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Abstract

When tracking multiple targets in crowded scenarios,
modeling mutual exclusion between distinct targets be-
comes important at two levels: (1) in data association,
each target observation should support at most one trajec-
tory and each trajectory should be assigned at most one
observation per frame; (2) in trajectory estimation, two
trajectories should remain spatially separated at all times
to avoid collisions. Yet, existing trackers often sidestep
these important constraints. We address this using a mixed
discrete-continuous conditional random field (CRF) that ex-
plicitly models both types of constraints: Exclusion between
conflicting observations with supermodular pairwise terms,
and exclusion between trajectories by generalizing global
label costs to suppress the co-occurrence of incompatible
labels (trajectories). We develop an expansion move-based
MAP estimation scheme that handles both non-submodular
constraints and pairwise global label costs. Furthermore,
we perform a statistical analysis of ground-truth trajecto-
ries to derive appropriate CRF potentials for modeling data
fidelity, target dynamics, and inter-target occlusion.

1. Introduction

The task of visual multi-target tracking is to recover the

spatio-temporal trajectories of a (usually unknown) number

of targets from a video sequence. Tracking multiple targets

– often people or vehicles – has a wide range of applications

ranging from robotics to video surveillance. Even though

the field has made tremendous progress since the early

works [e.g., 10], modern systems still have clear limitations,

especially as the observed scenes get more crowded. This

is not entirely surprising, since the solution space grows

rapidly as the number of visible targets and the length of

their trajectories increases. Moreover, physical limits man-

date a growing number of constraints (such as mutual exclu-

sion) as more targets are in close proximity to each other.

Tracking in realistic sequences is further complicated by

background clutter, poor contrast, and partial or full occlu-

sions, such as from other targets. Tracking-by-detection ap-

proaches that rely on powerful object (class) detectors are

(a) (b)

Figure 1. Typical failure cases (top) are addressed with the pro-

posed discrete-continuous CRF (bottom): Detections are forced to

take on different labels (a) and physically overlapping trajectories

are suppressed even if they do not share detections (b).

thus becoming increasingly popular [5, 13, 21, 23, 25, 26].

In this case, targets are detected independently in each

frame with an offline-trained object detector. This not only

addresses adverse imaging conditions, but also reduces drift

and allows to bridge severe occlusions and other temporary

loss of evidence. We follow this approach here.

A large class of trackers aims to further improve robust-

ness by processing entire frame batches, rather than infer-

ring the current state solely from the track history [e.g.,

3, 5, 16, 26]. While this may lead to potential contradictions

in frames that occur in different batches and to a mild time

lag, the crucial advantage is greater reliability, since longer

time windows afford both more data and stronger models.

Batch-type multi-target trackers typically formulate a joint

energy function for all targets in all frames.

We can distinguish two categories of batch approaches:

The vast majority focuses on purely discrete optimization

for solving either data association [23, 26, etc.] or trajec-

tory estimation [e.g., 5]. This allows one to encode com-

plex constraints, including inter-object exclusion, in a natu-

ral way. The disadvantage is that the trajectories need to be

discretized themselves, hence the necessarily finite spatial

resolution can limit tracking performance and lead to visible
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artifacts. Moreover, exclusion is only handled either at the

data-association level [23, 26], or at the trajectory level [5].

The second group of methods uses alternative state spaces,

such as purely continuous [3] or mixed discrete-continuous

[4] formulations. While these allow estimating target trajec-

tories in continuous space, they have other drawbacks. [3]

needed to employ an optimization scheme with ad-hoc jump

moves; [4] used the label cost framework of [12], which is

not designed for imposing exclusion constraints.

In this paper, we propose a mixed discrete-continuous

conditional random field (CRF) for multi-target tracking

that aims to combine the advantages of continuous-space

trajectory estimation with the advantages of discrete meth-

ods for enforcing exclusion constraints. We specifically ad-

dress mutual exclusion both at the data-association and at

the trajectory level (cf . Fig. 1). We thus go beyond pre-

vious discrete-continuous trackers [4] that do not perform

explicit exclusion reasoning, and beyond previous discrete

approaches that model exclusion only at the trajectory [5]

or at the data-association level [26].

We make the following contributions: (i) We extend the

global label subset costs of [12] to pairwise label costs that

allow penalizing the co-occurrence of competing labels in

the solution; (ii) we show how pairwise co-occurrence label

costs can be used to model trajectory exclusion for multi-

target tracking; (iii) we enforce physically plausible data

association with non-submodular pairwise constraints; (iv)
we propose an iterative MAP estimation scheme based on

expansion moves for the resulting non-submodular multi-

label CRF energy with pairwise label costs; and (v) we an-

alyze the statistical properties of real trajectories and obser-

vations on ground truth data to derive CRF potentials for

various model components (data fidelity, dynamic model,

occlusion duration). Together, these advances yield a more

faithful and more accurate model of multi-target tracking,

which nevertheless remains tractable and delivers improved

tracking results. To the best of our knowledge our approach

is the first to combine both unique data association of indi-

vidual observations and physical collision-avoidance at the

trajectory level in a common model.

2. Related Work
Visual tracking has been an ongoing research topic for

decades, and a full literature review is beyond our scope. In

the presence of a single target, tracking can be performed

by estimating the target location and motion in every frame

and building the trajectory through interpolation [17]. In the

presence of multiple targets an additional challenge arises,

often referred to as data association: each detection must

be assigned a target identifier or discarded as a false alarm.

Filtering approaches, such as JPDA [15] or particle filters

[8, 22], estimate the state and association online, i.e. by only

considering the past states and present observations.

Although online processing is desirable for time critical

applications, batch approaches have become increasingly

popular due to their superior robustness [3, 5, 16, 21, 26].

To keep the optimization tractable, the objective can be dis-

cretized and (near-)optimal solutions can be obtained by lin-

ear programming relaxations [5, 16] or computing the max-

imal flow in a network graph [21, 23, 26]. Constraints on

data association can also be mapped to other graph prob-

lems, for which efficient (approximate) algorithms exist

[9, 25]. To overcome the drawback of discretization, [3] for-

mulates the objective entirely in the continuous domain and

combines gradient descent and greedy jump moves for opti-

mization. The mixed discrete-continuous model of [4] pre-

serves the benefits of a continuous trajectory space, while

allowing for discrete data association. Trajectory level con-

straints are formulated as global label costs, and optimized

with a graph cut-based discrete-continuous scheme [12].

Mutual exclusion between targets, i.e. a term that pe-

nalizes or entirely disallows solutions where two or more

targets collide, is a crucial property of multi-target track-

ing. Approaches that focus on data association [e.g.,

21, 23, 26] usually represent the state space of target trajec-

tories through the underlying detections. While this allows

a one-to-one mapping between each detection and each tra-

jectory, situations where the data is missing are not captured

properly, hence two trajectories may in fact intersect. Grid-

based methods [e.g., 5] explicitly model mutual exclusion

between target locations at the trajectory level by impos-

ing linear constraints. However, such a discrete grid is a

somewhat crude approximation of the continuous trajectory

space. A continuous mutual exclusion term [3] leads to a

non-convex objective that is optimized with ad-hoc jumps.

In the present work we follow the basic idea of a mixed

discrete-continuous representation [4]. Aside from repre-

senting trajectories in continuous space, this allows us to

impose mutual exclusion simultaneously at the data associ-

ation and at the trajectory level using the discrete part of the

model. While these constraints go beyond the capabilities

of the label cost optimization framework of [12], we show

how it can be extended appropriately.

3. CRF Model
Following the increasingly popular tracking-by-

detection framework [2–5, 8, 21, 23–26], we rely on an

independently obtained set of target hypotheses D. To

make different tracking systems comparable, we use pub-

licly available detector responses [3, 19, 24] throughout,

which are generated by popular object detectors [e.g., 11].

The individual detections then serve as input data for the

reconstruction of the final trajectories.

The ultimate goal of such tracking-by-detection ap-

proaches is twofold: (i) Every detection needs to be ex-

plained correctly, i.e. either assigned to a target or identified
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as clutter. Here it is important to not only enforce a unique

assignment for each detection, but also to constrain that two

simultaneous observations must not be assigned to the same

target. (ii) The resulting trajectories have to explain the ob-

servations in a physically plausible way, i.e. all velocities

must remain within physical limits and trajectories must not

overlap, because two objects cannot occupy the same phys-

ical space at the same time. Especially this latter constraint

poses a challenge and has often been neglected in order to

keep the optimization simple [4, 21, 26].

In this work we address both challenges, at two differ-

ent levels: The first one is handled by introducing pairwise

terms between competing detections to avoid an unnatural

interpretation of the data. That constraint on its own is in-

sufficient, however, since it could lead to phantom trajecto-

ries that mirror existing ones, but are physically not plau-

sible. The second challenge is thus approached at the tra-

jectory level. We introduce a novel pairwise co-occurrence

label cost that is applied only if both labels are present in a

solution. Although these model components introduce pair-

wise terms that are supermodular, as well as global terms

relating many variables, our proposed optimization scheme

is able to efficiently minimize the CRF energy to a local

minimum. Our experiments show that local minima of the

proposed energy lead to better performance, both quantita-

tively and visually. We begin by describing the proposed ex-

clusion handling and later summarize the remaining model.

3.1. Detection-level exclusion

We first describe how we integrate mutual exclusion at

the detection level. In the following, we will identify each

detection dti ∈ D at location pti ∈ R
2 with a random vari-

able in a conditional random field (CRF), where t stands

for the frame number and i is the index of the detection.

Further, let fd denote the label of d , i.e. the assigned target

ID of the detection d . Assuming a target size s, it is impos-

sible that two detections originating from the same frame

and being at least a distance s apart are caused by the same

object. Therefore we introduce an exclusion term

ψX(fd , fd ′) =

{
ψX, fd = fd ′

0, otherwise
(1)

to all edges between simultaneous detector responses

(d , d ′) ∈ EX =
{(
dti , d

t
j

)∣∣∣i �= j, ∥∥pti − ptj∥∥ > s
}
. (2)

The penalty ψX is thus incurred if two distant detections are

assigned the same trajectory label. For detections that are

very close to one another, on the other hand, it is reasonable

to accept multiple assignments, since common object detec-

tors sometimes erroneously produce multiple outputs from

the same object. This can occur even after non-maxima sup-

pression. The exclusion factors are illustrated in Fig. 2(b).

(a) (b)

t

Figure 2. Factor graph of the underlying CRF with black circu-

lar nodes representing the random variables (assignment of detec-

tions) and square nodes representing the pairwise potentials. For

clarity, all unary and high-order potentials are omitted. In addi-

tion to simple temporal smoothing factors (red) in (a), we model

pairwise exclusion between detections within the same time step

(blue, subset shown) to prevent implausible data association (b).

Note that only considering exclusion at the detection

level is not enough in order to prevent collisions between

targets. In fact, the optimization may otherwise be forced

to pick two almost identical trajectories in order to satisfy

these inter-object constraints. It is thus crucial not to disre-

gard the path of the actual trajectories.

3.2. Trajectory-level exclusion

Let us now turn to the more challenging task of enforc-

ing exclusion at the level of continuous trajectories. It is

obvious that multi-target tracking should take care to pre-

vent situations where two or more targets occupy the same

physical space at the same time. Unfortunately, such con-

straints lead to hard optimization problems.

It has been proposed to encode a collision penalty into

a global label cost [4], such that the graph cut framework

of [12] can be used for MAP estimation. The penalty con-

sidered how much a trajectory overlapped with any other

trajectory (whether active or not). To ensure that only one

of two overlapping trajectories is suppressed, the penalty

was added only to one trajectory in each competing pair.

However, the decision which one to penalize was an ad-hoc

heuristic, which apparently often fails. Consequently, [4]

disabled the collision penalty in all experiments.

Here, we develop a way to seamlessly integrate a co-

occurrence potential between two labels (i.e. trajectories)

into the CRF. To simplify the treatment, we will describe the

potential in the context of our expansion move-based MAP

estimation approach. In particular, we describe the corre-

sponding factor graph for a single α-expansion step, where

0 corresponds to no label change and 1 means a variable

is switched to label α. An illustration of the factor graph

(without unary and pairwise terms) is depicted in Fig. 3.

Let us first look at the standard per-label cost. Similar

to [12], one auxiliary node for each existing label is added

and connected to each variable that carries, or may carry,

the corresponding label (Aβ , Aγ , and Aα in Fig. 3). How-

ever, we use a different encoding for the auxiliary variables,
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Figure 3. Factor graph encoding of the unary and pairwise label

cost before expanding on α. Random variables and their current

labels are represented by solid circles, while auxiliary variables are

outlined with dashed circles. Solid squares represent unary (black)

and pairwise (colored) terms, respectively. The corresponding po-

tentials are depicted on the right with L◦ and L◦◦ being the respec-

tive label cost for a single label and a pair of labels. Note that all

factors that are unrelated to the label cost are omitted for clarity.

which act as indicator switches for each label: The auxiliary

variable contributes the cost L◦ (black factors) of having a

certain label only once if it is switched on, otherwise its as-

sociated cost is 0. An infinite pairwise cost1 (blue and green

factors) prevents the indicator from being off when there is

at least one node with the corresponding label. While this

yields supermodular costs (Eq. (1) already makes the over-

all cost non-submodular), its purpose will be apparent soon.

We now turn to the pairwise label cost. Having the same

graph structure as before, it is possible to insert a connect-

ing factor between each pair of auxiliary variables (red and

cyan). The energy should be high if there exist two labels

that are unlikely to appear simultaneously. It is therefore

reasonable to apply a suitable penalty L◦◦ = ζ, if and only

if both corresponding auxiliary variables are switched on:

hX(Ti, Tj, f ) =
{
ζ(Ti, Tj), ∃d , d ′ : fd = i ∧ fd ′ = j
0, otherwise.

(3)

Here Ti denotes a continuous trajectory of target i. In our

case, the co-occurrence penalty is proportional to the spatio-

temporal overlap between the two trajectories:

ζ(Ti, Tj) =
∑

t∈O(Ti,Tj)
ζti,j, (4)

which is computed by summing the mutual overlap over all

frames in the common lifespan O of the trajectories. The

overlap is approximated with an isotropic sigmoidal func-

tion around the center of the target:

ζti,j = λX ·
(
1− 1

exp(−sa‖Ti(t)− Tj(t)‖+ sb)

)
. (5)

The two parameters sa and sb control the size and the falloff

of the sigmoid and are directly related to the application-

specific shape of the targets.

1In practice a sufficiently large value is used instead.

We emphasize that our formulation of a co-occurrence

label cost is general and not restricted to multi-target track-

ing. It can trivially be transferred to other applications that

involve multi-model fitting, such as semantic segmentation

or motion estimation. Note that [20], for example, use a co-

occurrence cost to prevent unlikely labeling configurations

in the context of semantic segmentation. There, however,

the cost is overestimated to keep inference tractable. We

prefer to model the cost exactly, but can no longer guaran-

tee global optimality of each expansion step.

3.3. Discrete-continuous multiple object tracking

Given a set of detections D and an over-complete set of

potential trajectories T , the goal is to find a data association

for D, i.e. to assign a unique target ID to each detection

or identify it as a false alarm. At the same time, the geo-

metric shape of all active trajectories T ∗ ⊆ T should be

fitted to the corresponding detections, such that the residu-

als between the observation and the tracker output are min-

imized. To do so, we extend the discrete-continuous multi-

target tracking approach of [4] with our exclusion handling.

Let L = {1, . . . , |T |,∅} be the set of labels that each

random variable d ∈ D can attain, and let f ∈ L|D| be the

current labeling. A CRF energy E(f , T ), defined over the

discrete labeling f , as well as the continuous trajectories

T , is minimized to obtain a plausible solution. To facilitate

the optimization, we alternate between updating the discrete

variables while keeping the continuous ones fixed, and up-

dating the continuous variables with the discrete ones fixed.

Our complete CRF energy is defined as

E(f , T ) =
∑
d

φ(fd , T )+
∑

(d,d ′)∈ES

ψS(fd , fd ′) +
∑

(d,d ′)∈EX

ψX(fd , fd ′)+

∑
i

hf (Ti, f ) +
∑
i,j �=i

hX(Ti, Tj , f ), (6)

with the following components: The unaries φmeasure how

well the trajectories follow the detector evidence; they are

described in more detail in the following section.

The first pairwise term ψS encourages temporally

smooth data association with a standard generalized Potts

model (cf . Fig. 2(a)). The factors ψS are defined on pairs of

detections in adjacent frames that are spatially close:

ES =
{(
dti , d

t+1
j

)∣∣∣ ∥∥pti − pt+1j ∥∥ < τ
}
, (7)

where dti denotes the detection i in frame t and pti its

(x, y)-location. The second pairwise term ψX are the

detection-level exclusion constraints from Eq. (1).

The first higher-order term (label cost)

hf (Ti, f ) = hang(Ti)+hlin(Ti)+hocc(Ti)+hper(Ti) (8)
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models the plausibility of each trajectory in terms of its

dynamics and persistence. The details about each compo-

nent are given in the following section. The second higher-

order term hX is the pairwise co-occurrence label cost from

Eq. (3) for trajectory-level exclusion. Note that during in-

ference both higher-order terms are transformed in each α-

expansion step to pairwise ones using auxiliary variables,

as outlined in Fig. 3. Also note that the energy can only

be minimized approximately: finding a global optimum of

E w.r.t. f in polynomial time is only possible for binary

submodular energies with |L| ≤ 2.

4. Statistical Data Analysis
Energy minimization offers a flexible framework for mod-

eling in vision, and CRF energies additionally give insight

into the dependency structure. But aside from the structure,

the potentials also need to be specified appropriately. In

many cases the potentials (or energy components) are hand-

crafted, guided by intuition or mathematical convenience.

Arguably, it is beneficial to instead derive their functional

form from the statistics of the modeled quantities.

Here, we systematically analyze the distribution of var-

ious trajectory properties based on eight video sequences

(PETS [14] and TUD-Stadtmitte [2]) with ground truth an-

notations. It is clear that this comparably small amount of

data does not cover all possible tracking scenarios. Rather,

the goal here is to allow adapting the tracker to a specific

application scenario at hand. With the proposed methodol-

ogy, other researchers or practitioners can easily adjust the

approach to their specific application case.

To construct more realistic energies, we analyze the

empirical frequencies of the trajectory properties that we

model in our CRF, see Fig. 4. Note that due to the lim-

ited amount of available ground truth data for multi-target

tracking, full CRF learning is not the goal here. Instead,

we derive a suitable functional form of the potentials (thick

grey curves in Fig. 4). To that end, we study the negative

logarithm of the empirical histograms of each property, fol-

lowing the definition of the Boltzmann distribution.

Localization accuracy of the detector. While it is safe to

assume that an object detector will not always localize ob-

jects perfectly, the question remains what pattern the devia-

tions follow. Fig. 4(a) shows the (negative logarithm of the)

empirical distribution of distances between the detector out-

put and the closest ground truth object on the ground plane.

To robustify the estimate, only nearest neighbors within 1m

are considered. We observe that the energy grows linearly

with the distance, suggesting a linear penalty for the data

term (respective exponential distribution)

φ(fd , T ) = cti · ‖pti − Tfd (t)‖ for d = dti , (9)

which we weight with the detection confidence cti.

Angular dynamics. Real objects can only move within

physical limits. Here we examine the angular velocity of

people from their trajectory. Let x = x(t) and y = y(t)
be the coordinates of a parametric planar curve and ẋ, ẏ and

ẍ, ÿ its first and second temporal derivatives, respectively.

The angular velocity at time t is then given as

θ̇(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)
ẋ(t)2 + ẏ(t)2

. (10)

Note that the definition only applies to regular curves, i.e.

for ẋ(t)2 + ẏ(t)2 �= 0 ∀t. This is not a major limitation,

since realistic trajectories will usually have a positive veloc-

ity. The distribution of θ̇ in Fig. 4(b) suggests representing

the penalty with a Cauchy-Lorentz distribution:

hang(Ti) = λang

∑
t

log
(
1 + θ̇(t)2

)
. (11)

Linear dynamics. In addition to the angular velocity we

also examine the linear velocity. Fig. 4(c) shows that people

mostly move at a speed of about 1m
s

. Deviations from that

speed are rare, such that a quadratic penalty is appropriate:

hlin(Ti) = λlin

∑
t

(√
ẋ(t)2 + ẏ(t)2 − 1000

)2

. (12)

Occlusion length. In many applications, e.g. robotics and

some surveillance scenarios, targets are observed from a rel-

atively low camera viewpoint. Hence they are periodically

occluded, causing the detector (or any other observation

model) to fail temporarily. A tracker should nevertheless

be able to bridge such short occlusion gaps without spawn-

ing false new trajectories. To determine the expected length

of such occlusions, we analyze the frequencies of different

durations of occlusion (in frames) as shown in Fig. 4(d).

Although most occlusions last less than 20 frames, longer

ones do occur. We therefore model the penalty for trajec-

tories that are not supported by detections through multiple

consecutive frames as a Cauchy-Lorentz distribution:

hocc(Ti) = λocc

∑
j∈gaps(Ti)

log
(
1 + γ2j

)
. (13)

Here, γj is the number of frames in which trajectory i has

no detections close by.

Persistence and length. Assuming that the scene does not

contain doors or other openings where objects might dis-

appear, a trajectory will always start and terminate close to

the border of the image (or the tracking area). An extensive

data analysis of this property is thus not necessary. To pre-

vent fragmented trajectories and allow a buffer entry zone

τ , we impose a soft threshold

hper(Ti) = λper ·min
(
τ, dist(T t∗i , border)

)
, (14)
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Figure 4. Empirical analysis of various trajectory properties in multiple people tracking, using ground truth data. Thick grey curves denote

our suggested models, motivated by their empirical distributions (negative log-frequency shown).

where t∗ stands for birth or death time of a trajectory.

The temporal length of trajectories varies significantly

across sequences and does not exhibit a consistent behavior.

We therefore do not make any assumptions about it.

5. Implementation
Pruning. To speed up inference we prune the graph in two

different ways. We reduce the connectivity by disregard-

ing neighbors from EX that lie too far apart. This does not

change the CRF energy in the relevant portion of the solu-

tion space (i.e. near a sensible minimum), because the data

term already ensures that such detections will never be as-

signed the same label. Moreover, the label space of each

random variable is reduced to only those (few) trajectory

hypotheses that lie within reasonable reach of a detection.

Again, this will not change the energy of any remotely plau-

sible solution, for the same reason as above.

Optimization. Like [4, 12] we perform MAP estimation by

alternatingly minimizing the energy of the discrete and the

continuous variables. The emphasis of this work is on de-

signing a physically and statistically plausible model, with

the consequence that the resulting optimization problem be-

comes harder, even with such an alternation scheme.

Discrete energy minimization is done using α-

expansion. Since the energy is non-submodular, we use

TRW-S [18] for each binary expansion step. As it is not

guaranteed that each expansion step finds a global minimum

of the binary sub-problem, we found it beneficial to add a

greedy search step in each expansion move: for each label

in turn we check whether the energy can be decreased fur-

ther by entirely removing that label from the current solu-

tion (i.e. replacing the trajectory by the outlier model). The

discrete optimization is implemented using OpenGM [1].

It may seem unnatural to use message passing within α-

expansion instead of an st-cut, since message passing al-

gorithms are generally capable of performing inference in

multi-label problems. The motivation is that directly run-

ning message passing on the multi-label problem is pro-

hibitively slow even for very small graphs due to the global

factor in the energy. The factor graph for each expansion

move on the other hand is much smaller.

The continuous part of the proposed energy function is

not convex and cannot be minimized in closed form. We

therefore perform a simplex-based search over the continu-

ous parameters of T ∗, starting from a least squares approx-

imation of the objective to find a better minimum. We min-

imize a simplified energy including only the unary terms φ
and the continuous label costs hang and hlin. The solution of

this simplified energy minimization step is discarded, if it

does not decrease the full CRF energy from Eq. (6). Since

the hypothesis space T is updated in each iteration, the op-

timization is nevertheless able to escape poor local minima.

The computational effort is similar to the discrete-

continuous optimization without mutual exclusion [4]. In

practice, we observe running times of 1–2 seconds per

frame. Real-time performance appears reachable with a

carefully optimized implementation.

6. Experiments

Datasets and metrics. We evaluate our tracker on eight

video sequences. Besides the widely used PETS S2.L1 se-

quence, we also include four more challenging scenarios

from the same dataset. The PETS benchmark [14] shows

pedestrians walking across an intersection in various direc-

tions at variable speed. The number of people varies from a

few to as many as 40. In all our experiments, we only use

the first camera view point (out of eight recorded). TUD-
Stadtmitte offers a different setup. Here, a busy pedestrian

street is filmed from a low camera angle. In both cases,

tracking is performed on a ground plane obtained from cam-

era calibration. Finally, we also test our method on the se-

quences BAHNHOF and SUNNY DAY from the ETH Mo-

bile Scene (ETHMS) dataset [13], where a busy pedestrian

street is filmed from a moving stereo camera. Note that we

do not use the available camera calibration and depth maps

for these sequences, but rather track people in image space.

A fair quantitative comparison of multi-target tracking

methods is challenging. On one hand, tracking by detection

critically depends on which object detector is used. On the

other hand, different error types and associated error metrics

exist, which are not used consistently in the literature. In

Tables 1 and 2 we report the widely accepted CLEAR MOT
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Table 1. Cross-validation results on six sequences.

Method MOTA MOTP MT ML FM ID

baseline 1 [21] 37.4% 64.8% 7 17 104 114

baseline 2 [4] 42.2% 64.1% 11 12 48 65

statistics 45.4% 60.8% 11 12 41 55

det. exclusion 46.7% 63.0% 11 12 38 48

traj. exclusion 46.6% 62.7% 10 12 49 69

combined 51.5% 64.4% 11 13 43 54

[7] metrics evaluated in 3D with a 1m hit/miss threshold.

The Multiple Object Tracking Accuracy (MOTA) combines

all false positives, false negatives, and identity switches into

a single number, and Multiple Object Tracking Precision

(MOTP) measures the average distance between the ground

truth and the tracker output. To better assess the quality,

we additionally report the numbers of Mostly Tracked (MT,

≥ 80%) and Mostly Lost (ML, ≤ 20%) trajectories, along

with the numbers of track fragmentations (FM), and identity

switches (ID). Tab. 3 also shows the numbers for recall and

precision. These figures are produced with a 2D evaluation

protocol using a publicly available implementation.2

6.1. Comparison to a baseline

We systematically compare the individual contributions

of our work against two state-of-the-art baselines. To make

this comparison as fair as possible, we use publicly avail-

able code, ground truth data, and detector evidence through-

out our experimentation. Baseline 1 is a network flow based

approach [21] that is solved approximately via dynamic

programming. Due to its extraordinary speed, we use the

tracklets generated by baseline 1 as proposal trajectories

for our optimization. Baseline 2 is a recent method based

on discrete-continuous optimization [4], but unlike our ap-

proach does not properly model inter-object exclusion and

uses hand-defined energies that are not derived statistically.

We determine the required parameters of all methods by a

random search [6] over the parameter space via leave-one-

out cross validation. Tab. 1 shows the cross-validation re-

sults averaged over all test sequences. We report the re-

sults of our full method (combined), as well as three inter-

mediate results: only using the statistically motivated en-

ergies (statistics), adding only the detection-level exclusion

factors (det. exclusion), and adding only the co-occurrence

label cost (traj. exclusion). We observe that each individ-

ual modeling choice boosts the tracker performance, but it

is crucial to handle mutual exclusion at the detection and

trajectory level simultaneously, and combined with statis-

tically motivated energies to achieve best possible results;

MOTA rises by nearly ten percentage points, while the num-

ber of identity switches is reduced by≈ 20%. To ease com-

parison with other approaches, we also give per-sequence

results (Tab. 2) using a single set of parameters.

2iris.usc.edu/people/yangbo/downloads.html

Table 2. Results of our combined method on each test sequence.

Sequence MOTA MOTP MT ML FM ID

S2.L1 90.3 % 74.3 % 18 0 15 22

S2.L2 46.0 % 59.8 % 25 8 105 126

S2.L3 39.8 % 65.0 % 8 19 22 27

S1.L1-2 60.0 % 61.9 % 21 11 19 22

S1.L2-1 26.5 % 60.2 % 6 23 27 34

Stadtmitte 56.2 % 61.6 % 4 0 13 15

Table 3. Quantitative comparison to three state-of-the-art methods

on the ETHMS dataset [13].
Method Rcll Prcn MT ML FM ID

DP [21] 67.4% 91.4% 50.2% 9.9% 143 4

PIRMPT [19] 76.8% 86.6% 58.4% 8.0% 23 11

Online CRF [24] 79.0% 90.4% 68.0% 7.2% 19 11

Our method 77.3% 87.2% 66.4% 8.2% 69 57

6.2. Further quantitative results

We also evaluate our method on two sequences from

the ETHMS dataset [13], see Tab. 3. We use the detec-

tor output from [19, 24] and the publicly available eval-

uation script. DP is a network flow based approach [21]

that is solved approximately via dynamic programming. We

slightly tune the parameters for better performance. Due to

its extraordinary speed, we use the tracklets generated by

DP as proposal trajectories for our optimization. State-of-

the-art methods for these sequences heavily rely on track-

let linking through significant periods of occlusion, based

on appearance and other cues. Since our CRF does not

model these, we postprocess our tracker output with a sim-

ple extrapolation-based track linking scheme to explore the

capabilities of our method when combined with such track

linking. While our simplistic linking scheme leads to com-

paratively many ID switches, the high recall and precision

numbers indicate that our discrete-continuous CRF yields a

competitive basis for appearance-based occlusion handling.

7. Summary

We proposed a discrete-continuous CRF for multi-target

tracking that handles inter-object exclusions at two levels:

(i) at the data association level based on non-submodular

constraints, such that each detection may only explain one

target and vice versa; (ii) at the trajectory level, where

a novel co-occurrence label cost penalizes solutions with

overlapping or colliding trajectories. A statistical data anal-

ysis was used to derive appropriate CRF potentials. We

suggested an expansion move-based optimization scheme

to handle the non-submodular energy with global co-

occurrence label costs. Our experiments show state-of-the-

art results on public benchmarks, with clear improvements

from the simultaneous exclusion constraints. Future work

may consider incorporating appearance cues into the CRF

to better disambiguate targets after long-term occlusions.
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Figure 5. Exemplar frames (slightly cropped for display) from the PETS S2L2 [14], BAHNHOF, and SUNNY DAY [13] sequences.
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