lead
to selecting non-useful instances to label. For example, an
outlier can be most uncertain to classify, but useless to la-
bel. This suggests representativeness of the candidate in-
stance in addition to the classification uncertainty should be
considered in developing an active learning strategy.

In this paper, we propose a novel adaptive active learn-
ing strategy that exploits information provided by both the
labeled instances and the unlabeled instances for query se-
lection. Our new query selection measure is an adaptive
combination of two terms: an uncertainty term based on
the current classifier trained on the labeled instances; and
an information density term that measures the mutual infor-
mation between the candidate instance and the remaining
unlabeled instances. The combination of the two terms is
given in a general weighted product form. We seek to obtain
an adaptive combination of the two terms by selecting the
weight parameter to minimize the expected classification
error on unlabeled instances. We conduct experiments on
a few benchmark image classification datasets and present
promising results for the proposed active learning method.

2. Related Work

A large number of active learning techniques have been
developed in the literature. Most of them have been focused
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on selecting a single most informative unlabeled instance to
label each time. Many such approaches make myopic de-
cisions based solely on the current learned classifiers and
employ an uncertainty sampling principle to select the unla-
beled instance they are most uncertain to label. In [18, 26],
the most uncertain instance is taken as the one that has the
largest entropy on the conditional distribution over its la-
bels. Support vector machine methods choose the most un-
certain instance as the one that is closest to the classification
boundary [2, 25, 28]. Query-by-committee algorithms train
a committee of classifiers and choose the instance on which
the committee members most disagree [9, 19].

One apparent shortcoming of the active learning strate-
gies reviewed above is that they select a query based only on
how that instance relates to the current classifier(s), whereas
ignoring the large set of unlabeled instances. One immedi-
ate problem is that these approaches are prone to querying
outliers, as we discussed before. Moreover, the goal of ac-
tive learning is producing a classifier that has good gener-
alization performance on unseen instances in the problem
domain. Although it might not be possible to access the do-
main distribution directly, relevant information can be ob-
tained from the large pool of unlabeled instances. Many
active learning methods have been proposed to exploit un-
labeled data to minimize the generalization error of the
trained classifier. In [24], queries are selected to minimize
the generalization error in a direct way by maximizing the
expected error reduction on unlabeled data with respect to
the estimated posterior label probabilities. Another class
of active learning approaches minimize the generalization
error indirectly by reducing model variances, including a
statistical approach [4], and a similar approach that selects
optimal queries based on Fisher information [35]. These
generalization error minimization approaches are generally
computationally expensive. An alternative class of active
learning methods use a number of heuristic measures to ex-
ploit the information in unlabeled data. The methods in
[19, 32] employ the unlabeled data by using the prior den-
sity p(x) as weights for uncertainty measures. A similar
framework is employed in [26], which uses a cosine dis-
tance to measure an information density. The methods in
[6, 20] explicitly combine clustering and active learning to-
gether to exploit both labeled and unlabeled instances. In
[10, 17], instances are selected to maximize the increase
of mutual information between the selected set of instances
and the remaining ones based on Gaussian Process models.
The method in [23] extends the query-by-committee algo-
rithm by exploiting unlabeled data. The work [11] seeks the
instance whose optimistic label provides maximum mutual
information about the labels of the remaining unlabeled in-
stances, which implicitly exploits the clustering information
contained in the unlabeled data in an optimistic way.

In the realm of computer vision, researchers have

adopted active learning in image/video annotation [16, 34,
31], image/video retrieval [29, 12] and image/video recog-
nition [30, 15, 13, 22, 14]. The work [29] applies active
learning on object detection and the approach aims to deal
with a large amount of images crawled online. The work
[14] generalizes the margin-based uncertainty measure to
the multi-class case. In [22], a two dimensional active learn-
ing method is proposed to conduct selection over instance-
label pairs instead of solely instances. The work [13] in-
troduces a probabilistic variant of a KNN method used for
active learning. The work [15] uses Gaussian Process as a
probabilistic prediction model to gain a direct estimate of
uncertainty measure for active learning in binary classifica-
tion case. Although different prediction models have been
employed in these methods, they all used the simple un-
certainty sampling active learning strategy for instance se-
lection. Therefore these methods have the drawback of ig-
noring the distributional information contained in the large
number of unlabeled instances, as we discussed above. In
this paper, we develop a new active learning method for im-
age classification tasks, which overcomes the inherent limi-
tation of uncertainty sampling.

3. Proposed Approach

Different active learning strategies have different
strengths in identifying which instance to query given cur-
rent classifier. In this section, we present a novel active
learning method that combines the strengths of different ac-
tive learning strategies in an adaptive way. The proposed
active learning method has three key components: an un-
certainty measure, an information density measure and an
adaptive combination framework. We will introduce each
of them below. Moreover, our approach is based on proba-
bilistic classification models. We use logistic regression as
our probabilistic classification model in the experiments.

Notations. We use the following notations in this paper.
We use xi ∈ R

d to denote the input feature vector of the
ith instance, and yi ∈ {1, · · · ,K} to denote its class label.
We use L and U to denote the index sets of the labeled and
unlabeled instances respectively. Assuming we are initially
given a set of labeled instances {(xi, yi)}i∈L and a large
set of unlabeled instances {xi}i∈U , we aim to sequentially
select the most informative instances from U to query and
move them into the labeled set L such that a good classifier
can be trained on instances indexed by L.

3.1. Uncertainty Measure

Uncertainty sampling is one simplest and most com-
monly used active active learning strategy. It aims to choose
the most uncertain instance to label. For probabilistic clas-
sification models, the uncertainty measure is defined as the
conditional entropy of the label variable Y given the candi-
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date instance xi:

f(xi) = H(Y |xi, θL) (1)

= −
∑
y∈Y

P (y|xi, θL) logP (y|xi, θL)

where Y denotes the set of all class values, θL represents
the classification model trained over the labeled set L, and
the conditional distribution P (y|xi, θL) is determined using
this model. This uncertainty measure captures the informa-
tiveness of the candidate instance with respect to the labeled
instances. The uncertainty sampling active learning strat-
egy selects the candidate unlabeled instance xi∗ that has the
largest conditional entropy

i∗ = argmax
i∈U

H(Y |xi, θL) (2)

As we mentioned before, the uncertainty sampling ap-
proaches are limited in that their assessment of an instance
involves only the small set of currently labeled instances
(that produce the classifier θL) but not the distribution of
the other unlabeled instances.

3.2. Information Density Measure

To cope with the drawback of uncertainty sampling, we
next take the unlabeled instances into consideration when
selecting an instance to query. Our motivation is that the
representative instances of the input distribution can be very
informative for improving the generalization performance
of the target classifier. Although the input distribution is
usually not given, we have a large set of unlabeled instances
that can be used to approximate the input space. It has
been shown in previous semi-supervised learning work that
the distribution of unlabeled data is very useful for training
good classification models [5, 27]. Intuitively, one would
prefer to select the instance that is located in a dense re-
gion regarding the other unlabeled instances, since such an
instance will be much more informative about other unla-
beled instances than the ones located in a sparse region. We
thus use the term information density to indicate the infor-
mativeness of a candidate instance for the remaining unla-
beled instances. Specifically, in this work, we define the
information density measure as the mutual information be-
tween the candidate instance and the remaining unlabeled
instances within a Gaussian Process framework.

Mutual information is a quantity that measures the
mutual dependence of two sets of variables, which is a
more straightforward representativeness measure than the
marginal density p(x) used in [19, 32, 27], and a more prin-
cipled representativeness measure than the cosine distance
information density measure used in [26]. We define the
mutual information based information density measure for
a candidate instance xi as below

d(xi) = I(xi,XUi
) = H(xi)−H(xi|XUi

) (3)

where Ui denotes the index set of unlabeled instances after
removing i from U , such that Ui = U − i, and XUi

denotes
the set of instances indexed by Ui.

We propose to compute the entropy terms in (3) within
a Gaussian Process framework. A Gaussian Process is a
joint distribution over a (possibly infinite) set of random
variables, such that the marginal distribution over any fi-
nite subset of variables is multivariate Gaussian. For our
problem, we associate a random variable X (x) with each
instance x. A symmetric positive definite Kernel function
K(·, ·) is then used to produce the covariance matrix, such
that σ2

i = K(xi,xi) and

ΣUiUi
=

⎛⎜⎜⎜⎝
K(x1,x1) K(x1,x2) · · · K(x1,xm)
K(x2,x1) K(x2,x2) · · · K(x2,xm)

...
...

...
...

K(xm,x1) K(xm,x2) · · · K(xm,xm)

⎞⎟⎟⎟⎠
where we assume Ui = {1, · · · ,m}. Thus the covariance
matrix ΣUiUi

is actually a kernel matrix defined over all the
unlabeled instances indexed by Ui. One commonly used
kernel function is the Gaussian kernel

K(xi,xj) = exp

(
− (‖xi − xj‖2

τ2

)
. (4)

According to the property of multivariate Gaussian dis-
tribution, the conditional distribution of P (xi|XUi

) =
P (X (xi)|X (XUi

)) is also a Gaussian distribution with a
conditional covariance matrix

σ2
i|Ui

= σ2
i − ΣiUi

Σ−1
UiUi

ΣUii (5)

Closed-form solutions exist for the entropy of multivariate
Gaussian distributions such that

H(xi) =
1

2
ln

(
2πeσ2

i

)
(6)

H(xi|XUi
) =

1

2
ln

(
2πeσ2

i|Ui

)
(7)

Using (6) and (7), the information density definition given
in (3) can finally be rewritten into the following form

d(xi) =
1

2
ln

(
σ2
i

σ2
i|Ui

)
(8)

which is easily computable without using any classification
model given a positive definite kernel function.

3.3. A Combination Framework

Given the uncertainty measure and the information den-
sity measure defined above, we aim to develop a combina-
tion framework to integrate the strengths of both. The main
idea is to pick the instance that is not only most uncertain
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to classify based on the current classifier, but also very in-
formative about the remaining unlabeled instances. Thus
after adding this instance to the labeled set, the new clas-
sifier produced can make more accurate predictions on the
unlabeled instances. Specifically, we propose to combine
the two measures in a general product form of combination
framework as below

hβ(xi) = f(xi)
βd(xi)

1−β (9)

where 0 ≤ β ≤ 1 is a tradeoff controlling parameter over
the two terms. For the combination measure given in Eq.
(9), although the uncertainty term f(xi)

β is a discriminative
measure, the information density term d(xi)

1−β is com-
puted in the input space and has no direct connection with
the target discriminative classification model. Using such a
heuristic combination measure, we aim to pick the most in-
formative instance for reducing the generalization error of
the classification model without the computationally expen-
sive steps of retraining classification model for each candi-
date instance.

The only computationally expensive operation for this
information density assisted combination measure is the
matrix inversion operation Σ−1

UiUi
used to compute the con-

ditional covariance σ2
i|Ui

in Eq. (5). It is very inefficient to

compute a matrix inverse Σ−1
UiUi

for each candidate instance
i ∈ U . We tackle this computational issue by borrowing a
fast algorithm from [36] to compute the inverse matrix with
one row/column removed. The basic idea is that for any
i ∈ U , we can compute the inverse matrix Σ−1

UiUi
from the

given ΣUU and Σ−1
UU directly without matrix inversion; see

[36] for details. Thus we only need to conduct one matrix
inversion at the beginning of the active learning process.
Moreover, one can use subsampling to further reduce the
computational cost for large unlabeled sets. That is, in each
iteration of active learning, one can first randomly sample
a subset of unlabeled instances, and then restrain the candi-
date instance selection to this subset.

A similar combination strategy to our proposed one in
Eq. (9) has been presented in [26] in form of [f(xi)d(xi)

β ].
However, it uses the average cosine distance between the
candidate instance and all unlabeled instances as its infor-
mation density measure. Moreover, it uses a predefined
weight parameter β. Below we propose to adaptively se-
lect the best β from a range of pre-defined values to use in
each iteration of active learning.

3.4. Adaptive Combination

One important issue regarding the combination strategy
we proposed above is to select a proper weight parameter
β for 0 ≤ β ≤ 1. The β value controls the degree of rel-
ative importance of the two component measures. When
β > 0.5, the uncertainty measure is treated as a more im-
portant measure than the information density measure since

more weights are put on the uncertainty measure. In the ex-
treme case of β = 1, it is equivalent to most uncertainty
sampling. Similarly, when β < 0.5, more weights are put
on the information density measure. However, it is difficult
to pre-define the relative importance of the two measures for
each different dataset. Moreover, the relative importance of
the two measures can be dynamically changing across dif-
ferent iterations and stages of the active learning process.
To achieve the best possible instance selection in each it-
eration, one thus needs to dynamically evaluate the relative
informativeness of the two measures and determine the β
value for each instance selection. Unfortunately this is a
very difficult problem to solve.

In this work, we propose to take a simple nonmyopic
step to adaptively pick the β value from a set of pre-defined
candidate values. Specifically, in each iteration of active
learning, we compute the uncertainty measure f(xi) and
the information density measure d(xi) for each candidate
instance xi. Then we select a set of b instances using b dif-
ferent β values from a pre-defined set B according to the
combination measure hβ(xi) defined in Eq. (9). For ex-
ample, for a given set B = [0.1, 0.2, . . . , 0.9, 1], we can
select b = 10 instances, one for each different β value from
this set. Then selecting the best β value is equivalent to
selecting the most informative instance from the b selected
instances. We propose to make this selection by minimizing
the expected classification error on the unlabeled instances.
Let S denote the set of b selected instances. For each can-
didate instance x from the set S, we label it with a label
value y with probability P (y|x, θL). By adding each possi-
ble instance-label pair < x, y > into the current labeled set
L and retraining the classifier on the augmented labeled set,
we can measure the prediction loss of the new classifier on
all unlabeled instances. The expected loss of the candidate
instance x can be computed as a weighted sum of the pre-
diction loss obtained using all possible labels y under the
distribution P (y|x, θL). Specifically, we conduct instance
selection from the set S using the following equation

x∗ = (10)

argmin
x∈S

∑
y∈Y

P (y|x, θL)
(∑

i∈U
(1− P (ŷi|xi, θL+<x,y>))

)

where θL+<x,y> denotes the new model parameter after re-
training on the augmented set L+ < x, y >, and ŷi is the
predicted label for instance xi.

The overall active learning algorithm is given in Algo-
rithm 1. Although classifier retraining is required to com-
pute the expected classification loss, this only needs to be
done for a very small number of pre-selected instances in
S. The computational cost can thus be maintained within a
reasonable range.
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Algorithm 1 Adaptive Active Learning Algorithm

input: Labeled set L, Unlabeled set U ,
and B = [0.1, 0.2, . . . , 1]

repeat
Training a probabilistic classifier θL on L.
for i ∈ U do

Compute f(xi) using Eq.(1).
Compute d(xi) using Eq.(8).
Compute hβ(xi) with different β∈B via Eq.(9).

end for
Let S = ∅.
for β ∈ B do

Select an instance x = argmaxi∈U hβ(xi).
Put x into set S, S = S ∪ x.

end for
Select instance x∗ from S using Eq. (10).
Remove x∗ from the unlabeled set U .
Query the true label y∗ of x∗, and update L by

adding < x∗, y∗ > into it.
until enough instances are queried

4. Experimental Results

We evaluated the effectiveness of the proposed approach
on three image classification datasets, one dataset for scene
recognition and two datasets for object recognition. We re-
port our experimental results in this section.

4.1. Experimental Setting

Datasets For scene recognition task, we used the 13
Natural Scene Categories dataset [8] (a superset of MIT Ur-
ban and Natural Scene dataset [21]), which consists of both
natural (coast, forest, mountain, etc.) and man-made scenes
(kitchen, tall building, street, etc.), and has 3859 images in
total. For object detection tasks, we used the Caltech101
and Pascal VOC 2007 datasets. Caltech101 [7] is a bench-
mark dataset for object recognition, which contains 102 cat-
egories (including the background category), and has 8677
images in total. Instead of using the entire set, we randomly
selected 30 images from each category to form a subset of
Caltech101, which has 3060 images in total. Pascal VOC
2007 is a widely used dataset for object recognition in com-
puter vision community. We used its training and validation
data which contains 5011 images. Since we are not solving
multi-label problems, the images with more than one labels
are simply discarded. The dataset we finally obtained con-
tains 2989 images from 20 object categories.

Approaches The experiments are conducted to com-
pare the proposed adaptive active learning approach to a
number of active learning methods, including (1) Random
Sampling; (2) Most Uncertainty, which is the uncertainty
sampling method; (3) Near Optimal, which is the mutual

information based active learning method proposed in [10];
and (4) Fixed Combination, which denotes the active learn-
ing method in [26] that uses the cosine distance to measure
an information density d(x) and uses a fixed β parameter
to produce a combination measure [f(x)d(x)β ]. We em-
ployed logistic regression as the classification model for all
these approaches, and it provides probabilistic predictions
over the class labels.

4.2. Experiment I: Scene Recognition

First, we conducted experiments on the 13 Natural Scene
dataset using GIST features [21]. We randomly selected
two subsets with 5 classes and three subsets with 10 classes
from the 13 Natural Scene dataset. On each subset, the se-
lected instances are randomly partitioned into labeled in-
stances, unlabeled instances and testing instances according
to a proportion of 2%, 68% and 30% respectively. Each ac-
tive learning algorithm starts with the labeled instances and
iteratively selects instances from the unlabeled set to label,
one at each time, with maximum 100 iterations. After each
selected instance being labeled, a logistic regression classi-
fier is trained on the labeled data and tested on the test data
to record its classification accuracy.

The experiments are repeated 10 times and the average
results are reported in Figure 1. In Figure 1a, the clas-
sifier achieves high performance with much fewer itera-
tions in our proposed active learning approach than in other
approaches, which demonstrates that the proposed active
learning strategy selects more effective queries. In Figure
1b, the advantages of the proposed approach over Random
Sampling, Most Uncertainty Sampling and Near Optimal
method are obvious, but the difference between it and Fixed
Combination is small, which suggests the fixed β parameter
used in Fixed Combination happens to fit to this subset. The
Figure 1c–Figure 1e show the results on three 10-class sub-
sets of the 13 Natural Scene dataset. With the principled
information density measure and the adaptive integration
framework, the proposed adaptive active learning approach
consistently outperforms all the other methods across these
experiments regardless of the number of classes. We also
compared the adaptive method with methods that use our
proposed combination framework but with different fixed
β values, β ∈ {0.25, 0.5, 0.75, 1}, on the 5-class subset
of Figure 1a. The results are reported in Figure 1f, which
illustrates the effectiveness of selecting adaptive β values
against using fixed β values.

4.3. Experiment II: Object Recognition

The second set of experiments are conducted on the two
object recognition datasets, Pascal VOC 2007 and Caltech
101. We used precomputed dense SIFT features for Pascal
VOC 2007 and PHOW features [1] for Caltech 101.

On Caltech 101 dataset, we constructed three 5-class
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Figure 1: Active learning results on 13 Natural Scene Dataset. (a)-(b) are comparison results on two randomly sampled 5-
class subsets. (c)-(e) are results on three randomly sampled 10-class subsets. (f) shows the comparison results of the proposed
adaptive approach with the ones using different fixed β values on the 5-class subset of (a).

subsets and two 10-class subsets, by randomly sampling
from all the classes of the dataset. Figure 2a – Figure 2c
show the average results over 10 runs on the three 5-class
subsets for the five comparison methods, and Figure 2d –
Figure 2e present the comparison results on the two 10-class
subsets. On these subsets, different approaches have advan-
tages in different scenarios, but the proposed adaptive active
learning approach consistently outperforms all the others in
all cases. Finally, we compared the proposed adaptive learn-
ing method and the non-adaptive versions of it with differ-
ent fixed β values on the 5-class subset of Figure 2c. The
comparison results are reported in Figure 2f. Again, these
results show the adaptive β selection method outperforms
the methods using fix β values even within the same mea-
sure combination framework.

On the Pascal VOC 2007 dataset, we constructed two
randomly selected 5-class subsets and one 10-class subset
to conduct experiments. Figure 3 presents the average re-
sults produced on Pascal VOC 2007 dataset. The proposed
approach again outperforms the other methods in all cases.
The adaptive β selection procedure produces obviously bet-
ter results than using fixed β values. Moreover, we also
collected the class distribution information of the queried

instances in one of the 5-class subsets, and depict it as a
histogram in Figure 3e, which suggests the images from dif-
ferent classes are not equally informative.

In summary, the proposed adaptive active learning
method demonstrates consistently superior performance to
the other methods in both the scene recognition experiments
and the object recognition experiments.

5. Conclusion

In this paper, we presented a new adaptive active learn-
ing approach which combines an information density mea-
sure with a most uncertainty measure together in an adap-
tive way to conduct instance selection. The adaptive com-
bination procedure allows the proposed method to best in-
tegrate the strengths of the two measures in different stages
and scenarios of active learning. This new approach can ef-
fectively use the information contained in the unlabeled data
to improve the performance of uncertainty sampling. In our
experiments on image classification problems, we showed
that the proposed approach is able to shrink the training set
required for learning a good classifier considerably, com-
paring to a number of existing active learning methods.
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Figure 2: Active learning results on Caltech 101 Dataset. (a), (b), (c) are results on three randomly selected 5-class subsets.
(d) and (e) are results on two randomly selected 10-class subsets. (f) gives the comparison results of adaptive active learning
v.s. active learning with fixed β values on the subset (c).

References

[1] A. Bosch, A. Zisserman, and X. Muoz. Image classification
using random forests and ferns. In ICCV, 2007.

[2] C. Campbell, N. Cristianini, and A. Smola. Query learning
with large margin classifiers. In ICML, 2000.

[3] S. Chakraborty, V. Balasubramanian, and S. Panchanathan.
Dynamic batch mode active learning. In CVPR, 2011.

[4] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning
with statistical models. JAIR, 4, 1996.

[5] A. Corduneanu and T. Jaakkola. On information regulariza-
tion. In UAI, 2003.

[6] P. Donmez, J. Carbonell, and P. Bennett. Dual strategy active
learning. In ECML, 2007.

[7] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: An incremen-
tal bayesian approach tested on 101 object categories. In
CVPRW, 2004.

[8] L. Fei-Fei and P. Perona. A bayesian hierarchical model for
learning natural scene categories. In CVPR, 2005.

[9] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective
sampling using the query by committee algorithm. Machine
Learning, 28, 1997.

[10] C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor
placements in Gaussian processes. In ICML, 2005.

[11] Y. Guo and R. Greiner. Optimistic active learning using mu-
tual information. In IJCAI, 2007.

[12] E. Hauptmann, W. Lin, R. Yan, J. Yang, and M. Chen. Ex-
treme video retrieval: joint maximization of human and com-
puter performance. In Multimedia, 2006.

[13] P. Jain and A. Kapoor. Active learning for large multi-class
problems. In CVPR, 2009.

[14] A. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class
active learning for image classification. In CVPR, 2009.

[15] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active
learning with gaussian processes for object categorization. In
ICCV, 2007.

[16] A. Kapoor, G. Hua, A. Akbarzadeh, and S. Baker. Which
faces to tag: Adding prior constraints into active learning. In
ICCV, 2009.

[17] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-
optimal sensor placements: Maximizing information while
minimizing communication cost. In IPSN, 2006.

[18] D. Lewis and W. Gale. A sequential algorithm for training
text classifiers. In Inter. ACM-SIGIR Conf. on Research and
Develop. in Info. Retrieval, 1994.

863863863865865



0 20 40 60 80 100 120
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Number of Labeled Instances

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

Proposed Approach
Near Optimal
Fixed Combination
Most Uncertainty
Random Sampling

(a)

0 20 40 60 80 100 120
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Number of Labeled Instances

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

Proposed Approach
Near Optimal
Fixed Combination
Most Uncertainty
Random Sampling

(b)

0 20 40 60 80 100 120
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Number of Labeled Instances

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

Proposed Approach
Near Optimal
Fixed Combination
Most Uncertainty
Random Sampling

(c)

0 20 40 60 80 100 120
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Number of Labeled Instances

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

Proposed Approach
beta=1
beta=0.75
beta=0.5
beta=0.25

(d)

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

Classes

N
u

m
b

er
 o

f 
Q

u
er

ie
d

 In
st

an
ce

s

(e)

Figure 3: Active learning results on VOC 2007. (a)-(b) are the results on two randomly chosen 5-class subsets. (c) shows the
results on one randomly chosen 10-class subset. (d) demonstrates that adaptive β is better than any fixed β. (e) shows the
class distribution of queried instances in one of the 5-class problems.
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