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Abstract

We study the problem of part discovery when partial cor-
respondence between instances of a category are available.
For visual categories that exhibit high diversity in structure
such as buildings, our approach can be used to discover
parts that are hard to name, but can be easily expressed as
a correspondence between pairs of images. Parts naturally
emerge from point-wise landmark matches across many in-
stances within a category. We propose a learning frame-
work for automatic discovery of parts in such weakly su-
pervised settings, and show the utility of the rich part li-
brary learned in this way for three tasks: object detection,
category-specific saliency estimation, and fine-grained im-
age parsing.

1. Introduction

Many visual categories have inherent structure: body

parts of animals, architectural elements in a building, com-

ponents of mechanical devices, etc. Discovery of such

structure may be highly useful in design of recognition al-

gorithms applicable on a large scale. Prior work in com-

puter vision has addressed this task as either unsupervised,

or highly supervised, with painstakingly annotated image

sets. In this paper, we study the problem of discovering

such structure with only a weak form of supervision: par-
tial correspondence between pairs of instances within an

object category.

Notion of parts is important to computer vision because

much of recent work on visual recognition relies on the idea

of representing a category as a composition of smaller frag-

ments (or parts) arranged in variety of layouts. The parts

act as diagnostic elements for the category; their presence

and arrangement provides rich information regarding the

presence and location of the object, its pose, size and fine-

grained properties, e.g., architectural style of a building or

type of a car.

Structure discovery may be especially important for cat-

egories of man-made objects, such as buildings, furniture,

boats or aeroplanes. Examples of such categories are shown

in Figure 1. Presence or absence of parts, or the number

Figure 1. Objects and their diagnostic parts.

of their appearances, varies across instances; e.g., a church

building may or may not have a spire, an airplane may have

four, two or no visible engines. Furthermore, instances of

these parts could differ drastically in their appearance, e.g.,

shape of windows for buildings, form of armrests for chairs.

Still, despite this structural flexibility and appearance vari-

ability, humans can reliably recognize corresponding points

across instances, even when the observer does not have a

name for the part and does not precisely know its function.

We leverage this ability through a recently introduced an-

notation paradigm that relies on people marking such corre-

spondences, and propose a novel approach to construction

of a library of parts driven by such annotations. Such an-

notations can enable discovery of parts that are aligned to

human-semantics for categories that are otherwise hard to

annotate using traditional methods of named keypoints, and

part bounding boxes. We show the utility of the rich part

library learned in this way for three tasks: object detection,

category-specific saliency estimation, and fine-grained im-

age parsing.

1.1. Prior Work

Most modern object detection methods rely on the notion

of parts. These approaches differ on two important axes:
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Semantic correspondence SIFT correspondence

Figure 2. Example annotations collected on Amazon’s Mechanical

Turk (left), which are much more semantic in nature than matches

obtained using SIFT descriptors (right).

complexity of part “library”, and the level of supervision in

part construction or discovery. Poselet models [1, 2] rely

on highly supervised annotations in which a set of 10 to 20

keypoints per category, defined by the designer of the anno-

tation task, are marked. A large library of parts (poselets)

is then formed by finding repeatable and detectable config-

urations of these keypoints.

In contrast, in many models the parts are learned au-

tomatically. This idea goes back to constellation mod-

els [22, 21] where the parts were learned via clustering of

patches. More recent work has exploited the idea of picto-

rial structures [9] and deformable part models [8]. In such

models parts are learned as a byproduct of optimizing the

discriminative objective, involving reasoning about part ap-

pearance as well as their joint location relative to the object.

Such approaches are usually limited to a handful of parts per

model; in contrast we learn much larger libraries of parts.

A very different approach is taken in [19, 4], where parts

are learned and selected in an iterative framework, with the

objective to optimize specificity/sensitivity tradeoff. Our

work differs in its use of the correspondence annotations,

used very efficiently via semantic graph defined in the next

section. This is a much more efficient strategy for constrain-

ing the search space.

The idea of using pairwise correspondences as source

of learning parts was introduced in [15], along with an in-

tuitive interface for collecting such correspondences. How-

ever, in [15] parts were learned in a rather naı̈ve fashion, and

no framework for selecting the parts was proposed, nor was

the utility of the learned parts demonstrated on any task. In

this paper we show how we can leverage the pairwise cor-

respondence data to multiple fundamental tasks.

One can contrast this approach to using correspondences

between detected “interest points”. Methods that rely on

such interest points use them as a kind of parts, and com-

pare them with either universal descriptors like SIFT, or de-

scriptors learned for the task. Examples of such approach

include [17, 14, 20]. The latter work describes learning cor-

respondence between patches that described the same el-

ement (part) of an urban scene. In contrast to our work,

the points are detected using interest point operator, and the

training relies on 3D correspondences obtained from struc-

ture from motion. As we show in Section 5, using generic

interest point operators is inferior to using category-specific

parts learned using our proposed approach.

Finally, a relevant body of work [5, 18, 7] addresses

learning a good set of parts or attributes–which are often

parts in disguise. The focus there is usually either on unsu-

pervised learning, or on learning nameable parts; our work,

in contrast, occupies the middle ground in which we rely

on semantic meaning of parts perceived by humans without

forcing a potentially contrived nameable nomenclature.

In the sections below we describe the procedure for

learning a basic library of parts for a category using pair-

wise correspondences, and then proceed with a description

of applying the part library to three tasks: object detection,

landmark prediction and fine-grained image parsing.

2. From partial correspondence to parts
In this section we describe the framework for learning a

library of parts using the correspondence annotations. We

describe the annotation framework which was used to col-

lect annotations in Section 2.1; how these can be used to

define a “semantic graph” between images that enables part

discovery in Section 2.2; the discriminative learning frame-

work to learn part appearance models in Section 2.3.

2.1. Obtaining correspondence annotations

Following [15] we obtain correspondence annotations by

presenting subjects with pairs of images, and asking them

to click on pairs of matching points in the two instances

of the category. People were recruited to annotate images

on Amazon Mechanical Turk. They were given concise in-

structions, asking them to annotate “landmarks”, defined as

“any interesting feature of a church building”. They were

given a few visual examples, along with an emphatic clari-

fication that these are not exhaustive; no further instructions

were provided. Then, each person was presented with a se-

quence of image pairs, each containing a prominent church

building. They can click on any number of landmark pairs
that they deem corresponding between the two images.
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Using this interface, we have collected annotations for

1000 pairs among 288 images of church buildings down-

loaded from Flickr. Landmark pairs, a few examples of

which are shown in Figure 2 (left), include a variety of se-

mantic matches: identical structural elements of buildings

(windows, spires, corners, and gables), and vaguely defined

yet consistent matches, the likes of “the mid-point of roof

slope”. Compare these to matches obtained using SIFT fea-

tures as seen in Figure 2 (right).

2.2. Semantic graph of correspondence

Figure 3 illustrates how landmark correspondences be-

tween instances can be used to estimate the corresponding

bounding boxes of parts in the two images. We estimate

the similarity transform (translation and scaling) that maps

the landmarks within the box from one image to another. If

there are less than two landmarks within the box we set the

scale as the relative scale of the two objects (determined by

the bounding box of the entire set of landmarks in each im-

age). The correspondence can be propagated beyond explic-

itly clicked landmark pairs using the semantic graph [15].

In this graph, there is an edge connecting every pair of land-

marks identified as matching in the annotation. In this way,

we can “trace” a part along a path in semantic graph from

an image in left column to an image in the right column,

even though we do not have explicit annotation for that pair

of images.

Figure 4 shows various parts found from the source

image by propagating the correspondence in the semantic

graph in a breadth first manner. There are multiple ways to

reach the same image by traversing different intermediate

images and landmark pairs and we maintain a set of non-

overlapping windows for each image. Doing so enables us

to find multiple occurrences of a part in an object.

2.3. Learning a library of parts

The main idea of our algorithm for learning parts is to

start with a possible single example of a part sampled from

the data, augment it by examples harvested over the seman-

tic graph, and construct a robust appearance model for the

part that can explain sufficient fraction of these examples.

Sampling seed windows. We sample parts around the

clicked landmarks in each image. The landmarks repre-

sent parts of the whole that are partially matched across

instances. However the scale of the part around each land-

mark is unknown. We sample a large number of “seed win-

dows” centered at each landmark, uniformly at random. The

uniform sampling respects the underlying frequency of each

part, i.e., parts that are matched frequently across each im-

age are likely to be sampled frequently.

It is useful to contrast this method to alternative methods

for sampling seeds. Sampling uniformly over image pix-

Figure 3. Correspondence propagation in the semantic graph from

the image on the left to the image on the right in each row.

els would clearly be wasteful. Sampling using responses

of a generic interest point operator such as Harris corner

or DoG operator [14] might seem like a plausible alterna-

tive. However, as we show in Section 5, it is inferior to the

landmark-driven saliency.

Learning an appearance model. We use HOG fea-

tures [3] to model part appearance. Given a sampled “seed”,

we initialize the model by training the HOG filter w(0) to

separate the seed patch from a set of background patches;

this step resembles the exemplar-SVM of [16]. Next, we

propagate the correspondence from the seed window using

breadth-first search in the semantic graph as shown in Fig-

ure 4. This provides a set of hypothesized locations for the

part in other images. We denote them x(Ii, L
(0)
i , s

(0)
i ), for

i = 1, . . . , k, where x(I, L, s) is the patch extracted from

image I at location L and with scale s; these locations and

scales are estimated as explained in Section 2.2 and shown

in Figure 3. We would like to use these additional likely

examples of the part to retrain the model.

Since the correspondence is sparse, the estimated loca-

tion and scale of these initial hypothesized matches is likely

noisy. Furthermore, some of these matches may belong to a

different visual sub-type of the part, e.g., a different kind of

window or door. Therefore we treat the unknown location

and scale of the matches as latent variables, and train the

model using the following iterative algorithm.

In iteration t, we find for each hypothesized match the
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Figure 4. Breadth-first correspondence propagation in the semantic graph. The source part in shown in red in the leftmost figure. Parts

found at depth one and two are shown in green and blue respectively.

location and scale near the initial estimate obtained using

the semantic graph that maximize the response of w(t−1):

(L
(t)
i , s

(t)
i ) = argmax

L,s∈N (L
(0)
i ,s

(0)
i )

〈w(t−1), x(Ii, L, s)〉 (1)

Where, N (L, s) denotes all the locations and scales for

which the corresponding rectangles have an overlap (de-

fined as the intersection over union of areas) greater than

τ=0.5 with the rectangle at (L, s). Then, we retrain w(t)

using the updated list of matches x(Ii, L
(t)
i , s

(t)
i ) as posi-

tive examples, and continue to next iteration until conver-

gence. To make the process robust under visual diversity,

we only retain w(t) using the k matches with the highest

score under w(t−1). In practice the process converges in a

few iterations.

This procedure is illustrated in Figure 5. For each of

three parts shown, the top row contains the initial hypoth-

esized matches found using semantic graph (ordered by

depth at which they were found). The bottom row shows the

refined matches after the training converges, with location

and scale at which the response to the filter w is maximized.

The ordering now reflects the response in (1).

We use the Linear Discriminant Analysis (LDA) method

of [11] to learn w. The method replaces the entire negative

set by a single Gaussian distribution estimated from a large

number of images. This significantly speeds up the learning

procedure as it avoids the hard-negative mining step com-

monly during training. However, we still have to perform

the latent updates described in Equation 1 during training.

3. Experimental setup
Datasets for training and testing. For our experiments

we divided the set of 288 annotated images as described

in Section 2.1 into a training set of 216 images, and a test

set of 72 images. We call this dataset church-corr. Dur-

ing training we only use the semantic graph edges entirely

contained in the training set (church-corr-train), resulting

in 617 correspondence pairs, each labelled with an average

of five landmarks. The test set (church-corr-test) is used to

evaluate the utility of parts for predicting the location of the

human-clicked landmarks, a “semantic saliency” prediction

task described in Section 5.

Since the church-corr dataset contains church buildings

that occupy most of the image, we collected an additional

set of 127 images where the church building occupies a

small portion of the image to test the utility of parts for lo-

calizing them (Section 4). The chance performance of de-

tection in these images is small. For these images we also

obtained bounding box annotations and the set if further di-

vided into a training set of 64 images and a test set of 63

images. We call this dataset church-loc.

Methods for training parts. We compare various meth-

ods of learning parts: (1) Exemplar LDA (random seeds):

randomly sampled seeds w/o graph (2) Exemplar LDA

(landmark seeds): seeds sampled on landmarks w/o graph

(3) Latent LDA: seeds sampled on landmarks w/ graph (4)

Discriminative patches [19].

The first ignores the annotations completely and can be

thought of as a simplified version of [19]. It lacks the care-

ful cross-validation and multiple rounds of training with k-

means like clustering in between iterations. The second

simply uses the landmarks to bias the seed sampling step,

hopefully resulting in fewer “wasted” seeds. The third (our

proposed method) additionally uses the correspondence an-

notations to find “similar” patches in the training set us-

ing the procedure described in Section 2.3. In compari-

son to [19], this step is computationally much more efficient

since the search for “similar” patches is restricted to a small

fraction windows in the entire set using the semantic graph.

We trained a set of 200 parts for various methods on the

church-corr-train subset. For our graph-based learning we

restricted the maximum depth of our breadth-first search to

two. For [19] we used publicly available code provided

by the authors which takes as input the number of desired

932932932934934



filter similar windows
Figure 5. (Left) Learned HOG filter along with the top 10 locations of each part found using the semantic graph (top row for each part) and

the latent search procedure (bottom row for each part) described in Section 2.3.

patches. During training however some of these are dropped

resulting in a fewer number of trained patches, hence we

trained a larger number of “discriminative patches” and se-

lected a random subset of 200 for a fair comparison.

4. Detecting church buildings
The parts learned in the previous step can be utilized for

localizing objects. On the training data we can estimate the

spatial distribution of the object relative to the part and use

this to predict the location of the object. Specifically, we use

the top 10 detections on the church-loc-train set to estimate

the mean offsets in scale and location of the object bounding

box relative to the part bounding box. Figure 7 shows some

parts, their estimated offsets, and top few detections.

We use a simple Hough voting based detector [13] for

combining multiple parts. Votes from multiple part detec-

tions are combined in a greedy manner. For each image,

part detections are sorted by their detection score (after nor-

malizing to [0, 1] using the sigmoid function) and consid-

ered one by one to find clusters of parts that belong together

(based on the overlap of their predicted bounding boxes be-

ing greater than τ=0.5). We stop after n=500 part detections

are considered. Each cluster represents a detection, from

which we predict the overall bounding box as the weighted

average of the predictions of each member and score as the

sum of their detection scores. This is similar to the detection

strategy using poselets [1].

Other baselines. In addition we trained the following

deformable part models [8] using voc-release5 of the

code [10]: (1) Single “root only” model without parts, (2)

Mixture of three “root only” models, (3) Single “root +

part” model, and (4) Mixture of three “root + part” models.

These were trained on the same subset of images (church-
corr-train) used for training our parts. As a reference the

last model is nearly the state-of-the-art on the PASCAL

VOC object detection challenge [6].

4.1. Results
We adopt the PASCAL VOC setup for evaluating detec-

tions. Bounding box predictions that overlap the ground

truth bounding box (defined by the intersection over union)

greater than τ are considered correct detections, while mul-

tiple detections of the same object are considered false pos-

itives. We refer the readers to [6] for details. We com-

pare various methods for training parts individually and as a

combination for localizing church buildings on the church-
loc-test set. From our experiments we make the following

observations:

Landmark seeds are better than random seeds. This can

be seen in Figure 6 (left) which plots the performance of

various parts sorted by the detection AP. The performance

of the “exemplar LDA” method using “landmark seeds” is

significantly better than using “random seeds”, as can be

seen by the difference between the red curve and the dashed

black curve in 6 (left).
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Using the semantic graph leads to further improve-
ments. This can be seen as the difference between the solid

black curve and the dashed black curve in Figure 6 (left).
Moreover, the performance is better than the parts obtained

using [19]. We used the same seeds for the “exemplar

LDA” and “latent LDA” parts during training, hence we can

compare the performance of each part individually for both

these methods. This can be seen in Figure 6 (middle) which

plots the performance of the 200 parts individually. “Latent

LDA” improves performance 63.5% of the time.

Our part-based detectors compare favorably to state-of-
the-art. We combine the predictions of the top 30 parts

using the method described in Section 3 and evaluate it on

church-loc-test. Figure 6 (right) plots the detection AP of

various methods as a function of overlap threshold (τ ) used

for evaluation. Typically, τ=0.5 is used in a variety of ob-

ject detection benchmarks (e.g. PASCAL VOC), but one

can obtain a better insight about the performance by look-

ing at the entire “AP vs. overlap” tradeoff curve. At τ=0.5,

the “latent LDA” obtains an AP=39.90%, outperforming

the DPM detector which obtains an AP=34.75%. The per-

formance of “discriminative patches” is also quite good at

AP=38.34%, while that of “random patches” (AP=16.67%)

and “exemplar LDA” (AP=19.95%) is not very competitive.

Out of the various DPM detectors we found that the single

“root only” detector performed the best, hinting that a sim-

ple tree model of the parts is inadequate for capturing the

variety in part layouts.

The difference between the various part-based methods

and the DPM detector is more stark at a looser overlap

threshold of τ=0.4, where there is a 15% gap between the

“latent LDA” part-based detector and the DPM detector.

This shows that many of the detections are near misses at

τ=0.5. We believe that a better modeling of the part layouts

can help with the bounding box prediction task.

Figure 8 shows high scoring detections on the church-
loc-test set along with the locations of parts shown in dif-

ferent colors. The part activations reflect the variety in the

layouts of different buildings. In addition to using the parts

as a building block for a detector, we are interested in ex-

ploring their role in other scene parsing tasks. We describe

two such experiments next.

5. Landmark saliency prediction
A landmark saliency map is a function s(x, y) →

[0, 1],
∑

x,y s(x, y) = 1, which is a likelihood that a lo-

cation of the image is a landmark. We can evaluate the like-

lihood of a given set of ground truth landmark locations un-

der the saliency map as a measure of its predictive quality.

Assume a set of n images are all scaled to contain the same

number of pixels m. Let Sk, k = 1, . . . , n, denote the set of

landmarks in the kth image. The Mean Average Likelihood

(MAL) is defined as:

MAL =
1

n

n∑
k=1

⎛
⎝ ∑

(x,y)∈Sk

ms(x, y)

|Sk|

⎞
⎠ (2)

According to this definition, the uniform saliency map has

MAL = 1 since s(x, y) = 1/m, ∀x, y.

Our saliency detector uses the top 30 parts sorted ac-

cording to their part detection accuracy on the training set.

Given an image, the highest scoring detections above the

threshold, up to a maximum of 5 detections, are found for

each part. Each detection contributes saliency proportional

to the detection score to the center of the detection window.

The contributions are accumulated across all detections to

obtain the initial saliency map. This is then smoothed with

a Gaussian with σ = 0.01d, where d is the length of the

image diagonal, and normalized to sum to one, to obtain the

final saliency map. We set the number of pixels m = 106.

Our approach can be seen as “category-specific interest

points”, and we compare this approach to a baseline that

uses standard unsupervised scale-space interest point de-

tectors based on Differences of Gaussians (DoG) and the

Itti and Koch saliency model [12]. Table 1 shows the MAL
scores for various approaches on the church-corr-test sub-

set of our dataset. According to our saliency maps, the

landmarks are 6.4× more likely than the DoG saliency, and

4.2× more likely than the Itti and Koch saliency. The “la-

tent LDA” parts outperform both the “exemplar LDA” parts

and “discriminative patches” [19] based saliency. Figure 9

shows example saliency maps for a few images for a variety

of methods. As one might expect, our part-based saliency

tends to be sharply localized near doors, windows, and tow-

ers.

Method MAL
Difference of Gaussian 1.23

Itti and Koch 1.86

Discriminative patches 6.14

Exemplar LDA (Landmark seeds) 5.79

Latent LDA on the graph 7.84
Table 1. Mean Average Likelihood (MAL) of landmarks accord-

ing to various saliency maps.

6. Fine-grained image parsing
Beyond the standard classification and detection tasks,

the rich library of correspondence-driven parts allows us

to reason about fine-grained structure of visual categories.

For instance, we can attach semantic meaning to a set of

parts at almost no cost by simply showing a human a few

high-scoring detections. If the parts appear to correspond

to a coherent visual concept with a name, say, “window”

or “tower”, the name for the concept is recorded. Fig-

ure 10 (top row) shows such labels assigned to various such

934934934936936
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AAP 34.61,  Latent LDA on graph
AAP 29.68,  Exemplar LDA (Landmark seeds)
AAP 26.76,  Exemplar LDA (Random seeds)
AAP 31.97,  Discriminative patches
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Figure 6. (Left) Detection performance of the 200 parts individually. (Middle) Comparison of parts using “latent LDA” and “exemplar

LDA” using the same seeds. (Right) Detection performance of the combination of parts, and other baselines; AAP stands for average AP

over thresholds.

Part filter Relative position Top detections on the test set
Figure 7. (Left) Learned part filters. (Middle) The vote associated with each part. (Right) Example part detections on test images.

Figure 8. Example church detections. The corresponding parts in each detection are shown in different colors.

parts. These semantic labels can be visualized on new im-

ages by pooling the part detections across models that corre-

spond to the same label. Figure 10 (bottom row) shows ex-

ample images from the SUNS dataset [23], where we have

visualized each image with labels positioned at the center

of the detection window. Such parsing may be used for

search and retrieval of images based on attributes such as

“churches with windows on towers”, “churches with two

towers”, etc.

7. Conclusions and discussion

We have described a method for semi-supervised discov-

ery of semantically meaningful parts from pairwise corre-

spondence annotations: pairs of landmark in images that

are deemed matching. A library of parts can be discovered

from such annotations by a discriminative algorithm that

learns an appearance model for each part. On a category

of church buildings, these parts are useful in a variety of

ways: as building blocks for a part-based object detector, as

category-specific interest point operators, and as a tool for

fine-grained visual parsing for applications such as retrieval

by attributes.

To exploit the rich part library discovered with the pro-

posed framework for detection and segmentation, one likely

needs an appropriate layout model connecting many parts

into a coherent category model, beyond the simplistic star-

graph model used in our experiments. Such a layout model

is the subject of our future work on this topic.
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Figure 10. Fine-grained parsing of images. On the top row are labels assigned to parts by humans and on the bottom row are localized

labels obtained by pooling the corresponding part detections on images.

Image Parts DoG Itti & Koch

Figure 9. From left to right – images shown with the landmarks;

saliency maps from our parts, Difference of Gaussian (DoG) inter-

est point operator, and the Itti and Koch model.
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