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Abstract

We present a computational imaging method for raw ma-
terial classification using features of Bidirectional Texture
Functions (BTF). Texture is an intrinsic feature for many
materials, such as wood, fabric, and granite. At appropriate
scales, even “uniform” materials will also exhibit texture
features that can be helpful for recognition, such as paper,
metal, and ceramic. To cope with the high-dimensionality
of BTFs, in this paper, we proposed to learn discrimina-
tive illumination patterns and texture filters, with which we
can directly measure optimal projections of BTFs for clas-
sification. We also studied the effects of texture rotation
and scale variation for material classification. We built
an LED-based multispectral dome, with which we have ac-
quired a BTF database of a variety of materials and demon-
strated the effectiveness of the proposed approach for mate-
rial classification.

1. Introduction
Texture is an important feature for recognizing almost

all real-world materials, some of which are intrinsically tex-

tures (e.g., fabric, wood, granite) and others exhibits texture

at appropriate scales (e.g., metal, paper, plastic, ceramic).

Considering lighting and view dependence, a complete rep-

resentation of texture is the Bidirectional Texture Function

(BTF) [6], which is a 6-D function f(�x, �ωi, �ωo). Subsets of

this function have been utilized previously as “3D Textons”

for texture classification [5, 17]. The 3D texton approach

has shown higher performance for classification compared

to conventional texture classification [31, 32]. However, it

requires a time-consuming capture of images under multi-

ple lighting/view conditions, which significantly limits its

practicality. Can we directly measure discriminative infor-

mation from BTFs with one or two images?

A second question is texture representation. Most prior

work uses the responses to a set of filters (e.g., S-filters, Ga-

bor, steerable, Laws’ masks) as the representation [14, 12,

8, 28, 2, 30, 31]. What are “good” filters for classification?

We realize the answer is task-dependent. Finding the opti-

mal filters is expected to reduce the dimensionality of the

classification task and thus increase performance.

Motivated by these two questions, in this paper, we

present an efficient method to directly capture discrimina-

tive features of BTFs for material classification with com-

putational lighting and filters optimized for given classifi-

cation tasks. (1) To reduce the acquisition cost, we observe

that each measured image is a linear projection of the BTFs

to the illumination pattern. Thus, by appropriately setting

the illumination pattern, we can directly capture discrimina-

tive projections of BTFs without actually measuring the full

BTFs. (2) To find good filters for texture classification, we

model the filters as linear combinations from a general filter

dictionary and optimize the weights by minimizing a dis-

criminant functional. Both the optimal illumination pattern

— called “discriminative illumination”— and the weights

for filters are optimized iteratively to maximize the distance

between different materials.

Our method is closely related to two recent works [9, 13]

which also seek optimal illumination for material classifica-

tion. However, they focused on point-wise material classi-

fication using BRDF features only. In this work, we in-

corporated non-local features — texture — for classifica-

tion. Experiments showed that our method has better results

than theirs. Nevertheless, similar to these prior works, our

method also has signal-to-noise benefit due to illumination

multiplexing and can also be extended for multi-class and

nonlinear classification by using multiple discriminative il-

lumination patterns.

Since BTFs are generally neither rotational-invariant nor

scale-invariant, we also studied the effects of rotation and

scale to texture classification. We found indeed that both

factors degrade the performance of texture classification.

One solution we proposed is to incorporate copies of BTFs

with multiple orientations and scales in the training stage.

Experimental results showed that the optimal illumination

and filters learned from this “augmented” training set is

much more stable to rotation and scale change for texture

classification.

To evaluate our method, we built a LED-based mul-

tispectral dome similar to that in [9]. We used this
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Figure 1: Samples in the spectral BTF database for material classification. The database includes eight classes of materials

(i.e., aluminum, stainless, granite, carpet, paper, plastic and wood) and 90 samples in total. Each sample is imaged under

6 × 25 = 150 lighting conditions (6 in wavelength and 25 in angular) with a resolution of 1040 × 1392. The database is

available at http://compimg1.cis.rit.edu/data/texture/.

rig and measured a spectral BTF database covering a

range of materials, including metal, plastic, paper, carpet,

wood, granite, etc.. Some samples are shown in Fig. 1.

The database is available at http://compimg1.cis.
rit.edu/data/texture/. We evaluated the proposed

method for a variety of materials classification tasks. We

also compared with prior work on texture classification [31]

and BRDF classification [9]. Experimental results showed

the effectiveness of the proposed method.

2. Related Work

Material Classification There are two categories of prior

work on material classification in computer vision. The pas-

sive approach aims to study material perception in order to

classify materials from regular images via statistical learn-

ing [1, 21, 18]. The active approach, especially in machine

vision, employs any useful visual features for classification,

such as 2D slices of BRDFs [34, 13], BRDF projections [9],

polarization [3], and spectral reflectance [10, 26]. To our

knowledge, there has been no prior work using BTF for ma-

terial classification.

Texture Analysis and Classification Texture analysis

and classification has been a long standing research area

in computer vision [14, 12, 8, 28, 2, 30, 31]. To deal

with the change of orientation and scale, researchers ei-

ther estimated the dominant orientation/scale of a texture

image [16, 4, 31], or utilized rotational-invariant or scale-

invariant features [24, 15, 20, 25]. Another body of prior

work focused on optimizing filters for texture classifica-

tion [19, 11, 29]. Unlike these prior works that deal with

single texture images, we focus on BTF classification.

Computational Illumination Our work is in the area of

computational illumination which uses coded light for effi-

cient material and shape measurement and is also related to

task-specific and feature-specific imaging [23, 22], in which

the goal of such imaging systems is to maximize the amount

of information relevant to given tasks (in our case, material

classification). An essential component in our work is the

supervised learning from labeled data sets.

3. Learning Discriminative Filters and Illumi-
nation for BTF Classification

Let us define the spectral BTF as a 7D reflectance field

f(p, ωi, ωo, λ) with incident light in the direction of ωi, and

reflected light in the direction in ωo at wavelength λ for a

pixel at point p. Consider a sample illuminated by multiple

light sources from different directions with different spec-

tra, as shown in Fig.2 (b). At a fixed viewpoint ωo, the

captured image I(p) is given by

I(p) =

∫
λ,ωi

f(p, ωi, ωo, λ)L(ωi, λ)V (ωi)S(λ)dλdωi,

(1)

where L(ωi, λ) is the incident light in the direction ωi at

wavelength λ, V (ωi) = max(0, cos θi) is the visibility

term, and S(λ) is the camera spectral response function.

We represent a textured surface as a vector of the re-

sponses with various image filters. Since the appearance of

the texture is linear with respect to the incident illumination,

the vector of filter responses will also be linear with respect

to the incident illumination. Therefore, we can employ a

similar approach as in [9] to learn discriminative illumina-

tion as optimal projection directions for texture classifica-

tion. Specifically, let N denote a local neighborhood (e.g.,
a 5× 5 window). The response of the textured surface with

a filter under the incident illumination is:

r =
∑
p∈N

αpI(p) =
∑
p∈N

M∑
j=1

αp · f̂(p, j) · Lj , (2)

where αp is the coefficient of the filter at pixel p, and

I(p) is the pixel intensity of the textured surface under

the incident illumination. We note I(p) is a dot prod-

uct between the apparent BTF feature vector of pixel p
[f̂(p, j) = f(p, ωi, ωo, λ)V (ωi)S(λ)] and the incident il-

lumination [Lj ], j = 1, · · · ,M . For a set of K filters, the
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texture descriptor is a K × 1 vector:

r =
[
r(1), · · · , r(K)

]T
=

(
AT · FT

) ·w, (3)

where w = [L1, · · · , LM ]
T

is a vector of the illumination,

A is an N×K matrix consisting of the coefficients of the K

filters (i.e., Aij = α
(j)
i where α

(j)
i is the coefficient of the

j-th filter at pixel i), and F is an M×N matrix consisting of

the apparent BTF feature vectors (i.e., Fij = f̂(j, i)). The

illumination vector w projects the original texture feature

AT · FT of dimension K × M to a feature vector r in a

lower dimensional subspace of dimension K × 1.

What are the optimal filters to use in A? Instead of us-

ing a set of predefined filters, we solve for optimal filters

(together with solving for optimal illumination) by maxi-

mizing some discriminant functional (e.g., Fisher LDA or

SVM with a linear kernel). We model each filter in A as

a linear combination of basis filters from a general dictio-

nary B consisting of Gabor filters, S-filters, and maximal

response filters. We have A = BW, with vectorized ba-

sis filters in columns of B and weights of basis filters in

columns of the weights matrix W. Thus we have

r = WTBTFTw = WTRTw, (4)

where R = FB is the filter response matrix for the basis

filters, with Rij being the filter response of the i-th basis

filter under the j-th light source.

With a given training set, R is known. The optimal il-

lumination w and filters W for the classification task are

learned by maximizing the between-class distance while

minimizing the within-class distance (with a unit norm con-

straint on w to avoid scale ambiguity), similar to LDA.

max
W,w

J(Sb,Sw), st. ||w|| = 1,

where Sb and Sw are the between-class scatter matrix and

the within-class scatter matrix for r, respectively,

Sb =
C∑

c=1

(r̄c − r̄)(r̄c − r̄)T

Sw =
C∑

c=1

Nc∑
i=1

(ri,c − r̄c)(ri,c − r̄c)
T ,

where ri,c is the texture descriptor for the i-th sample in

the c-th class, r̄c is the average descriptor for class c, and

r̄ is the average descriptor for all samples in the C classes.

As shown in [7], there are multiple choices of J(·). In this

paper we chose J(·) as below

max
W,w

J =
Trace(Sb)

Trace(Sw)
, st. ||w|| = 1. (5)
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Figure 2: Texture classification with discriminative illumi-

nation and filters. (a) Classifying aluminum and stainless

steel under conventional lighting with regular color cam-

era is challenging, since they have similar color and gloss.

(b) We proposed to capture projections of BTFs for ma-

terial classification with coded illumination, implemented

as a LED-based multispectral dome. (c) and (d) show the

optimal illumination. The bar graph shows the learned w,

where the 25 bar groups correspond to the 25 LED clus-

ters and the six bars within each group correspond to the six

LEDs. This coded light pattern is also shown as w+ and

w− where w = w+−w−. (e) The optimal filters. (f)(g)(h)

show the classification rates on test data using the VZ tex-

ture classifier [31], BRDF Projection [9] and our method

with the same number of measurements.

We optimize w and W in Equation. (5) alternatively. When

W is fixed, finding w is the well-known LDA problem;

when w is fixed, optimizing W becomes a trace-ratio prob-

lem for dimensionality reduction [33]. Both have algo-

rithms for global optimal solutions. Please refer to the sup-

plementary material for details.

In the classification stage, a test sample is captured when

the illumination pattern is set to w∗. Since w∗ often con-

tains negative values, it is implemented as the difference of

two nonnegative patterns w = w+ − w− where w+ =
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max(0,w) and w− = −min(0,w). For each point, we

use its neighborhood to compute the texture descriptor with

the learned optimal filters A∗ = BW∗ for classification.

Figure 2 shows a challenging example for classifying

aluminum and stainless steel, which has similar color and

gloss. As shown, compared to two state-of-art material clas-

sification methods (the VZ classifier [31] and the BRDF

projections [9]), our method has better performance on the

testing data, with the same number of measurements.

3.1. The Effect of Orientation for BTF Classification

It is well known that the appearance of a BTF is highly

dependent on sample orientation and scale, especially for

materials with rough surfaces (e.g., carpet, tree bark, fur).

Because of self-occlusion and inter-reflection, we often can-

not approximate the texture appearance at a different orien-

tation or scale by simply rotating or scaling a captured tex-

ture image. How does the change of orientation and scale

affect the classification performance? We discuss these ef-

fects in the next two subsections.

We first focus on the effect of orientation. To eliminate

the contribution of BRDF to classification and study the ef-

fect of orientation only to texture, as shown in Fig. 3(a),

we prepared two classes of materials which are coated with

the same paint — one is paper and the other is grooved clay

tile. Thus the material difference will be only due to texture.

First, we confirmed that orientation is indeed important for

classification. As shown in the top row of Fig. 3(c), if we

apply the classifier trained with one orientation to images

captured at an unknown orientation, the classification rate

is less than 50% for both BRDF and BTF projections.

In order to achieve rotational invariance, we tried two

methods. First, we added rotated samples into the training

set. Second, we limited the basis filters in the dictionary

to be rotational-invariant (e.g., S-filter instead of Gabor fil-

ters). We found the latter does not change the results signif-

icantly, but adding rotated samples in the training set can ef-

fectively increase the robustness to orientation. As shown in

Fig. 3(c), the more rotated sampled added, the better the per-

formance. With eight orientations in training, the classifica-

tion rate is 99.1%. Figure 3(b) shows the trained K = 16
filters when we use one orientation, four orientations, and

8 orientations in training, respectively. As shown, the more

orientations added in training, the more directional filters

are learned. In comparison, adding rotated samples does

not change much the classification results of the BRDF pro-

jection method [9], as expected.

3.2. The Effect of Scale for BTF Classification

Scale is another important factor in texture classification.

Depending on the distance between the sample and the sen-

sor, different geometric and photometric properties will be

observed by each pixel and thus result in different appear-

�������������	����

�����
�������	������

�������������	�����

�������������
��������������





��
�

�
�
��
�

�
�
��
�



�
��
�

�
�
��
�

�
�
��
�

�	�

���

���

������ �
���!"	#

�	$��

�




�

Figure 3: The effect of orientation for BTF classification.

(a) We prepared two materials coated with the same blue

paint for material classification with texture only. The sam-

ples measured at different orientations show the changes

in self-shadow and specular lobe caused by surface geom-

etry. (b) By using multiple rotated samples in training,

we learned classifiers (i.e., illumination and filters) that are

more robust to orientation. (c) As expected, the accuracy

of our BTF projection method increases with the number of

rotated samples added to the training set, while the BRDF

projection method [9] does not vary significantly.

ance. To our knowledge, there is few prior work explicitly

models the relationship between scale and appearance.

We performed some preliminary study on this problem.

As shown in Fig. 4, we aimed to classify carpet and paper

at two scales. Two sets of images are captured for the same

samples, one with a lens with focus length 12mm and the

other 50mm. As shown, at the two different scales, some

details, such as the shadows among knots of the carpet, are

lost. As a result, as shown in Fig. 4(g), the BTF-based clas-

sifier trained at the lower scale (f=12mm) fails to classify

the carpet at the higher scale (f=50mm).

To deal with the scale change, we adapt a similar ap-

proach as that in the orientation scenario. We include the

143114311433
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Figure 4: The effect of scale for BTF classification. (a)(b)

show the images of carpet and paper captured at two differ-

ent scales. (c)(e): the optimal illumination (w+, w−) and

filters trained with samples in one scale. (d)(f): the optimal

illumination (w+, w−) and filters trained with samples in

both scales. The differences in the trained illumination and

filters confirm that BTF is not scale-invariant. (g): classifi-

cation results when only samples in one scale are included

in the training set. (h) classification results when samples

in both scales are included in training set. The classification

rate increases as the training sets include both scales.

samples in both scales into the training set. The classifica-

tion rate increases from 77.3% to 97.8% after we expand the

training set to include samples in both scales, as shown in

Fig. 4(h). Figures 4(c)(d) and (e)(f) show the corresponding

discriminative illumination and filters.

4. Experimental Results
To evaluate our method, we built a LED-based multi-

spectral dome similar to the device in [9]. As shown in

Fig. 5, the dome consists of 25 clusters of LEDs. Each

cluster has six LEDs of different colors: blue, green, am-

345678

9458:4

97;<=8:>?@=A>B>CDE<

FGG58H>@I>345678

Figure 5: The LED-based multi-spectral dome for discrim-

inative illumination and filters for BTF classification.

ber, white, red and orange. The six colors are selected so

that the visible spectrum is covered. Each LED cluster is

controlled by an Arduino board which controls the intensi-

ties of the six LEDs independently. A Lumenera camera is

mounted on the top of the dome.

We acquired a spectral BTF database using this dome,

covering eight classes of materials (i.e., aluminum, stain-

less, granite, carpet, paper, plastic and wood) and 90 sam-

ples in total. Each sample is imaged under 6 × 25 = 150
lighting conditions (6 in wavelength and 25 in angular) with

a resolution of 1040 × 1392. The database, along with

source code, is available at http://compimg1.cis.
rit.edu/data/texture/.

We first run simulation experiments to confirm that both

spectral and angular coding are needed and why the six

colors and the 25 directions are sufficient. As summa-

rized in Fig. 6, we perform experiments for three classifi-

cation tasks: aluminum vs. stainless steel, carpet vs. pa-

per, and granite vs. wood. For each sample, we measure

25× 6 = 150 images corresponding to the 150 LEDs in the

dome. The left column shows the classification rates with

color features only, i.e., we turn on the LEDs of the same

color in all the clusters. The middle column shows the clas-

sification rates with angular distribution of reflectance for

classification, i.e., we use only white LEDs and disable all

other color LEDs. We found in both cases, although the

performance increases with the number of colors/angular

samples used, the classification rate is not as high as that if

we use both spectral and angular distribution of reflectance

as shown in the right column. These plots also show that six

colors and 25 LED clusters are sufficient for these classifi-

cation tasks.

The general filter dictionary has 541 basis filters, includ-

ing 13 S-filters [27], 16 circular ring filters, and 512 Gabor

filters of different scales and orientations, The circular ring

filters are the filters with unit intensity at the pixels with a
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Figure 6: Discriminative ability of spectral BTF for material

classification. We evaluate the performance of the learned

discriminative illumination with different amounts of color,

LED clusters and LEDs. The plots show that the spectral

and angular distribution of reflectance are complimentary

to each other in material classification. The results also

demonstrate that six colors and 25 LED clusters are suffi-

cient for these tasks.

particular distance from the center and zeros at other loca-

tions. We evaluated the classification performance of the

proposed method with respect to the filter size and the num-

ber of filters to learn. Details are given in the supplementary

material. In all the classification tasks, we set the filter size

to be 19× 19. We train K = 16 filters that are linear com-

bination of the basis filters for each classification task. The

iterative algorithm to learn optimal discriminative illumina-

tion and filters is usually converged in 3 to 5 iterations.

We compare with several recent related work for tex-

ture/material classification in three aspects. First, how does

our method compare to methods that use the same number

of images as ours? We test the VZ classifier [31] and the

BRDF projection method [9]. The VZ classifier is a “bag-

of-words” method for regular texture classification with a

single image as input. We implemented it for every 49× 49
patches to classify the material of the central pixel. The

BRDF projection uses discriminative projections of BRDF

slices for material classification, which also uses a single

coded image as input (implemented as the subtraction of

two images since light cannot be negative). As shown in Ta-

ble 1, with the same number of required images, our method

outperforms both methods.

Second, is the joint-learning of the illumination and fil-

ters necessary? To answer this question, we compare with

a method in which the discriminative illumination and the

filters are learned separately. The illumination is first learnt

in the same way as in [9]. Then the filters are optimized

based on the illumination. Note that this method is a fairly

strong competitor, because it is in fact the first iteration of

our method with the initial filters being the 2D delta func-

tions1. Nevertheless, as shown in Table 1, the results show

that the co-learning still improves the performance consis-

tently. Thus we conclude it is necessary to co-learn the illu-

mination and filter patterns for classification.

Third, what is the limit of our method? We hope to un-

derstand its performance relative to methods that do not im-

pose any constraints on acquisition cost. One well-known

method in this category is the 3D texton [17], in which mul-

tiple images under different illuminations are used for tex-

ture classification. Filter responses of the stack of images

at different orientations and scales are learned with the bag-

of-words approach and used as features for texture classifi-

cation. As shown in Table 1, the 3D texton needs 150 input

images and achieves the highest classification rates among

all methods for some tasks. This is expected since the fea-

ture space of the 3D texton is of much higher dimensional-

ity than those of the other methods. We found our method

has quite close performance compared to 3D texton by us-

ing only a single coded image. For some tasks, our method

performs even better.

Moreover, since the VZ classifier and 3D texton are both

“bag-of-words” methods, we also evaluate them with dif-

ferent numbers of words. We found their performance is

sensitive to this parameter — which makes them less robust

compared to our method. The details and the visualizations

of the classification results of the comparisons are included

in the supplementary material.

Finally, we can generalize our method for multi-class

and non-linear classification similar to that shown in [9].

Table 2 shows the classification rates for some multi-class

classification tasks, for which we use the one-vs-all scheme

to generalize the binary classifiers. For each task, we com-

pare our method with the BRDF projection method [9] and

the VZ classifier [31]. As shown, our method is more accu-

rate for all the tasks.

5. Conclusion and Discussions

In this paper, we presented a method that uses coded illu-

mination to directly measure projections of BTFs for mate-

rial classification. Optimal illumination patterns and filters

are learned via a training stage. We also proposed ways to

deal with the change of orientation and scale for material

classification. Compared to relevant prior work, the pro-

posed method has higher performance in classification and

is economical in measurement cost.

1Our method converges within fewer than five iterations in most cases
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Table 1: Comparison results with the VZ classifier [31], 3D Texton [17], the BRDF projection method [9] and the BRDF

projection coupled with optimal filters. The number of required images for each method is shown in the bracket. 1∗ means it

uses the subtraction of two images since light cannot be negative.

Task
VZ [31]

(1)
3D Texton[17]

(150)
BRDF Projection [9]

(1∗)
BRDF projection +
Optimal filters (1∗)

Our method
(1∗)

Aluminum
vs.

Granite
79.12% 100% 94.03% 93.37% 98.55%

Aluminum
vs.

Stainless
84.81% 99.40% 86.61% 89.97% 96.12%

Aluminum
vs.

Wood
81.50% 81.75% 99.56% 99.99% 100%

Carpet
vs.

Wood
80.59% 86.65% 96.09% 95.04% 99.04%

Carpet
vs.

Paper
85.28% 91.48% 93.61% 99.98% 100%

Granite
vs.

Paper
86.83% 100% 97.32% 99.99% 99.74%

Paper
vs.

Wood
73.84% 89.81% 99.20% 100% 100%

Plastic
vs.

Stainless
78.55% 86.97% 99.77% 100% 100%

Paper
vs.

Aluminum
85.63% 99.25% 99.01% 99.08% 100%

The proposed method has a few limitations. First, the

proposed method works primarily on flat samples (with tex-

tures). It still does not decouple 3D shape and material

from visual appearance. Second, for complex, nonlinear

classification tasks, we may still need to acquire many im-

ages under multiple discriminative illumination. Finally, the

method we proposed to deal with rotation and scale requires

more images in training — a better solution is to explicitly

model the relationship between scale/rotation and visual ap-

pearance. These are among our future research.
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