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Abstract

A key problem in visual tracking is to represent the ap-
pearance of an object in a way that is robust to visual
changes. To attain this robustness, increasingly complex
models are used to capture appearance variations. How-
ever, such models can be difficult to maintain accurately
and efficiently. In this paper, we propose a visual tracker
in which objects are represented by compact and discrimi-
native binary codes. This representation can be processed
very efficiently, and is capable of effectively fusing infor-
mation from multiple cues. An incremental discriminative
learner is then used to construct an appearance model that
optimally separates the object from its surrounds. Further-
more, we design a hypergraph propagation method to cap-
ture the contextual information on samples, which further
improves the tracking accuracy. Experimental results on
challenging videos demonstrate the effectiveness and ro-
bustness of the proposed tracker.

1. Introduction
As a fundamental problem in computer vision, visual

tracking underpins a wide range of applications such as

visual surveillance, human-computer interaction, object

recognition, event detection, and action recognition. Most

state of the art trackers use a sampling approach, in which

the object location is selected from a pool of candidate sam-

ples at each frame. This provides robustness to unpredicted

or ambiguous motion but leads to the question of how these

samples are evaluated or scored. Ideally, the highest scor-

ing sample should be the one which best aligns with the

object, and sample scores should decrease with the amount

of object overlap, while all background samples should be

scored lower than any sample containing at least part of the

object. This is made more challenging as the scoring func-

tion must be robust to object and background appearance

changes, and be computed and updated in real time.

Scoring functions are typically based on a model of ob-

ject appearance (e.g., linear regression [16,19,21,34], prin-

cipal component analysis [15, 24], discrete cosine trans-

form [17], random forest [25], support vector machine [3,

11], and boosting [2, 9]), which is in turn based on a robust

image feature (e.g., attentional regions [6], covariance fea-

tures [22, 31], feature learning [10, 33], and multi-feature

kernels [11, 20]). Many state of the art trackers construct

appearance models from a collection of different feature

types to cope with object appearance variations. A basic ap-

proach to feature fusion is to directly concatenate weighted,

normalized features into a unified feature vector. However,

the resulting feature vector is often high-dimensional and

redundant, making it difficult to separate object and back-

ground samples. To alleviate this issue, dimensionality re-

duction is generally applied, but may result in the loss of

the intrinsic structural information from samples [7] or high

computational cost [20, 28].

We propose a hashing method to perform feature fusion

by reducing multiple feature descriptors to a single binary

code vector. The proposed hash function is based on ran-

domized decision trees, each of which is efficiently built by

a sequence of simple operations on samples and their asso-

ciated features. As a result, the problem of feature fusion

is converted to that of randomized decision tree growing.

Using the learned hash function, we can explicitly formu-

late the binary code corresponding to a sample by aggre-

gating the posterior distributions of the leaf nodes reached

in all randomized decision trees. These binary codes cap-

ture hierarchical discriminative information from different

feature modalities in a decision-tree-growing manner, lead-

ing to a discriminative image representation. Since they

are individually learned over randomly sampled subsets, the

learned hash functions are almost uncorrelated with each

other. Because of this, a compact image representation can

be achieved. Due to taking binary values as feature ele-

ments, our image representation also has low memory us-

age.

Given the compact and discriminative binary codes rep-

resenting samples, an object appearance model is typi-

cally required to maximize the separation of foreground and

background samples. Among existing appearance models,

the linear support vector machine (SVM) has proved to be a

simple yet effective choice. Compared to the standard linear

SVM using the hinge loss, the linear SVM with least square

loss (referred to as LS-SVM) can be a better choice for real-

time tracking because of its closed-form solution [32]. In

terms of online learning, the LS-SVM can be efficiently up-
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Figure 1: Illustration of our compact binary code learning method for multi-modal
feature fusion.

dated by incrementally computing the inverse of its regular-

ized covariance matrix (shown in Sec. 2.2) as new data ar-

rive. Empirical studies [27] have demonstrated that the LS-

SVM can achieve comparable generalization performance

to the standard linear SVM.

Learning the LS-SVM on the binary codes ensures a

max-margin hyperplane separating the foreground from the

background. However, due to the precision loss incurred by

hashing, the LS-SVM classification scoring function may

not be able to accurately localize the object (i.e., determine

which of the foreground samples best represents it). To fur-

ther refine the scoring function, we note that sample con-

fidence scores are not only determined by their own ap-

pearance features but also constrained by their contextual

dependencies. In other words, if two test image regions

have a similar binary code, their confidence scores ought

to be close; otherwise, their confidence scores may greatly

differ from each other. In order to model such a depen-

dency, we use hypergraph analysis, which is a useful tool

for capturing the contextual interaction between graph ver-

tices [13,35]. In hypergraph analysis, the problem of depen-

dency modeling is converted to that of building a set of hy-

peredges, which correspond to vertex communities. In each

vertex community, the vertices have some common proper-

ties (e.g., the same weak labels obtained by compact binary

code learning in our case), and pass support messages to

each other. Therefore, the hypergraph propagation method

can refine the sample scores to be consistent with their bi-

nary codes, leading to more accurate object localization.

In summary, we propose a robust visual tracker that in-

corporates three measures to improve the accuracy and ro-

bustness of the sample scoring function while maintaining

its required computational efficiency. The main contribu-

tions of this work are as follows.

1. We propose a novel compact binary code learning

method based on random forest hashing, which learns

to produce compact and discriminative binary codes

representing samples. To our knowledge, it is the first
time that the compact binary code learning method is

proposed to build a robust image representation for vi-
sual tracking.

2. We build an appearance model based on these binary

codes using an incremental closed-form LS-SVM,

which can online learn a hyperplane that separates the

foreground samples from the background samples.

3. We present a hypergraph propagation method that fur-

ther refines the appearance model by capturing contex-

tual similarity information from samples. Using such

information, the method is able to obtain more accu-

rate object localization.

2. The proposed visual tracker
The workflow of our tracking system is summarized in

Algorithm 1. Like most sampling based trackers, at each

frame the method generates a sample set, scores each sam-

ple, and updates its estimated target location based on the

highest scoring sample. In this section, we focus on the con-

struction and update of the sample scoring function. This is

based on three techniques: i) compact binary code learn-

ing; ii) incremental LS-SVM learning; and iii) hypergraph

propagation.

For i), we focus on learning a set of random forest hash

functions for feature fusion, as described in Sec. 2.1. For ii),

the LS-SVM classifier (with a closed-form solution) is in-

crementally learned for object/non-object classification by

computing Eq. (8) and Eq. (10), as shown in Sec. 2.2. For

iii), a weakly supervised hypergraph is created by explor-

ing a set of hashing-bit-specific communities, as shown in

Sec. 2.3. According to Eq. (14), hypergraph propagation is

performed to diffuse the LS-SVM classification scores on

the weakly supervised hypergraph, resulting in more accu-

rate object localization. After object localization, we collect

some new foreground and background training samples us-

ing a spatial sampling scheme [2, 33]. These training sam-

ples are used at regular intervals to update the random for-

est and and LS-SVM classifier, as explained in Secs. 2.1

and 2.2.

2.1. Compact binary code learning

Given multiple types of visual features, we design a

hashing method to form a compact and discriminative fused

feature. In principle, the hashing method needs to satisfy the

following two conditions: i) each individual hash function

is balanced such that:∫
h(u)=1

Pr(u)du =

∫
h(u)=−1

Pr(u)du =
1

2
, (1)

where u is a test sample (represented by a concatenation

of different visual features), Pr(·) is a probability density

function, and h(·) is the hash function; ii) the hash func-

tions are mutually independent. To achieve these two goals,
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Algorithm 1 Compact binary code learning based tracker

Input: New video frame.

1. Crop out a set of image regions {ui}Ki=1 using the sliding-window-

sampling scheme [2, 33] and extract their associated visual features;

2. Compute the corresponding binary codes {xi}Ki=1 by compact binary

code learning (Sec. 2.1);

3. Perform LS-SVM classification on the binary codes to produce the

initial confidence score vector s0 (Sec. 2.2);

4. Perform hypergraph propagation (Sec. 2.3) to obtain the final confi-

dence score vector s;

5. Update the tracker location to {uk|k = argmaxi si}.

6. Add new foreground and background samples to sample buffer. If the

buffer limit is exceeded, discard oldest training samples.

7. Update the random forest hash functions (Algorithm 2) and the LS-

SVM classifier (Sec. 2.2) based on sample buffer every few frames.

the training samples for each hash function are randomly

selected from the entire training dataset, and equally dis-

tributed between positive and negative samples. To capture

the discriminative information from inter-class samples, the

hash function is typically formulated as a binary classifier:

h(u) = sgn
(
κ(u, {u+

i })− κ(u, {u−j })
)
, (2)

where sgn(·) is the sign function, κ(·, ·) is a similarity func-

tion, {u+
i } and {u−j } are respectively the positive and neg-

ative training samples. Now, the remaining problem is how

to design an efficient and discriminative similarity func-

tion κ. We make use of randomized trees to construct the

similarity function due to their effectiveness and efficiency

in discriminative learning. The process of growing each

randomized tree enables our hashing method to effectively

combine the discriminative information from different fea-

ture modalities in a top-down manner, as shown in Fig. 1.

Each internal node of these randomized trees contains a bi-

nary test that best splits the space of a randomly sampled

subset of training data along a randomly chosen feature di-

mension:

sp(ui) =

{
left child, if ui ≥ γ,
right child, otherwise,

(3)

where ui corresponds to the i-th feature dimension (chosen

at random) of u and γ is a threshold determined by optimiz-

ing an entropy-based information gain criterion [4]. Such

random sample selection and random internal node split en-

sure the high efficiency of our hashing method. Using the

aforementioned tree growing scheme (3), we construct a

random forest T comprising a set of randomized trees. For

descriptive convenience, let C ∈ {1,−1} be the set of all

classes and Lt be the set of all leaves for a given randomized

tree t ∈ T. The posterior probability Prt,l(c) for each class

c ∈ C at each leaf node l ∈ Lt needs to be learned during

the training stage. Mathematically, Prt,l(c) is calculated as

the ratio
|Qt,l,c|
|Qt,l| , where Qt,l is the set of training samples

reaching the leaf node l in the randomized tree t, and Qt,l,c

is the set of class-c training samples in Qt,l.

Algorithm 2 Learning random forest hash functions

Input: Training sample set {ui, yi}Ni=1 with yi ∈ {1,−1}, binary code

length �, and randomized tree number M .

Output: Random forest hash functions {hTj
(·)}�j=1.

for j = 1 to � do
for m = 1 to M do

• Randomly sample {ui, yi}Ni=1 to generate a training sample

subset {ujk , yjk}Fk=1 with equal representation from positive

and negative samples;

• Use {ujk , yjk}Fk=1 to construct a randomized tree tm by ran-

dom internal node split (Eq. (3)).
end
• Obtain random forest Tj = {t1, . . . , tM} and output the hash func-

tion hTj
(·) by Eq. (4).

end

Based on the random forest T, we define the sim-

ilarity function (Eq. (2)) as κ(u, {Qt,ltu,c
|t ∈ T}) =∑

t∈T Prt,ltu(c), where ltu denotes the leaf node reached by

the test sample u in the randomized tree t. For each test

sample u, its corresponding binary code hT(u) ∈ {1,−1}
w.r.t. the random forest T is obtained by the following three

steps. First, pass the test sample down each randomized tree

until reaching a leaf node; second, aggregate all the corre-

sponding posterior probabilities of the reached leaf nodes

from T; finally, output the binary code such that

hT(u) = sgn(
∑
t∈T

Prt,ltu(c = 1)−
∑
t∈T

Prt,ltu(c = −1)). (4)

Algorithm 2 shows the detailed workflow of learning

the random forest hash functions. Suppose that there

are � learned random forests (denoted as {Tj}�j=1) cor-

responding to � hash functions in our hashing method.

As a result, for any test sample u, we have an associ-

ated �-dimensional binary feature vector denoted as x =
(hT1

(u), hT2
(u), . . . , hT�

(u))�.

2.2. Incremental LS-SVM

To classify binary features as object/non-object, we build

an online discriminative appearance model based on incre-

mental LS-SVM learning. Given a set of training samples

{xi, yi}Ni=1 with xi ∈ R� and yi ∈ {−1,+1}, the LS-SVM

optimizes the following objective function [32]:

min
w,b

N∑
i=1

‖f(xi)− yi‖22 + C‖w‖22, (5)

where ‖·‖2 is the L2 norm, f(x) = w�x+b is the classifier

to learn, and C is the trade-off control parameter. For conve-

nience, let 1 be an all-one vector, X = (x1,x2, . . . ,xN ) be

the data matrix, N+ (N−) be the positive (negative) sample

size such that N++N− = N , μ+ (μ−) be the sample mean

of the foreground (background) class, and μ be the mean of

all the training samples such that μ = N+

N μ+ + N−
N μ−.

Then, the closed-form solution to (5) is formulated as:
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w = 2N+N−
N2

(
S+ C

N I
)−1

(μ+ − μ−),
b = N+−N−

N − μ�w,
(6)

where I is an identity matrix and S is the covariance ma-

trix defined as: S = 1
N (X − μ1�)(X − μ1�)�. In

terms of online learning, the key factor is the incremen-

tal computation of
(
S+ C

N I
)−1

with respect to new sam-

ples δX = (δx1, δx2, . . . , δxδN ). Let δμ be the sample

mean of δX, N ′ be the total number of samples such that

N ′ = N + δN , and μ′ be the sample mean of (X, δX)
such that μ′ = N

N ′μ+ δN
N ′ δμ. Then, the updated covariance

matrix S′ can be calculated as:

S′ = N
N ′S+ 1

N ′ [
∑δN

i=1(δxi − δμ)(δxi − δμ)�

+N(μ− μ′)(μ− μ′)� + δN(δμ− μ′)(δμ− μ′)�].
(7)

Defining A as 1
N ′ [

∑δN
i=1(δxi − δμ)(δxi − δμ)� + N(μ −

μ′)(μ − μ′)� + δN(δμ − μ′)(δμ − μ′)�], we obtain the

following relation:

S′ +
C

N ′ I =
N

N ′ (S+
C

N
I+

N ′

N
A). (8)

As a result, we have (S′+ C
N ′ I)

−1 = N ′
N (S+ C

N I+N ′
N A)−1.

Therefore, the key factor of efficiently computing (S′ +
C
N ′ I)

−1 is to incrementally update (S + C
N I + N ′

N A)−1

when (S + C
N I)−1 is given. Since N ′

N A is formed by

the sum of rank-one matrices, it can be decomposed as:
N ′
N A =

∑δN+2
k=0 qkq

�
k such that

qk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, k = 0,
1√
N
(δxk − δμ), 1 ≤ k ≤ δN,

μ− μ′, k = δN + 1,√
δN
N (δμ− μ′), k = δN + 2.

(9)

According to the theory of [12,23], (S+ C
N I+ N ′

N A)−1 can

be recursively computed by:

(Jm + qm+1q
�
m+1)

−1 = J−1
m − J−1

m qm+1q
�
m+1J

−1
m

1 + q�m+1J
−1
m qm+1

,

(10)
where Jm = S+ C

N I+
∑m

k=0 qkq
�
k and 0 ≤ m ≤ δN +1.

2.3. Hypergraph propagation

The goal of hypergraph propagation is to refine the confi-

dence score s0i obtained from the LS-SVM for each sample,

taking into account contextual information from surround-

ing samples. This is necessary because the score is based on

binary codes which have sufficient precision to distinguish

foreground from background, but not to locate the object

reliably among foreground samples.

Given a set of samples {ui}Ki=1, we have computed

the corresponding binary codes {xi}Ki=1 such that xi =
(hT1(ui), . . . , hT�

(ui))
�. Based on {xi}Ki=1, we create a

weakly supervised hypergraph G = (V,E, w), where V =
{vi}Ki=1 is the vertex set corresponding to {ui}Ki=1, E is

Algorithm 3 Hypergraph propagation

Input: Binary codes {xi}Ki=1 and maximum iteration number τ .

Output: Confidence score vector s for object localization.

• n← 0;

• Compute the LS-SVM classification score vector s0 for {xi}Ki=1;

repeat

• Construct the hypergraph G = (V,E, w) in Sec. 2.3;

• Calculate the transition probability matrix P in Eq. (13);

• Perform the hypergraph propagation procedure in Eq. (14);

• n← n+ 1;

until sn converges or n ≥ τ ;

• s← sn.

the hyperedge set comprising a family of subsets of V such

that
⋃

e∈E = V, and w is the hyperedge weight [13, 35].

These hyperedges are obtained by using the bit-specific bi-

nary code to weakly classify {ui}Ki=1 into bit-specific posi-

tive and negative communities. If hTk
(ui) = 1, ui is added

to the bit-k positive community; otherwise, it belongs to the

bit-k negative community. In other words, each bit-specific

community corresponds to a hyperedge.

The hypergraph G is represented by a |V|×|E| incidence

matrix H = (H(vi, ej))|V|×|E|:

H(vi, ej) =

{
1, if vi ∈ ej ,
0, otherwise.

(11)

The degree of any vertex v ∈ V is defined as

d(v) =
∑

e∈E w(e)H(v, e) where w(e) is a positive weight

(w(e) = 1 in our case). Correspondingly, the degree of any

hyperedge e ∈ E is defined as δ(e) =
∑

v∈V H(v, e). Let

W, Dv , and De denote the diagonal matrices whose diag-

onal elements are associated with w(e), d(v), and δ(e), re-

spectively. The process of random walk on the hypergraph

G [35] is governed by the following transition probability

matrix P = (pij)K×K whose entry is defined as:

pij =
∑
e∈E

w(e)
H(vi, e)

d(vi)

H(vj , e)

δ(e)
. (12)

Its corresponding matrix form can be written as:

P = D−1
v HWD−1

e H�. (13)

Based on this transition probability matrix, the process of

hypergraph propagation is formulated as follows:

sn+1 = αPsn + (1− α)s0, (14)

where α is a trade-off control factor such that 0 < α < 1,

s0 = (s01, s
0
2, . . . , s

0
K)� is the initial LS-SVM confidence

score vector (i.e., s0i = f(xi)) and sn is the confidence

score vector after propagation at the n-th iteration. Through

a sequence of transformations, Eq. (14) is further converted

to:

sn = (αP)ns0 + (1− α)

n−1∑
j=0

(αP)js0. (15)

Since pij ≥ 0 and
∑

j pij = 1, the spectral radius of

P is not greater than one (see the theorem of Perron-

Frobenius [8]), leading to the fact that lim
n→∞(αP)n = 0
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and lim
n→∞(1− α)

∑n−1
j=0 (αP)js0 = (1− α)(I− αP)−1s0.

Therefore, Eq. (14) will converge to (1− α)(I− αP)−1s0

after a sufficient number of iterations. When K is large,

the cost of computing (I − αP)−1 is high. For compu-

tational efficiency, the final confidence score vector s =
(s1, s2, . . . , sK)� is obtained by iterating Eq. (14) until con-

vergence. The complete procedure of hypergraph propaga-

tion is summarized in Algorithm 3.

3. Experiments
3.1. Experimental setup

In the experiments, eighteen publicly available video se-

quences are used for tracking performance evaluation. Cap-

tured in different scenarios, these video sequences con-

tain diverse events such as occlusion, object pose variation,

lighting changes and out-of-plane rotation. Like the multi-

instance tracker [2], the proposed tracker performs object

localization using a sliding-window-search scheme with a

search radius of 30 pixels. The average running time of our

Matlab implementation is about 0.1 second per frame on a

workstation with an Intel Core 2 Duo 2.66GHz processor

and 3.24G RAM. For each image region, we extract four

types of visual features: intensity histogram, local binary

pattern (LBP), histogram of gradient (HOG), and Haar-like

wavelets. More specifically, both the intensity histogram

and LBP features are extracted by dividing an image re-

gion into 4 × 4 cells, each of which is associated with a

16-dimensional histogram vector. The HOG feature is com-

posed of 3 × 3 cells, with each cell represented by a 9-

dimensional histogram vector, in five spatial block-division

modes (like [18]), resulting in a 405-dimensional feature

vector. The Haar-like feature is extracted in the same way as

the CT tracker [33], resulting in a 100-dimensional feature

vector. By concatenating the above four visual features, we

have in total a 1017-dimensional real-valued feature vector

for each image region. After random forest hashing, the bi-

nary code length � in Algorithm 2 is chosen as 100. The

training sample sizes N and F in Algorithm 2 are set to

1000 and 100, respectively. Each random forest hash func-

tion is associated with a random forest comprising 10 ran-

domized decision trees (i.e., M = 10 in Algorithm 2) with

25 layers. The random forest hash functions in Algorithm 2

are updated every 10 frames. The LS-SVM classifier is in-

crementally updated every 5 frames. The trade-off control

factor α in Eq. (14) is set to 0.1. The maximum iteration

number τ in Algorithm 3 is chosen as 50. Note that the

aforementioned parameters are fixed throughout all the ex-

periments.

For quantitative performance comparison, two popular

evaluation criteria are used: center location error (CLE) and

VOC overlap ratio (VOR) between the predicted bound-

ing box Bp and ground truth bounding box Bgt such that

Ours CT ORF Struck Frag MIT OAB IVT L1T

Cyclist 4.19 91.79 34.22 5.22 11.09 93.74 84.04 76.24 65.85
distortion 2.49 3.39 5.14 3.07 12.71 3.66 4.82 23.93 5.95
football 3.36 11.60 9.48 3.67 16.89 6.59 7.31 42.50 48.63
PedCross 3.74 64.54 73.78 138.07 137.73 126.88 69.31 73.65 70.50
animal 3.18 10.54 4.06 3.84 50.38 55.60 38.14 5.60 140.54
Jumper 9.90 36.24 26.13 35.26 24.74 66.49 36.83 76.49 101.76
Trellis 3.32 45.67 36.10 5.67 29.84 60.85 68.72 30.92 89.89
Walker 5.05 31.79 53.30 32.27 88.03 32.33 34.05 54.56 89.67
cubicle 2.94 17.90 19.09 19.96 30.28 12.06 35.77 49.28 22.73
David 4.79 9.51 5.92 5.26 24.70 21.69 25.37 8.44 43.54
Tiger1 6.41 8.27 9.45 6.35 33.22 9.20 68.73 38.89 36.58
Tiger2 6.72 9.95 26.52 9.18 37.15 8.44 30.25 47.89 32.42
Girl 12.24 29.46 16.13 10.80 21.75 35.44 36.95 23.58 18.83
Coke 6.85 22.20 9.93 5.75 32.33 18.94 56.55 61.51 62.32
Faceocc1 5.54 19.86 16.22 9.91 4.63 19.21 52.63 16.30 6.26
Faceocc2 6.67 16.58 14.84 8.64 18.66 17.53 16.48 13.15 37.50
Sylv 4.89 6.44 8.85 6.23 20.43 10.70 35.02 48.79 76.88
Surfer 4.82 48.88 9.27 7.23 21.27 5.03 31.57 10.09 45.15

Table 1: The quantitative comparison results of the nine trackers over the eighteen
video sequences. The table reports their average CLEs over each video sequence.

Ours CT ORF Struck Frag MIT OAB IVT L1T

Cyclist 0.85 0.24 0.56 0.82 0.67 0.21 0.22 0.23 0.28
distortion 0.86 0.82 0.76 0.84 0.52 0.82 0.75 0.32 0.73
football 0.80 0.46 0.67 0.77 0.38 0.64 0.62 0.30 0.11
PedCross 0.82 0.37 0.36 0.36 0.30 0.35 0.32 0.35 0.36
animal 0.92 0.76 0.89 0.90 0.37 0.40 0.52 0.85 0.07
Jumper 0.76 0.43 0.54 0.49 0.56 0.27 0.49 0.24 0.11
Trellis 0.86 0.31 0.46 0.79 0.40 0.28 0.16 0.48 0.25
Walker 0.79 0.54 0.38 0.53 0.09 0.54 0.53 0.43 0.10
cubicle 0.81 0.59 0.55 0.54 0.40 0.56 0.33 0.27 0.57
David 0.88 0.77 0.84 0.86 0.55 0.56 0.53 0.79 0.45
Tiger1 0.70 0.64 0.61 0.70 0.27 0.61 0.13 0.21 0.23
Tiger2 0.66 0.57 0.23 0.56 0.15 0.59 0.22 0.13 0.24
Girl 0.78 0.55 0.72 0.79 0.65 0.52 0.48 0.69 0.72
Coke 0.64 0.30 0.53 0.68 0.16 0.34 0.06 0.10 0.16
Faceocc1 0.90 0.74 0.76 0.83 0.92 0.72 0.40 0.76 0.89
Faceocc2 0.86 0.70 0.72 0.81 0.68 0.69 0.68 0.74 0.55
Sylv 0.80 0.75 0.67 0.76 0.58 0.62 0.39 0.43 0.30
Surfer 0.72 0.06 0.52 0.62 0.31 0.71 0.25 0.49 0.06

Table 2: The quantitative comparison results of the nine trackers over the eighteen
video sequences. The table reports their average VORs over each video sequence.

VOR =
area(Bp

⋂
Bgt)

area(Bp

⋃
Bgt)

.

3.2. Empirical comparison of trackers

We compare the proposed tracker with several state-of-

the-art trackers both qualitatively and quantitatively. These

trackers are referred to as ORF (online random forest

tracker [25]), CT (compressive tracker [33]), Struck (struc-

tured learning tracker [11]), Frag (Fragment-based tracker

[1]), MIT (multiple instance tracker [2]), OAB (online Ad-

aBoost tracker [9] that is implemented with the same con-

figuration as OAB1 in [2]), IVT (incremental subspace

tracker [24]), L1T (�1 minimization tracker [21]). In the

experiments, the following trackers are implemented using

their publicly available source code: ORF, CT, Struck, Frag,

MIT, OAB, IVT, and L1T.

We evaluate the CLE and VOR performance of all the

nine trackers on eighteen video sequences. Fig. 2 shows

the qualitative tracking results of the nine trackers over sev-

eral representative frames of eight video sequences. Fig. 3

plots the frame-by-frame CLEs (highlighted in different

colors) obtained by the nine trackers for the fifteen video

sequences. Tabs. 1-2 report the average CLEs and VORs

of the nine trackers on each of all the eighteen video se-

quences. From Fig. 3 and Tabs. 1-2, we observe that the

proposed tracker achieves the best tracking performance on

most video sequences. In particular, the proposed tracker

obtains the more robust tracking results in the presence

of complicated appearance changes (caused by occlusion,

drastic pose variation, background clutter, image distortion

and blurring, etc.). An example of severe occlusion and

background distraction is the “PedCross” sequence, shown

bottom left of Fig. 2. The tracked pedestrian, moving right

to left, is lost by all other trackers at frame 78 as he overlaps
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Figure 2: Qualitative tracking results of the nine trackers over several representative frames of the eight video sequences (i.e., “Walker”, “Cyclist”, “Girl”, “Trellis”, “Surfer”,
“Jumper”, “PedCross”, and “Sylv”) that are respectively aligned from left to right and from up to down.
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Figure 3: Quantitative comparison of the nine trackers in CLE on the fifteen video sequences.

with other pedestrians. The other trackers lock onto differ-

ent pedestrians, so their error increases for the rest of the se-

quence, as shown in Fig. 3. The “Cyclist” video sequence,

top right of Fig. 2, contains drastic pose variation followed

by partial occlusion. MIT, IVT, OAB, and CT break down

after the 30th frame due to the change in body pose. L1T

and ORF lose the target after the 47th frame and the 69th

frame, respectively, due to occlusion by the railing. Frag is

able to keep track of the target, but also includes some back-

ground. In contrast, both Struck and our tracker are robust

to the body pose variations and partial occlusions encoun-

tered throughout the entire video sequence. The “Trellis”

video sequence, second row right of Fig. 2, contains sig-

nificant illumination changes. L1T, OAB, and MIT begin

to drift away from the target after the 195th frame because

of the changing lighting conditions. Due to the combina-

tion of lighting and changing head pose, IVT, ORF, Frag,

and CT fail to track the target after the 367th frame. Both

our tracker and Struck successfully track the target across

the whole video sequence, although our tracker locates the

242224222424
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Figure 4: Quantitative evaluation of using different binary code lengths in CLE and
VOR on the “Cyclist” and “Jumper” video sequences.
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Figure 5: Quantitative evaluation of using different hashing methods in CLE and
VOR on the “animal”, “Cyclist”, and “Walker” video sequences.

head more accurately. The “Girl” video sequence, second

row left of Fig. 2, contains out-of-plane rotations followed

by partial and severe occlusions. As shown in Fig. 3, both

Struck and our tracker obtain more accurate tracking results

than the other trackers.

3.3. Discussion and analysis

In this section, we evaluate each component to show its

contribution to the overall performance of the tracker and

its sensitivity to parameter settings. The effect of each com-

ponent varies for each sequence, so we show a different but

representative subset for each evaluation.

Binary code length We quantitatively evaluate the per-

formance of the proposed tracker for five different binary

code lengths. Fig. 4 shows the quantitative CLE and VOR

performance on two video sequences. Clearly, it is seen

from Fig. 4 that the CLE (VOR) performance improves

as code length increases, and plateaus with approximately

more than 100 hashing bits. This is a desirable property be-

cause we do not need a high-dimensional binary feature to

achieve promising tracking performance.

Comparison of hashing methods Different hashing

methods generate different binary codes, encoding various
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Figure 6: Quantitative evaluation of using different feature fusion methods in CLE
and VOR on the “Cyclist”, “Jumper”, and “Walker” video sequences.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

Cyclist

LS SVM
Standard SVM

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Frame Index

C
e
n
te
r
L
o
c
a
ti
o
n

E
rr
o
r

animal

LS SVM
Standard SVM

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

Cyclist

LS SVM
Standard SVM

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame Index

V
O
C

O
v
e
rl
a
p

R
a
ti
o

animal

LS SVM
Standard SVM

Figure 7: Quantitative evaluation of the proposed tracker with different SVMs in
CLE and VOR on the “Cyclist” and “animal” video sequences.

discriminative information on object appearance. Here, we

aim to evaluate different hashing methods applied to the

task of feature fusion, including LDAH (linear discrimi-

nant analysis hashing [26]), SSH (semi-supervised hash-

ing [29]), LSH (locality sensitive hashing [5]), SPH (spec-

tral hashing [30]), SVMH (support vector machine hash-

ing [14]), and our RFH (random forest hashing). As shown

in Fig. 5, our RFH used in the proposed tracker achieves the

better CLE and VOR performance than the other hashing

methods in most cases.

Evaluation of feature fusion methods In order to verify

the effectiveness of our feature fusion method, we compare

it to a direct concatenation of normalized feature vectors

into a unified feature vector. Fig. 6 displays the quantitative

CLE and VOR performance of the proposed tracker with

different feature fusion methods. Clearly, we see that our

feature fusion method outperforms the standard feature fu-

sion method in most cases.

Comparison of SVMs To justify the effectiveness of the

LS-SVM, we compare it to the standard SVM. Fig. 7 shows

the quantitative CLE and VOR tracking results on two video

sequences. From Fig. 7, we clearly see that the proposed
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Figure 8: Perform comparison of the proposed tracker with and without hypergraph
propagation in CLE and VOR on the “animal”, “Jumper”, and “Trellis” video se-
quences.

tracker using the LS-SVM achieves close but slightly supe-

rior tracking performance to the standard SVM.

Performance with and without hypergraph propaga-
tion The task of hypergraph propagation is to refine the

confidence scores by random walk on the object/non-object

community hypergraph. Fig. 8 exhibits the quantitative

CLE and VOR tracking results of the proposed tracker

with and without hypergraph propagation on three video

sequences. It is clearly seen from Fig. 8 that hypergraph

propagation gives rise to performance gain.

4. Conclusion
In this paper, we have proposed a robust visual tracker

that learns compact and discriminative binary codes for an

effective image representation. To obtain this representa-

tion, we develop a random forest hashing method, which

efficiently constructs a set of hash functions by learning

several randomized decision trees. To perform object/non-

object classification, we build a discriminative appearance

model based on incremental LS-SVM, which can be solved

extremely efficiently in closed-form. Compared with the

standard linear SVM, we have empirically shown that incre-

mental LS-SVM has a simpler implementation with com-

parable accuracy. To further improve the accuracy of object

localization, we present a hypergraph propagation method

to capture the interaction information from samples and

their contexts. Compared with several state-of-the-art track-

ers on eighteen challenging sequences, we empirically show

that our tracker is able to achieve more accurate and robust

tracking results in challenging conditions.

Acknowledgments This work was in part supported by

ARC grants DP1094764 and FT120100969.

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using

the integral histogram. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages
798–805, 2006.

[2] B. Babenko, M. Yang, and S. Belongie. Visual tracking with online multiple
instance learning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 983–
990, 2009.

[3] Y. Bai and M. Tang. Robust tracking via weakly supervised ranking svm. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1854–1861, 2012.

[4] A. Bosch, A. Zisserman, and X. Muoz. Image classification using random
forests and ferns. In Proc. IEEE Int. Conf. Comp. Vis., pages 1–8, 2007.

[5] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hash-
ing scheme based on p-stable distributions. In Proc. ACM Ann. Symp. Comp.
Geometry, pages 253–262, 2004.

[6] J. Fan, Y. Wu, and S. Dai. Discriminative spatial attention for robust tracking.
In Proc. Eur. Conf. Comp. Vis., pages 480–493, 2010.

[7] Y. Fu, L. Cao, G. Guo, and T. Huang. Multiple feature fusion by subspace
learning. In Proc. ACM Int. Conf. Content-based Image & Video Retrieval,
pages 127–134, 2008.

[8] G. Golub and C. Van Loan. Matrix computations, volume 3. Johns Hopkins
University Press, 1996.

[9] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boost-
ing. In Proc. British Machine Vis. Conf., pages 47–56, 2006.

[10] M. Grabner, H. Grabner, and H. Bischof. Learning features for tracking. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1–8, 2007.

[11] S. Hare, A. Saffari, and P. Torr. Struck: Structured output tracking with kernels.
In Proc. IEEE Int. Conf. Comp. Vis., 2011.

[12] A. S. Householder. The theory of matrices in numerical analysis. Blaisdell
Publishing Co.: New York, 1964.

[13] Y. Huang, Q. Liu, S. Zhang, and D. Metaxas. Image retrieval via probabilis-
tic hypergraph ranking. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages
3376–3383, 2010.

[14] A. Joly and O. Buisson. Random maximum margin hashing. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., pages 873–880, 2011.

[15] J. Kwon and K. M. Lee. Visual tracking decomposition. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., pages 1269–1276, 2010.

[16] H. Li, C. Shen, and Q. Shi. Real-time visual tracking with compressive sensing.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011.

[17] X. Li, A. Dick, C. Shen, A. van den Hengel, and H. Wang. Incremental learn-
ing of 3d-dct compact representations for robust visual tracking. IEEE Trans.
Pattern Anal. Mach. Intell., 2013.

[18] X. Li, W. Hu, Z. Zhang, X. Zhang, M. Zhu, and J. Cheng. Visual tracking via
incremental log-euclidean riemannian subspace learning. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., pages 1–8, 2008.

[19] X. Li, C. Shen, Q. Shi, A. Dick, and A. van den Hengel. Non-sparse linear
representations for visual tracking with online reservoir metric learning. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1760–1767, 2012.

[20] H. Lu, W. Zhang, and Y. Chen. On feature combination and multiple kernel
learning for object tracking. Proc. Asian Conf. Comp. Vis., pages 511–522,
2011.

[21] X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse
representation. IEEE Trans. Pattern Anal. Mach. Intell., 2011.

[22] F. Porikli, O. Tuzel, and P. Meer. Covariance tracking using model update based
on lie algebra. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., volume 1, pages
728–735, 2006.

[23] M. J. D. Powell. A theorem on rank one modifications to a matrix and its
inverse. Computer Journal, 12(3):288–290, 1969.

[24] D. A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual
tracking. Int. J. Comp. Vis., 77(1):125–141, 2008.

[25] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random
forests. In Proc. IEEE Int. Conf. Comp. Vis. Workshops, pages 1393–1400,
2009.

[26] C. Strecha, A. Bronstein, M. M. Bronstein, and P. Fua. LDAHash: Improved
matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell.,
34(1):66–78, 2012.

[27] T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene,
B. De Moor, and J. Vandewalle. Benchmarking least squares support vector
machine classifiers. Machine Learn., 54(1):5–32, 2004.

[28] M. Varma and D. Ray. Learning the discriminative power-invariance trade-off.
In Proc. IEEE Int. Conf. Comp. Vis., pages 1–8, 2007.

[29] J. Wang, S. Kumar, and S. Chang. Semi-supervised hashing for large scale
search. IEEE Trans. Pattern Anal. Mach. Intell., 2012.

[30] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc. Adv. Neural
Inf. Process. Syst., 2008.

[31] Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, E. Blasch, and L. Bai.
Real-time probabilistic covariance tracking with efficient model update. IEEE
Trans. Image Proc., 21(5):2824–2837, 2012.

[32] J. Ye and T. Xiong. Svm versus least squares svm. In Proc. Int. Conf. Artificial
Intelligence & Stat., pages 640–647, 2007.

[33] K. Zhang, L. Zhang, and M. Yang. Real-time compressive tracking. In Proc.
Eur. Conf. Comp. Vis., 2012.

[34] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via multi-
task sparse learning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages
2042–2049, 2012.

[35] D. Zhou, J. Huang, and B. Scholkopf. Learning with hypergraphs: Cluster-
ing, classification, and embedding. In Proc. Adv. Neural Inf. Process. Syst.,
volume 19, 2007.

242424242426


