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Abstract

We present a method that enhances the performance
of depth-from-defocus (DFD) through the use of shading
information. DFD suffers from important limitations –
namely coarse shape reconstruction and poor accuracy on
textureless surfaces – that can be overcome with the help of
shading. We integrate both forms of data within a Bayesian
framework that capitalizes on their relative strengths. Shad-
ing data, however, is challenging to recover accurately from
surfaces that contain texture. To address this issue, we pro-
pose an iterative technique that utilizes depth information
to improve shading estimation, which in turn is used to ele-
vate depth estimation in the presence of textures. With this
approach, we demonstrate improvements over existing DFD
techniques, as well as effective shape reconstruction of tex-
tureless surfaces.

1. Introduction

Depth-from-defocus (DFD) is a widely-used technique

that utilizes the relationship between depth, focus setting,

and image blur to passively estimate a range map. A pair

of images is typically acquired with different focus settings,

and the differences between their local blur levels are then

used to infer the depth of each scene point. In contrast to

active sensing techniques such as 3D scanning, DFD does

not require direct interaction with the scene. Additionally,

it offers the convenience of employing a single stationary

camera, unlike methods based on stereo vision.

With the rising popularity of large format lenses for high

resolution imaging, DFD may increase in application due

to the shallow depth of field of such lenses. However, there

exist imaging and scene factors that limit the estimation ac-

curacy of DFD. Among these is the limited size of lens aper-

tures, which leads to coarse depth resolution. In addition to

this, depth estimates can be severely degraded in areas with

insufficient scene texture for measuring local blur levels.

We present in this paper a technique that aims to mit-

igate the aforementioned drawbacks of DFD through the

use of shading information. In contrast to defocus blur,

shading not only indicates the general shape of a surface,

but also reveals high-frequency shape variations that allow

shape-from-shading (SFS) methods to match or exceed the

level of detail obtainable by active sensing [10, 32]. We

therefore seek to capitalize on shading data to refine and

correct the coarse depth maps obtained from DFD. The

utilization of shading in conjunction with DFD, however,

poses a significant challenge in that the scene texture gener-

ally needed for DFD interferes with the operation of shape-

from-shading, which requires surfaces to be free of albedo

variations. Moreover, DFD and SFS may produce incon-

gruous depth estimates that need to be reconciled.

To address these problems, we first propose a Bayesian

formulation of DFD that incorporates shading constraints

in a manner that locally emphasizes shading cues in areas

where there are ambiguities in DFD. To enable the use of

shading constraints in textured scenes, this Bayesian DFD

is combined in an iterative framework with a depth-guided

intrinsic image decomposition that aims to separate shad-

ing from texture. These two components mutually ben-

efit each other in the iterative framework, as better depth

estimates lead to improvements in depth-guided decompo-

sition, while more accurate shading/texture decomposition

amends the shading constraints and thus results in better

depth estimates.

In this work, the object surface is assumed to be Lamber-

tian, and the illumination environment is captured by imag-

ing a sphere with a known reflectance. Our experiments

demonstrate that the performance of Bayesian DFD with

shading constraints surpasses that of existing DFD tech-

niques over both coarse and fine scales. In addition, the use

of shading information allows our Bayesian DFD to work

effectively even for the case of untextured surfaces.

2. Related Work

Depth-from-defocus There exists a substantial amount of

literature on DFD, beginning with works that handle objects

whose brightness consists of step edges [18, 25, 9]. Since

the in-focus intensity profile of these edges is known, their

depth can be determined from the edge blur. Later methods

have instead assumed that object surfaces can be locally ap-

proximated by a plane parallel to the sensor [33, 26, 30],

such that local depth variations can be disregarded in the
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estimation. Some techniques utilize structured illumination

to deal with textureless surfaces and improve blur estima-

tion [15, 14, 29]. DFD has been formulated as a Markov

random field (MRF) problem, which allows inclusion of

constraints among neighboring points [21, 22, 20]. Defo-

cus has also been modeled as a diffusion process that does

not require recovery of the in-focus image when estimating

depth [6].

Shape-from-shading Considerable work has also been

done on shape-from-shading. We refer the reader to the

SFS surveys in [34, 5], and review only the most rele-

vant methods here. SFS has traditionally been applied un-

der restrictive settings (e.g., Lambertian surfaces, uniform

albedo, directional lighting, orthographic projection), and

several works have aimed to broaden its applicability, such

as to address perspective projection [19], non-Lambertian

reflectance [16], and natural illumination [10, 8]. Non-

uniform albedo has been particularly challenging to over-

come, and has been approached using smoothness and en-

tropy priors on reflectance [3]. Our work instead takes ad-

vantage of defocus information to improve estimation for

textured surfaces. Shape-from-shading has also been used

to refine the depth data of uniform-albedo objects obtained

by multi-view stereo [32]. In our method, SFS is used in the

context of DFD with scenes containing albedo variations.

Intrinsic images Intrinsic image decomposition aims to

separate an image into its reflectance and shading compo-

nents. This is an ill-posed problem, since there are twice

as many unknowns (reflectance, shading) as observations

(image intensities) per pixel. The various approaches that

have been employed make this problem tractable through

the inclusion of additional constraints, such as those derived

from Retinex theory [11], trained classifiers [28], and mul-

tiple images under different lighting conditions [31]. De-

spite the existence of these different decomposition cues,

the performance of intrinsic image algorithms has in gen-

eral been rather limited [7]. Recently, range data has been

exploited to provide strong constraints for decomposition,

and this has led to state-of-the-art results [12]. Inspired by

this work, we also utilize depth information to aid intrinsic

image decomposition. However, our setting is considerably

more challenging, since the depth information we start with

is very rough, due to the coarse depth estimates of DFD and

the problems of SFS when textures are present.

3. Approach
In this section, we present our method for Bayesian DFD

with shading constraints. We begin with a review of basic

DFD principles, followed by a description of our Bayesian

DFD model, our shading-based prior term, the method for

Figure 1. Imaging model used in depth-from-defocus.

handling surface textures, and finally the iterative algorithm

that integrates all of these components.

3.1. Basic principles of DFD

DFD utilizes a pair of images taken with different focus

settings. The effects of these focus settings on defocus blur

will be described in terms of the quantities shown in Fig. 1.

Let us consider a scene point P located at a distance d from

the camera lens. The light rays radiated from P to the cam-

era are focused by the lens to a point Q according to the thin

lens equation:
1

d
+

1

vd
=

1

F
, (1)

where vd is the distance of Q from the lens, and F is the

focal length. When the focus setting v, which represents

the distance between the lens and sensor plane, is equal to

vd, the rays of P converge onto a single point on the sensor,

and P is thus in focus in the image. However, if v �= vd, the

focused point Q does not lie on the sensor plane, and P then

appears blurred because its light is distributed to different

points on the sensor. Because of the rotational symmetry of

lenses, this blur is in the form of a circle. The radius b of

this blur circle can be geometrically derived as

b =
Rv

2

∣∣∣∣ 1F − 1

v
− 1

d

∣∣∣∣ , (2)

where R is the radius of lens. As seen from this equation,

there is a direct relationship between depth d and blur radius

b for a given set of camera parameters.

The light intensity of P within the blur circle can be ex-

pressed as a distribution function known as the point spread

function (PSF), which we denote by h. In this paper, we

model the PSF h using a 2D Gaussian function [18]:

h(x, y;σ) =
1

2πσ2
e−

x2+y2

2σ2 (3)

with standard deviation σ = γb where the constant γ can

be determined by calibration [9]. Using the PSF, we can
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express the irradiance I measured on the image plane as the

following convolution:

I(x, y) = If ∗ h(x, y, b), (4)

where If is the all-focused image of the scene, such as that

captured by a pinhole camera.

In DFD, we have two images, I1 and I2, which are cap-

tured at the same camera position but with different focus

settings, v1 and v2:

I1(x, y) = If ∗ h(x, y;σ1),
I2(x, y) = If ∗ h(x, y;σ2),

(5)

where σ1 = γ ∗ b1 and σ2 = γ ∗ b2. Without loss of gener-

ality, assume that σ1 < σ2. I2 can then be expressed as the

following convolution on I1

I2(x, y) = I1(x, y) ∗ h(x, y; Δσ), (6)

where Δσ2 = σ2
2−σ1

2. In the preceding equations, it can

be seen that the defocus difference, Δσ, is determined by

the depth d and the two known focal settings v1 and v2, so

Eq. (6) can be represented as

I2(x, y) = I1(x, y) ∗ h(x, y, d), (7)

where d is the depth of pixel Px,y .

Based on Eq. (7), most DFD algorithms solve for depth

by minimizing the following energy function or some vari-

ant of it:

argmin
d

(I1(x, y) ∗ h(x, y, d)− I2(x, y))
2. (8)

3.2. Bayesian depth-from-defocus model

We now formulate the DFD problem within a Bayesian

framework and obtain a solution using a Markov ran-

dom field (MRF). A basic review of Bayesian models and

Markov random fields can be found in [4, 17]. MRF-based

solutions of DFD have also been used in [22, 20], and a

Bayesian analysis of the larger light-field problem was ad-

dressed in [13].

Let i = 1, . . . , N index a 2D lattice G(ν, ε) of im-

age pixels, where ν is the set of pixels and ε is the set

of links between pixels in a 4-connected graph. In corre-

spondence with G, let d = (d1, d2, .., dN ) denote values of

the depth map D, and let I(1) = (I
(1)
1 , I

(1)
2 , . . . , I

(1)
N ) and

I(2) = (I
(2)
1 , I

(2)
2 , . . . , I

(2)
N ) be the observations at the pix-

els. Depth estimation can then be formulated as a maximum

a posteriori estimation problem, expressed using Bayes’

theorem as follows:

d̂ = argmax
d

P (d|I(1), I(2)) (9)

= argmax
d

P (I(1), I(2)|d)P (d)

= argmin
d

[
L(I(1), I(2)|d) + L(d)

]

where P (d) is the prior distribution of depth map d,

P (I(1), I(2)|d) is the likelihood of observations I(1), I(2),
and L is the log likelihood of P , i.e. L = − logP .

The likelihood term can be modeled as the basic DFD

energy from Eq. (8), and the prior term as depth smoothness

along the links [22]:

L(I(1), I(2)|d) =
∑
i∈ν

(I
(1)
i ∗ h(i, d)− I

(2)
i )2, (10)

L(d) = λ
∑

(i,j)∈ε
(di − dj)

2. (11)

Hereafter, this particular formulation will be referred to as

standard DFD.

To optimize the MRF model of Eqs. (10)-(11), we use

the max-product variant of the belief propagation algo-

rithm [27], with a message update schedule that propagates

messages in one direction and updates each node immedi-

ately.

3.3. Shading-based prior term

The smoothness prior of Eq. (11) can reduce noise in

the reconstructed depth, but does not provide any additional

knowledge about the scene. We propose to use a more in-

formative prior based on the shading observed in the DFD

image pair, which is helpful both for reconstructing surfaces

with little texture content and for incorporating the fine-

scale shape details that shading exhibits. In this section,

we consider the case of uniform-albedo surfaces, for which

shading can be easily measured. The more complicated case

of textured surfaces will be addressed in Sections 3.4-3.5.

Lambertian shading can be modeled as a quadratic func-

tion of the surface normal [23, 10]:

s(n) = nTMn, (12)

where nT = (nx, ny, nz, 1) for surface normal n, and M is

a symmetric 4× 4 matrix that depends on the lighting envi-

ronment. With this shading model, we solve for the surface

normal of each pixel using the method in [10]. We also

obtain the 3D coordinates for each point by re-projecting

each pixel into the scene according to its image coordinates

(x, y), depth value d from DFD, and the perspective projec-

tion model: ((
x− w

2

)
ud,

(
y − h

2

)
ud, d

)
,

where w×h is the resolution of the image, and u is the pixel

size.

For each pair of linked pixels i, j in the MRF, we now

have their depths di, dj , 3D positions pi,pj , and normals

ni,nj . Since the vector −−→pipj should be perpendicular to
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(a) (b) (c)

Figure 2. Effect of different prior terms on DFD. (a) Original im-

age (synthesized so that ground truth depth is available). (b/c)

Close-up of depth estimates for the red/green box in (a). From

top to bottom: DFD with no prior, the smoothness prior, and the

shading-based prior, followed by the ground truth depth.

the normal direction ni + nj , we formulate the shading-

based prior term as

L(d) = λ
∑

(i,j)∈ε

(
(pj − pi)

T ni + nj

‖ni + nj‖
)2

. (13)

where ε denotes the set of 4-connected neighbors over the

MRF. DFD with this shading-based prior in place of the

smoothness prior will be referred to as DFD with shading
constraints.

In the practical application of this shading constraint, we

have a pair of differently focused images from which to ob-

tain the shading data. The most in-focus parts of the two

images are combined into a single image by focal stack-

ing using Microsoft Research’s Image Composite Editor

(ICE) [1], which also automatically aligns different mag-

nifications among the defocused images. This image is then

used for surface normal estimation, with the lighting en-

vironment measured using a sphere placed in the scene as

done in [10].

As shown in Fig. 2, the incorporation of shading con-

straints leads to improvements in DFD, especially in areas

with little intensity variation. Such areas have significant

depth ambiguity in DFD, because the likelihood energy in

Eq. (10) varies little with respect to estimated depth. In such

cases, DFD needs to rely on a prior term to obtain a distinct

solution. The simple smoothness prior of Eq. (11) helps by

using the depths of neighbors as a constraint, but this may

blur high frequency details. By contrast, the shape-based

prior term of Eq. (13) provides fine-scale shape information

that more effectively resolves uncertainties in DFD.

3.4. Texture Handling

Shading information becomes considerably more diffi-

cult to extract from an image when its surfaces contain tex-

ture. This problem arises because the brightness variations

from shading and texture are intertwined in the image inten-

sities. To separate shading from texture, methods for intrin-

sic image decomposition solve the following equation for

each pixel p:

ip = sp + rp, (14)

where i, s and r are respectively the logarithms of the image

intensity, shading value, and reflectance value.

In this paper, we decompose an image into its shading

and reflectance components with the help of shape infor-

mation provided by DFD. The method we employ is based

on the work in [12], which uses streams of video and depth

maps captured by a moving Kinect camera. In contrast to

their work, we do not utilize temporal constraints on the

decomposition, since video streams are unavailable in our

setting. Also, we are working with depth data that is often

of much lower quality.

The decomposition utilizes the conventional Retinex

model with additional constraints on non-local re-

flectance [24] and on similar shading among points that

have the same surface normal direction. Let Ω be the set

of all pixels, ℵ be the set of 8-connected pixel pairs, Gr(p)
be the set of pixels having a similar local texture pattern as

p (computed as in [24]), and Gs(p) be the set of pixels with

the same surface normal as p. Then the shading component

of the image is computed through the following minimiza-

tion:

argmin
s

∑
(p,q)∈ℵ

[
ωp,q

s(sp − sq)
2 + ωp,q

r((ip − sp)− (iq − sq))
2
]

+
∑
p∈Ω

∑
q∈Gr(p)

[
ωnlr((ip − sp)− (iq − sq))

2
]

+
∑
p∈Ω

∑
q∈Gs(p)

[
ωnls(sp − sq)

2
]
, (15)

ωp,q
r =

{
ωr if (1− ĉTp ĉq) < τr,

0 otherwise
(16)

ωp,q
s =

{
ωs if (1− n̂T

p n̂q) < τr,

0.1ωs otherwise
(17)

where ĉ denotes chromaticity, n̂ denotes surface normal,

and ωr, ωnlr, ωs and ωnls are coefficients that balance the

local and non-local reflectance constraints, and local and

non-local shading constraints, respectively.

We note that Eq. (15) is a quadratic function which can

be simplified to a standard quadratic form:

argmin
s

1

2
sT As− bT s+ c. (18)

It is optimized in our implementation using the precondi-

tioned conjugate gradient algorithm.
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(a) (b) (c) (d) (e)

Figure 3. Depth and shading refinement in our iterative approach.

(a) Defocus pair. (b-d) Estimated shading (top) and depth (bottom)

for (b) first iteration, (c) middle iteration, (d) final iteration. (e)

Ground truth.

3.5. Iterative algorithm

The performance of depth-guided intrinsic image de-

composition depends on the accuracy of the input depth.

Likewise, the utility of shading constraints in DFD rests on

how well shading is extracted from the image. Since DFD

and intrinsic image decomposition facilitate each other, we

use them in alternation within an iterative framework. Each

iteration begins with the DFD step, followed by decompo-

sition. This cycle is repeated until the average change in

depth within each local region (which is partitioned in our

implementation by a 10x10 grid on the image) lies below a

threshold. We solved the MRF using a multi-scale refine-

ment with 200 depth labels per depth range and reducing

the range by 15% with each iteration. We used 15 iterations

which equivalently gives about 2000 depth labels in total.

Since the estimated shading and depth are less accurate

in earlier iterations, the parameters in DFD and decompo-

sition are set in each iteration to account for this. Initially,

the shading constraint weight λ in Eq. (13) for DFD and

the non-local shading coefficient ωnls in Eq. (15) for de-

composition are set to relatively low values (0.5 and 0.05,

respectively, in our implementation). At each subsequent it-

eration, both of these values are increased by a factor of 1.1
until reaching a maximum of twice the initial value, after

which these coefficients are no longer made larger.

As illustrated in Fig. 3, the iterations bring improvements

to both the estimated depth and shading. This iterative al-

gorithm has converged to a significantly better result for all

the examples we tested.

4. Results
We evaluated our method on synthetic and real images,

both with and without texture. The depth estimates of

our method are compared to those of three previous tech-

(a) (b) (c) (d)

Figure 4. Comparison of estimated normal maps. (a) From stan-

dard DFD. (b) From SFS with natural illumination [10]. (c) Com-

puted from our estimated depth maps. (d) Ground truth.
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(a) (b)

Figure 5. Depth error analysis. (a) For synthetic non-textured ob-

jects. (b) For synthetic textured objects.

niques: standard MRF-based DFD with smoothness con-

straints, DFD via diffusion [6], and the single-image SIRFS

method [3]1. In these experiments, a foreground mask is

used to discard the background, and depth maps are scaled

to the range of [0,1] for visualization.

4.1. Synthetic images

The first set of experiments uses synthetic data to provide

comparisons to ground truth. Three object models – Bud-

dha, feline and zebra [35] – are handled with and without

texture, under illumination from the Eucalyptus Grove envi-

ronment map [2, 23]. The defocus pair is rendered with blur

according to Eq. (2) and with the virtual camera parameters

1The results for DFD via diffusion and SIRFS were

generated using the authors’ downloadable code at

http://home.eps.hw.ac.uk/˜pf21/pages/page4/page4.html and

http://www.cs.berkeley.edu/˜barron, respectively.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Non-texture results Texture results

Figure 6. Synthetic data results. (a) Ground truth depth maps. (b/g) Non-textured/textured input defocus pairs. Depth estimate results for

(c/h) SIRFS [3], (d/i) DFD via diffusion [6], (e/j) standard DFD, (f/k) our method.

set to F = 0.01, Fnum = 2.0, and γ = 1000000. The

two focal settings are chosen such that their focal planes

bound the ground truth depth map, and random Gaussian

noise with a standard deviation of 1.0 is added to simulate

real images.

The benefits of utilizing shading information with DFD

are illustrated in Fig. 4 for normal map estimation on tex-

tureless objects. Here, the normal maps are constructed

from gradients in the estimated depth maps. The uncertainty

of DFD in areas with little brightness variation is shown

to be resolved by the shading constraints. As we use the

method of SFS with natural illumination [10] to obtain sur-

face normals, our technique is able to recover a similar level

of shape detail.

Our depth estimation results are exhibited together with

those of the comparison techniques in Fig. 6. The aver-

age errors for each method within the foreground masks are

shown in Fig. 52. With the information in a defocus pair,

our method can obtain results more reliable than that of the

single-image SIRFS technique. In comparison to the two

2DFD by diffusion does not work as well as standard DFD on our ob-

jects because its preconditioning is less effective when the intensity varia-

tions are not large.

DFD methods, ours is able to recover greater shape detail

through the use of shading.

4.2. Real images

We also compared our method to related techniques us-

ing real images. As with the synthetic data, the comparison

methods are SIRFS [3], DFD via diffusion [6], and standard

DFD. The images were captured using a Canon 5D Mark II

camera with a 100mm lens. We mounted the camera on a

tripod and shot the images in RAW mode with the objects

about 50cm away.

In order to use our shading constraints, we first calibrate

the natural illumination using a white Lambertian sphere,

and then use the known surface normals of the sphere to

solve the shading matrix in Eq. (12) by least-squares opti-

mization. Because the albedo of the sphere may differ from

those of our target objects, we estimate the relative albedo

between target objects and the sphere simply by comparing

the brightness of manually identified local areas that have a

similar normal orientation. For objects with surface texture,

the albedo of the local area used in this comparison is used

as the reference albedo for the object.

The results for real images are shown in Fig. 7. The
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(a) (b) (c) (d) (e)

Figure 7. Real image results. (a) Input defocus pairs. Depth estimate results for (b) SIRFS [3], (c) DFD via diffusion [6], (d) standard

DFD, (e) our method.

first example is a plaster bust of uniform color. With the

SIRFS method, the depth variations on the body correctly

follow the object shape, but the head is shown to be closer

than it actually is. The depth estimates of DFD via diffu-

sion and standard DFD are both generally accurate for the

head and body. They however exhibit some false fine-scale

variations, perhaps due to DFD ambiguity in non-textured

regions. Our result conforms most closely to the actual ob-

ject, with shading information to provide shape details and

help resolve DFD uncertainties.

The last three examples contain albedo variations. For

the dress in the second row, our results exhibit a finer level

of detail than the others. The general depth trends shown

with SIRFS are accurate, but the albedo change and shape

details are missed. DFD via diffusion performs relatively

well on this example. Some detail is visible, but not as much

as what our method obtains through shading. Standard DFD

shows some shape detail as well, but also displays some

obvious errors, such as near the top-right corner.

For the turtle in the third row, the depth estimates of our

method show greater accuracy. The SIRFS method does a

fairly good job, but does not indicate the nearness of the

right leg. It also shows the shell and neck at the same depth,

and a smooth depth transition from the head to the shell.

DFD via diffusion does not exhibit the gradual changes of

depth over the object, while standard DFD displays incor-

rect depth variations in areas with little texture.

The final example, in the fourth row, is of a bunny fig-

urine. With SIRFS, the head and far arm are well recon-

structed. The depth of the closer arm, however, is off, and

the left foot is not shown to be closer. Both this result and

the one of DFD via diffusion exhibit less shape detail than

our depth estimate. Standard DFD displays some shape de-

tail, but has problems on the mostly textureless head.

5. Conclusion

In this paper, we presented a method to enhance depth-

from-defocus by incorporating shading constraints. To ef-

fectively utilize the shading information on objects with

varying albedo, we proposed an iterative technique that uses

DFD and shading estimation in manner in which they facil-

itate each other. Our experiments demonstrate that the use

of shading constraints brings greater accuracy and detail to

DFD, especially in areas without clear DFD solutions.

In future work, we plan to investigate ways to increase
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the accuracy of our depth estimates. Our current implemen-

tation assumes the incident illumination to be the same at all

surface points. However, this will not be the case due to dif-

ferent self-occlusions of an object towards different lighting

directions. This issue could be addressed by computing the

light visibility of each point from the estimated depth.
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