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Abstract

Node splitting is an important issue in Random Forest
but robust splitting requires a large number of training sam-
ples. Existing solutions fail to properly partition the fea-
ture space if there are insufficient training data. In this pa-
per, we present semi-supervised splitting to overcome this
limitation by splitting nodes with the guidance of both la-
beled and unlabeled data. In particular, we derive a non-
parametric algorithm to obtain an accurate quality mea-
sure of splitting by incorporating abundant unlabeled da-
ta. To avoid the curse of dimensionality, we project the
data points from the original high-dimensional feature s-
pace onto a low-dimensional subspace before estimation.
A unified optimization framework is proposed to select a
coupled pair of subspace and separating hyperplane such
that the smoothness of the subspace and the quality of the
splitting are guaranteed simultaneously. The proposed al-
gorithm is compared with state-of-the-art supervised and
semi-supervised algorithms for typical computer vision ap-
plications such as object categorization and image segmen-
tation. Experimental results on publicly available datasets
demonstrate the superiority of our method.

1. Introduction

Random Forest (RF) has been applied to various comput-
er vision tasks including target tracking, object categoriza-
tion and image segmentation. Though it is one of the state-
of-the-art classifiers, its promising performance depends
heavily on the size of the labeled data. Because labeling
training samples is very time consuming, only a small size
of labeled training set is given in some tasks, which usually
leads to an obvious performance drop. Thus, sometimes the
insufficiency of labeled data is a severe challenging issue in
the construction of RF. A popular solution to overcome this
problem is to introduce abundant unlabeled data to guide
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the learning, which is known as semi-supervised learning
(SSL). However, though many approaches have been given
on SSL, few of them are applicable to RF. The only existing
representative attempt is the Deterministic Annealing based
Semi-Supervised Random Forests (DAS-RF) [14], which
treated the unlabeled data as additional variables for margin
maximization between different classes. Similar to many
other margin maximization methods, finding the exact so-
lution of DAS-RF is NP-hard. Although an efficient deter-
ministic annealing optimization is used to search an approx-
imate solution, it cannot provide robust results efficiently.
In spite of this, it has been pointed out [26] that the ef-
fectiveness of margin maximization based methods for SSL
depends heavily on specific data distribution which is usu-
ally difficult to be satisfied in many applications. Hence, it
is desirable to find a method that allows RF to utilize the
unlabeled data without losing its flexibility.

In this paper, by analyzing the construction of an RF
using a small size of labeled training dataset, we find that
the performance bottleneck is located in the node splitting.
From this insight, we tackle the aforementioned problem
by introducing abundant unlabeled data to guide the split-
ting. Based on kernel density estimation and the law of total
probability, we derive a nonparametric algorithm to utilize
abundant unlabeled data to obtain an accurate quality mea-
sure for node splitting. In particular, to avoid the curse of
dimensionality, the data points are projected from the origi-
nal high-dimensional feature space onto a low-dimensional
subspace before estimating the categorical distributions. Fi-
nally, a unified optimization framework is proposed to se-
lect a coupled pair of subspace and separating hyperplane
for each node such that the smoothness of the subspace and
the quality of the splitting are guaranteed simultaneously.

Our contribution is three-fold:

e We experimentally show that node splitting quality is
the performance bottleneck for constructing RF with a
small size labeled training set.

e We show that partitioning an arbitrary feature space



with a hyperplane can be treated as projecting the data
points from the original high-dimensional space onto
the one-dimensional subspace that is perpendicular to
the separating hyperplane. Thus a unified optimiza-
tion framework is presented to choose a coupled pair
of subspace and hyperplane such that the subspace is
smooth and the hyperplane can effectively partition the
feature space.

We present an efficient nonparametric estimation-
based semi-supervised splitting method to construct R-
F.

2. Related Work

Node splitting is the key issue of tree-based classifiers.
Payne et al. [16] tried to build optimal binary trees such
that the least number of tests are required to approach the
leaf nodes. However, their tree construction is based on
recursive dynamic programming and the algorithm is fea-
sible only for a small number of features. Hyafil ef al. [12]
showed that the optimal sense of minimizing the expect-
ed number of tests required to classify an unknown sample
is an NP-complete problem. Wu et al. [22] suggested a
histogram-based splitting criterion for decision design. The
histogram of training data is plotted on each feature axis.
A threshold is selected to partition the classes. A limita-
tion of this method is that only few features (usually one)
are considered at each stage such that the interaction be-
tween features cannot be observed. Rounds [19] proposed
Komogorov-Smirnov (K-S) distance and test as the splitting
criterion. He suggested that the K-S distance between parts
of the partition should be as large as possible. Breiman et
al. [5] proposed to use the Gini index as the impurity mea-
sure for internal nodes. The goodness of a split is defined
by the decrease in impurity. Suen et al. [21] proposed an
entropy-based splitting criterion for decision tree construc-
tion. The entropy measure was later used to construct the
well-known ID3 decision tree [17]. An improved version
[18], namely C4.5 tree, was proposed in which the normal-
ized information gain is used as the criterion of splitting.

All the semi-supervised learning (SSL) methods rely on
the smoothness assumption: if two points are close, the
corresponding outputs should be similar [7, 24]. Howev-
er, since the feature points are usually in high-dimensional
space, one may have to face the curse of dimensionality
to directly use the unlabeled data for estimation and thus
there is insufficient number of observations to obtain a good
estimation. Determined by how to address this problem,
previous feasible discriminative SSL methods can be cat-
egorized into two families. The first family relies on the
low density separation assumption: the decision boundary
should lie in a low-density region. A classification margin
for both unlabeled and labeled data is defined and maxi-
mized through global optimization. Typical methods in this
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family are Transductive Support Vector Machine (TSVM)
[13] and DAS-RF [14]. The second family assumes that
the high-dimensional data roughly lie on a low-dimensional
manifold such that the unlabeled data can be efficiently used
to infer the structure of the manifold without being troubled
by the curse of dimensionality. A typical method in this
family is LapSVM [2]. Both of the above two families pre-
dict the labels of unlabeled data as additional optimization
variables, while the proposed method follows another line,
i.e., we project the data onto a low-dimensional subspace
such that a small amount of data can give an accurate esti-
mation.

3. Pre-analysis

The lack of training data influences RF construction in
two ways: 1) the depth of the forest is limited and 2) the
best splitting may not be chosen. Since the first influence
is inevitable, we focus our effort on the second one in this
paper.

Before doing this, it is necessary to understand the in-
fluence of splitting. Two RFs were constructed for com-
parison: the first RF was constructed conventionally only
using a very small size labeled training set which may lead
to bad splitting. The second RF was constructed using the
same training set but an additional labeled set was used ex-
clusively for better splitting. We constructed both RFs with
100 trees and used the popular entropy gain maximization
criterion for splitting.

We used the Satimage and the Pendigits datasets from
the LibSVM repository [6]. The comparison results of the
two RFs are shown in Figure 1, where it can be seen that
there are obvious performance improvements as a result of
better splitting. From the comparisons above, it is obvious
that the splitting quality is the performance bottleneck of RF
construction when the size of the training set is small. For
this reason, it is necessary to focus our effort on the node
splitting strategies for RF construction.

=
Accuracy

& =H=The first RF
ol =0= The second RF.

= The first RF
== The secon d RF

A 80 120 160 200 240 280 320 360 400
Training samples

(a)

2 144 216 288 360 432 504 576 648 720
Training samples

(b)

Figure 1. Recognition accuracy on (a) the Satimage dataset, and
(b) the Pendigits dataset. The first RF was constructed conven-
tionally only using a very small size of training data which may
lead to bad splitting. The second RF was constructed using the
same training set but an additional larger labeled set was used for
better splitting.



4. Semi-supervised Node Splitting

RF consists of multiple decision trees: F
{t1,ta, - ,tn} and each is independently trained and test-
ed.

In the RF construction stage, the algorithm learns a clas-
sification function 7 : X — Y using the training sam-
ples {z; € X};—1.., and the corresponding labels {y; €
V}iz1...1, where X C RM is the feature space and Y =
{1--- K} isthe label set. The trees are usually grown to the
greatest possible extent without pruning. Each internal n-
ode of RF is binary split with a partition criterion. Each leaf
node of RF is a voter which votes for the class into which
the most samples fall.

During testing, given a test case x, RF gives the proba-
bility estimation for each class as follows

Zpl klx),

where p;(k|z) is the probability estimation of class k given
by the i'" tree. It is estimated by calculating the ratio that
class k gets votes from the leaves in the i* tree

pi(klz) =

p(klz) = (1)

ik
K
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where [; j is the number of leaves in the it tree that vote
for class k. The overall decision function of RF is defined
as

; @3]

F = argmax p(k|x). 3)

key
4.1. Semi-supervised Splitting

Considering both accuracy and time cost, oblique linear
split is the most popular split strategy. An oblique linear
split is expressed as a function of the hyperplane

W.z=90, “)

where W € R™ and § € R are the parameters. When there
is only one non-zero element in W, the split strategy focus-
es on a single attribute in one node [4, 10]. Otherwise, the
combination of multiple attributes is considered [14, 11].

Given the data falling into a node and a candidate hy-
perplane, a quality measure needs to be defined such that
one can search for the best hyperplane to maximize the s-
plitting quality. There are four common criteria to evaluate
the splitting quality, i.e., information gain [17], normalized
information gain [18], Gini index [5], and Bayesian classifi-
cation error [9]. As the discussion given in Appendix A, the
key procedure of all the four criteria is the estimation of py,
which reflects the categorical distribution of the k" class.

Traditionally, we can use the law of total probability to
calculate py
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P = /R p(k|)dp(z). 5)

Since both p(z) and p(k|z) are unknown, finite labeled
samples are used to make the estimation
|R|

> p(klzr,wr,,

ZlRl w
i=1 VR i=1
where wg, is the i*" sample falling into a node R and wg,

is its weight. Since all the samples are labeled, p(k|x g, ) is
either 1 or 0

Pr = (6)

The problem with the fully supervised splitting is that,
although the distribution p(k|zg,) is given by the labeled
sample, the sparse labeled data cannot give a good approx-
imation of the marginal distribution which may lead to a
worse choice of the separating hyperplane. If only given
few labeled samples, for example, one would choose to par-
tition the two-dimensional space with the hyperplane shown
in Figure 2(a). However, its estimation of the probability
distribution is not good. In contrast, given more data, a bet-
ter splitting can be found, as shown in Figure 2(b).

()

Figure 2. The red triangles and the blue circles are labeled samples
of two classes while the black squares are unlabeled data. If only
given a small number of labeled data, one may partition the fea-
ture space with the hyperplane shown in (a). When given more la-
beled data, one could find a better splitting strategy as in (b). Even
the abundant data are unlabeled one can still choose the appropri-
ate separating hyperplane as in (c) by combining the law of total
probability and the kernel-based density estimation. As shown in
(d), our method goes a bit further. We carry out the kernel-based
density estimation in a one-dimensional subspace of the original
feature space. Through this means, the curse of dimensionality
can be avoided.

Unfortunately, the insufficiency of labeled training da-
ta usually leads to a sparse distribution and a bad approxi-
mation like Figure 2(a). Our solution to overcome the this



limitation is to introduce abundant unlabeled samples to es-
timate py. The law of total probability is still used to calcu-
late the probability distribution p over different classes
|R|
Pk = | Rl Z p k |J? R

1 leL1 1

(®)

Since we now have many more data points, a much bet-
ter approximation for the marginal distribution of p(z) in
R can be obtained. A new problem to arise is that the pos-
teriori distribution p(k|xg,) of unlabeled data is unknown.
Since there are no priors of the categories, we can estimate
p(k|xg,) as the probability density ratio

- p(@r,|k)
S p(ar,

p(kl|zr, ©)

For p(xg,|k), we apply a kernel-based density estima-
tion with Gaussian kernel [20]

where h is the bandwidth to be determined and d is the data
dimension. We then have the following estimation for an
unlabeled sample

=X K

y]—k?

1
—uTuy,

5 (10)

Kp(u) = h=4(2r) "2 exp {

pz — ), (1)

where ny, is the number of samples that are labeled k.

4.2. Kernel Based Density Estimation on Low-
dimensional Subspace

In this part, we derive a convenient formula to select the
bandwidth h. The asymptotic mean squared error (AMISE)
criterion [20] is applied to select the optimal bandwidth

AMISE(H) = iug(K) / [tr {HT H,(w)H}]” du (12)
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where H is the bandwidth matrix, n is the sample size,
H, (u) is the Hessian of the density p(u) to be estimated
and p3(K) is the squared variance of the kernel. In our
case, K is the Gaussian kernel and the bandwidth matrix
is H = hl;. Since the true density p(x|k) is unknown,
we adopt the commonly used rule-of-thumb [20] to replace
the unknown true density by a reference density ¢(x), e.g., a
Gaussian distribution with its covariance matrix equal to the
sample covariance. To simplify the calculation, we conduct
whitening preprocessing before applying the estimation so
that the sample covariance is the identity matrix, and thus
q(x) = N(0,I). Based on the above discussions, AMISE
for the conditional density p(z|y = k) can be simplified as
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2d + d?
2d 4 4grd/2

1
2d7rd/2nk

AMISE(h) = (13)

hd’
Taking the derivative with respect to h and setting it as
0, we obtain the optimal bandwidth

A 1/(44d)
hopt = [ —— .
v ((d+2)nk>

Figure 2(c) shows a case where, by combining the law
of total probability and the kernel-based density estimation,
the appropriate separating hyperplane with abundant unla-
beled data can be chosen.

Since the feature points are usually in very high-
dimensional space, directly estimating the densities is still
not a good idea, not only because of the intractable time
complexity but also because there are insufficient labeled
samples to make a good estimation in the high-dimensional
space.

Our solution to this problem is to estimate the densities
in a low-dimensional subspace rather than in the original
high-dimensional feature space. Note that another way of
looking at the hyperplane partition is that the original da-
ta are projected onto the one-dimensional subspace that is
perpendicular to the separating hyperplane. In particular,
by using a hyperplane W - x = @ to partition the feature
space, the algorithm makes a projection with the projection
function

(14)

z=W . (15)

Furthermore, if the data can be well separated by the
hyperplane, it is reasonable to believe that the metric in
the subspace will reflect the intrinsic distance between data
points. Thus, the labels of both labeled and unlabeled data
distribute smoothly along the subspace. We can therefore
estimate the density p(k|z) instead of p(k|x). In this case,
the Gaussian kernel becomes

1 1
Kp(u) = ——exp{ ———=u’ ¢, 16
and the optimal choice of the bandwidth is
4 \1/5
hopt = | =— . 17
opt (3nk ) ( )

We want to search for a coupled pair of subspace and
separating hyperplane such that the smoothness of the sub-
space and the quality of the splitting are guaranteed simul-
taneously. An alternative optimization strategy is adopted
to couple the two procedures by iterating the following two
updating steps:

e Project the data onto the given subspace and estimate
the categorical distribution.



e Search for a separating hyperplane according to the
quality measure. Set the projection subspace as the
perpendicular direction to the selected hyperplane.

Notice that we do not have to search for the optimal sep-
arating hyperplane, but only need to choose the best one
from a candidate sets. We list the details of the proposed
method in Algorithm 1.

Algorithm 1 Semi-supervised Splitting
Input: Labeled training data X; that fall into R and the cor-
responding labels Y;.
Input: Unlabeled training data X, that fall into R.
Output: The parameters of the chosen hyperplane Wr and
Or.
1: Randomly generate the set of parameters €2 for candi-
date hyperplanes.
Search for a hyperplane with parameters W9 and 6°
that maximize the quality measure considering only la-
beled data.
Set the iteration number t = 0.
repeat
Sett=t+1.
Project all the samples onto the subspace that is per-
pendicular to the separating hyperplane: z = W' - 2.
for each labeled samples x; € X; do
Use the given label as posterior distribution
p(k|z:) = [ys = k]
end for
for each unlabeled samples z; € X, do
Calculate p(k|z;) with the kernel-based density es-
timation.
end for
Measure the split quality of each hyperplane.
Choose the hyperplane parameters W and 6 that
maximize the quality measure.
: until the chosen separating hyperplane is stable or the
algorithm reaches enough iterations.
Set Wr = Wt and 0 = 6.
Return W g and 6.

AN

% 3

Random Forest Construction Based on
Semi-supervised Splitting

In the RF construction stage, an individual training set
for each tree is generated from the original training set us-
ing bootstrap aggregation. The samples which are not cho-
sen for training are called Out-Of-Bag (OOB) samples of
the tree and can be used for calculating the Out-Of-Bag-
Error (OOBE), which is an unbiased estimation of the gen-
eralization error. It has been shown that the OOBE is an
unbiased estimation of the generalization error [3]. Leistner
et al. [14] first proposed the ‘airbag’ algorithm to use the
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OOBE to measure the performance of RF to detect whether
the variation to the original algorithm would harm the sys-
tem rather than assist. They decided whether to discard or
retain a new forest by comparing its OOBE with the previ-
ous forest. A shortcoming of the ‘airbag’ approach is that it
regards the RF as a whole, so some trees with high perfor-
mance may be dragged down by bad trees.

To overcome the limitation of ‘airbag’ algorithm, we
propose to independently compare the OOBE of single de-
cision trees in the supervised and semi-supervised models.
In each model, we use a set of labeled bootstrap data to con-
struct the supervised decision tree and use the same set of la-
beled data and a set of unlabeled bootstrap data to construct
the semi-supervised tree. The tree with smaller OOBE will
be retained. The overall learning and control procedures of
the proposed algorithm are shown in Algorithm 2.

Algorithm 2 Semi-supervised Splitting

Input: Labeled training data X; and the corresponding la-
bels Y.
Input: Unlabeled training data X,,.
Input: The size of the forest V.
Output: The learned RF F'.
1: Initialize an empty forest F.
2: for the i*" decision tree in F do

3:  Generate a new labeled set X; and a new unlabeled
set X! using the bootstrap aggregation.

4. Train the tree with only labeled samples: ¢! =
trainTree(X}).

5. Compute the OOBE: e} = oobe(ti, X; — X}).

6:  Train the tree with both labeled and unlabeled sam-
ples: t!, = semiTree(X], X}).
Compute the OOBE: ¢!, = oobe(t!,, X; — X}).
if ef > ¢!, then

: F=FUt,.

10:  else

11: F=FUt.

12:  end if

13: end for

14: Return F.

6. Experiment and Analysis

We compared the proposed semi-supervised splitting
with different splitting criteria on typical machine learning
tasks. We show that by introducing abundant unlabeled da-
ta, obvious accuracy improvement can be achieved. We also
applied the proposed semi-supervised splitting RF for ob-
ject categorization and image segmentation. Our method
achieves state-of-the-art categorization performance on the
Caltech-101 dataset [15] and segmentation performance on
the MSRC dataset [8].



6.1. Data Classification

To quantitatively evaluate the improvement over the tra-
ditional splitting criteria, we test our method on the Satim-
age and Pendigits datasets. The Satimage dataset has
4435 training samples and 2000 testing samples while the
Pendigits dataset has 7494 training samples and 3498 test-
ing samples. We implement Breiman’s Random Forests [4]
with the four different splitting criteria, i.e., information
gain, normalized information gain, Gini index and Bayesian
classification error. The traditional versions of these criteria
are used as baselines. The proposed semi-supervised split-
ting was applied to the four criteria. For each dataset, we
randomly chose a part of the training data as the labeled da-
ta and left the remainder as unlabeled data. The ratios of
the chosen data range from 0.01 to 0.1. The weights of the
labeled samples were set at 1.0 while the weights of the un-
labeled samples were set through cross-validation. We built
the RF with 100 trees and 10 hyperplanes were random-
ly generated as candidates in the internal node of RF. To
avoid computation cost in testing, only two attributes were
considered in each hyperplane, and the RF was constructed
without pruning. The training-testing procedures were re-
peated 10 times. We show the comparison results in Figure
3 and it is clear that substantial performance improvement
is achieved as a result of using our method.

144 216 288 360 432 504 576 648 720
Training Samples

(b)

Figure 3. The classification accuracy of Random Forests with tra-
ditional splitting criteria (dashed lines) and the proposed semi-
supervised splitting (solid lines). The results on the Satimage
dataset and the Pendigits dataset are shown in (a) and (b) respec-
tively.

We also compared the proposed semi-supervised split-
ting RF with the state-of-the-art semi-supervised and super-
vised classifiers: RF [4], TSVM [13], SVM [6] and DAS-
RF [14]. The comparisons are shown in Figure 4. It can
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be seen that the proposed method performs the best among
them.

120 280 320 360 400

160 200 240
Training Samples

144 216 288 _ 360 432 504
Trair

ining Samples

(b)

Figure 4. The classification accuracy of the proposed method with
state-of-the-art classifiers. The results on the Satimage dataset and
the Pendigits dataset are shown in (a) and (b) respectively.

6.2. Object Categorization

We used the Caltech-101 dataset for the object cate-
gorization experiment. The Caltech-101 dataset is com-
posed of 101 categories. Each class contains 31 to 800 im-
ages; most of the images are medium resolution, i.e. about
300 x 300 pixels. Following the common experiment setup,
we randomly chose 15 images per category as the labeled
training data and 15 images as the unlabeled training data.
The remaining images were used for testing. We followed
the ScSPM approach [23] in which each image was repre-
sented as a 21504-dimension feature vector. PCA was then
applied to the resulting vector. Maintaining 99.5% ener-
gy, we obtained a 4000-dimensional feature vector for each
image. We constructed a RF with 100 trees and used 100
candidate hyperplanes in the internal node. The weights of
the unlabeled data were set at 0.5 while the weights of the
labeled data were set at 1.0. Normalized information gain
is used as the splitting criterion to construct the RF. The
proposed method and the traditional RF achieved 69.3%
and 64.4% categorization accuracy respectively while the
accuracy of SVM was 65.8%. Using the same features, our
method brought an improvement of 4.9 percent over the tra-
ditional RF and 3.5 percent over the SVM, by introducing
abundant unlabeled data.

6.3. Image Segmentation

We applied the proposed semi-supervised splitting RF
for the task of image segmentation in the 9-class MSRC



dataset. The 9 classes are: building, grass, tree, cow, sky,
aeroplane, face, car and bicycle. We randomly chose 150
images as the labeled training data and 150 images as the
unlabeled training data from a total of 480 images, leaving
the remainder as the testing data. We used the SLIC [1] to
over-segment each image into 200 superpixels. The label of
a superpixel was assigned as the majority of the pixel-level
ground truth. We used the 9-dimensional color momen-
t, 48-bins histogram of RGB, 9-bins histogram of gradient
[25] and 59-bins histogram of LBP as the features. We con-
structed a RF with 100 trees, each having a maximum depth
of 15. During splitting, 10 hyperplanes were randomly gen-
erated as candidates and the hyperplane that maximized the
information gain was chosen. We set the weight of a la-
beled superpixel at 1.0 and set the weight of an unlabeled
superpixel at 0.3 through cross-validation. Similar to most
popular segmentation approaches, we applied a CRF stage
after having learnt the class posteriors of the superpixels.
The class posteriors from RF were used as unary potentials
and pairwise potentials were defined over adjacent super-
pixels. The parameters of the CRF model were trained us-
ing the same 150 labeled training data used to construct the
RF. When testing, the alpha-expansion graph-cut algorithm
was used to infer the CRF model. We show the segmenta-
tion results of the proposed semi-supervised splitting RF in
Figure 5. The original images and the ground truths are also
shown. The segmentation accuracy of the proposed method
and traditional RF is 87.5% and 83.6% respectively. As can
be seen, our method is more accurate than the alternative
method.

7. Conclusion and Future Work

In this paper, we introduced a semi-supervised splitting
method that uses abundant unlabeled data to guide the node
splitting of random forests. We derived a nonparametric al-
gorithm to estimate the categorical distributions of the inter-
nal nodes such that an accurate quality measure of splitting
can be obtained. Our method can be combined with many
popular splitting criteria, and the experimental results show
that it brings obvious performance improvements to all of
them.

In the future, we would like to investigate the problem of
constructing RFs without labeled data. A unified splitting
framework that can handle both labeled and unlabeled data
would be the extension.
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Appendix A

We consider four usual choices: information gain, nor-
malized information gain, Gini index and Bayesian classifi-
cation error.

Information Gain:

The information gain is defined as the subtraction of en-

tropies before and after splitting

| R

R

| B, |

H(R))

H(Ry), (18)

where R is an internal node, R; and R, are its left and right
child respectively. H(R) is the Shannon entropy of R

K
H(R) == pxlogps, (19)
k=1

where py, is the probability distribution of the k*"* classes in
R.
Normalized Information Gain:

The normalized entropy gain is defined as the quotient of
the information gain and a normalized factor

AH 0
ANEW,0) = — 0 \R(\R’W; \) w20
— (Hlog HH + 2l log = )
<|R\ IRl T TR 198 TR]

Gini Index:
The Gini index is a measure of the impurity of a node
and its definition is
K
G(R) = pr(1—pi). @1
k=1

When used for qualifying splitting, the following func-
tion should be maximized

| R

R

R
R

AG(R,W,0) = G(R) G(Ry) G(R,). (22)
Bayesian Classification Error:

The Bayesian classification error of a node is defined as

C(R) = 1.0 — argmax py. (23)

kel K

When used for qualifying splitting, the following func-
tion needs to be maximized

_ [’
]

| By |
R

AC(R,W,0) = C(R) C(Ry) = - C(Ry). (24)
From the above discussion, it is noticeable that all the
four criteria heavily depends on the estimation of the prob-

ability distribution py,.



Figure 5. The original images, ground truths, the proposed segmentation results and traditional RF-based segmentation results on the MSRF
dataset are shown from the top to the bottom row. The black area in the ground truth images is not labeled.
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