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Abstract

This paper aims to extract salient closed contours from
an image. For this vision task, both region segmenta-
tion cues (e.g. color/texture homogeneity) and boundary
detection cues (e.g. local contrast, edge continuity and
contour closure) play important and complementary roles.
In this paper we show how to combine both cues in a
unified framework. The main focus is given to how to
maintain the consistency (compatibility) between the re-
gion cues and the boundary cues. To this ends, we intro-
duce the use of winding number–a well-known concept in
topology–as a powerful mathematical device. By this de-
vice, the region-boundary consistency is represented as a
set of simple linear relationships. Our method is applied to
the figure-ground segmentation problem. The experiments
show clearly improved results.

1. Introduction
Salient contours in an image play a central and important

role in object perception and scene understanding. Often

these salient contours correspond to semantically meaning-

ful contents in the image, such as object boundaries. There-

fore, extracting a few clean and meaningful contours may

simplifies subsequent high-level image understanding tasks.

However, salient contour extraction is a challenging task as

it involves both region and boundary information, requiring

integration of bottom-up image cues and top-down semantic

priors. In particular, many perceptual grouping laws such as

proximity, continuity, closure and symmetry, etc. have been

shown to be critical in such process.

Contour extraction has been approached through two

complementary directions: one is to treat the problem as

a (2D) region segmentation task [18, 23, 7], and the other

focuses on the intrinsic 1D contour detection aspect of the

problem (such as snake/level-set methods). There has been

a trend of jointly using, or combining both contour cues

and region cues. In the continuous domain, active con-

tour model was adapted to use both region and contour

cues [20] [25]. In the discrete domain, contour cues (such

as curvature) have been introduced to region-segmentation

methods (e.g., [19], intervening contour approach in [10],

SC [11]). However, many of these methods either lack ex-

plicit region-contour interaction, or rely on heuristic or an

unduly complicated model [27].

This paper aims to develop a more consistent approach

to salient contour extraction that tightly integrates both re-

gion cues and boundary cues. Our insight is that, to achieve

jointly utilizing both aspects of image cues, using a simple

linear combination of a region objective function and a con-

tour objective function is not sufficient. A key issue, that

must be taken into account, is the conditions under which

the consistency (or compatibility) between the region vari-

ables and the edge variables is satisfied. Otherwise, mean-

ingless solutions (such as an object with fragmented bound-

ary) may occur. However, it is recognized that, enforcing

such consistency is not a trivial task. Paper [2] argued that

in order to ensure the closedness condition, exponentially

many constraints are needed. A recent work [16] gave a

linear programming framework for enforcing the boundary-

region consistency, again, relying on a large number of lin-

ear inequality constraints.

In this work, we propose a novel and simpler method to

describe the region-contour consistency relationship, bor-

rowing “winding number” as a handy concept from the

mathematical field of topology. Our key intuition that moti-

vates this model is a well-known fact: contour and region

form certain kind of “duality” relationship. Being dual,

the property of one can be converted into the property of

the other. A well-established example is the application of

Green’s theorem in the plane. Draw a simple Jordan curve

(i.e. closed and non-self-intersecting contour) in the plane.

Many quantities (such as its areas) defined on the 2D region

can be computed efficiently via 1D line integral along the

contour.

The above observation motivates our winding number

approach of this paper. By definition, winding number,

which involves a set of closed ( but not necessarily simple)

planar curves and a point in the plane, refers to the number
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of times the curves revolves around this point. The key idea

of this paper is that if the region labels are restricted to be

the winding numbers of the curves, then the region-contour

consistency condition can be effectively captured by a very

small set of linear constraints.

Using the winding number concept, we present a new

salient contour detection model, integrating the region seg-

mentation cue into the ratio-based contour detection frame-

work [22][19]. In particular, we focus on the foreground

segmentation task, in which the winding number can be

transformed to region label exactly. Our objective function

includes constraints from contour saliency, region similar-

ity and contour smoothness, and can be efficiently solve by

linear programming approximately.

Our method is evaluated on the Weizmann horse im-

ages and Berkeley segmentation dataset, showing advan-

tages over pure contour or region based approaches. Al-

though this paper focuses on middle-level perceptual group-

ing, we believe that our method is applicable too for higher

level tasks such as object detection where contour cues and

region cues are both helpful.

The paper is organized as follows. Section 2 discusses

relevant methods in the literature. Section 3 presents the

winding number method in detail. In Section 4, our method

is used for integrating region cue and contour cues to

achieve salient contour extraction. Experimental results are

shown in Section 6, and the conclusion is in Section 7.

2. Related work
Our work is closely related to contour grouping and im-

age segmentation. Most of the contour grouping methods

start with local edge detection e.g. [13]. Then various mid-

level to high-level cues are used to improve the accuracy.

For example, contour smoothness prior is popularly em-

ployed as a prominent contour cue [12] [24]. Contour clo-

sure prior has been addressed in [2] [14].

We will demonstrate our winding number method un-

der the graph partition framework. The general idea of

this framework is to model image pixels as a set of cou-

pled graph nodes. Image segmentation problem is trans-

formed into a graph partition problem. Notable methods

under this framework include the max-flow [7], normal-

ized cuts [18] and the ratio cut [23]. Moreover, spectral K-

means [4], Felzenszwalb et al.’s graph-based method [9],

SWA method [1] also fall under a general graph partition

framework.

There are several previous works which attempted to in-

corporate both region cues and contour cues. Intervening-

contour [10] is one of the early efforts to use local contour

strength for region segmentation. This method is built into

the state of the art segmentation algorithm [3]. Yu et al. [26]

also incorporated edge information in a framework based on

Markov random field. Tabb and Ahuja integrated both cues

for low level structure detection [21]. GPAC method [20]

has shown the flexibility to accommodate both region and

contour cues in one energy function. However gradient

descend inference method is susceptible to local minimal.

Stahl and Wang [19] modified the ratio contour method [22]

by replacing the total length with total area as the denomi-

nator which resulted in segmentation of more regular shape.

Recently, [11] applied the method of [19] to superpixel

grouping problem. In setting of interactive segmentation,

[16] used a set of local consistency constraints to achieve

the boundary region consistency. In contrast, the winding

number constraints used by our method is a set of global

constraints. The winding number concept not only leads to

smaller number of constraints, but also makes the frame-

work potentially applicable to multiple-label segmentation,

although not demonstrated in this paper.

Finally, the concept of winding number (rotation index)

has been used for ensuring contour topology in [8]. Dif-

ferent from their method, our method use this concept to

ensure the region/contour consistency.

3. Winding number representation

This section first presents our salient contour extrac-

tion problem setting, which is based on superpixel over-

segmentation. Section 3.2 gives a high level description of

our method. Section 3.3 presents the main idea of our wind-

ing number-based method.

3.1. Basic edge and region hypotheses

We formulate the salient contour extraction problem as

an energy minimization problem defined on both region and

edge hypotheses. We choose superpixel over-segmentation

as a means to provide sufficient edge and region hypothe-

ses. Each superpixel provides an atom region hypothesis.

We fit the boundary of each superpixel into a number of

edge-elements. For each element, two oppositely directed

(bi-directional) edge hypotheses called conjugate edges are

introduced. It is important to note that our winding num-

ber formulation is not restricted to the superpixel setup, but

applies to general boundary-region graph as well.

3.2. High-level description of our method

let x = {xi|i = 1...Nr} denote the labels of Nr atom

regions, and y = {yj |j = 1...Ne} denote the labels of

Ne edges. Each region can have one of the integer labels

from a predefined label set. The label space of all region

variables is denoted as X . The edge label space is denoted

as Y = {0, 1}Ne . Generally, the salient contour detection is

formulated as the following energy-minimization problem:
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min
x,y

E(x,y) (1)

s.t. ΦW (x,y) = 0 (2)

ΦC(x,y) = 0 (3)

x ∈ X ,y ∈ Y (4)

where the energy function E captures various region priors

and contour priors. Particular form of the energy function

is not the concern of this work.

Our main contribution of this paper is the introduction

and construction of a compact set of “winding number con-

straints”, Eq (2) in the above formulation, which captures

the consistency relationship between edge variables and re-

gion variables. The edge continuity constraints Eq (3) is

necessary for ensuring the edges forms cycles in the graph.

These constraints together ensure that the obtained edge and

region labeling result to be topologically valid and seman-

tically meaningful. The specific consistency condition used

in this paper requires that:

If an edge is active, its adjacent (i.e. incident) regions
must have different region labels; if two adjacent regions
have different labels, one of the edge elements in-between
must be active.

This condition guarantees that every edge must be a part

of a closed region boundary, and every region is enclosed by

a boundary (or contour). Conversely, violating this condi-

tion will lead to the break of contour connectedness/closure

condition, as shown in work [2]. Next section will show that

this condition is guaranteed by our constraint sets based on

the winding number concept.

3.3. Winding number and its fast computation

We realize that the winding number concept, from topo-

logical study, provides an elegant and effective means to pa-

rameterize the region-contour consistency constraint in im-

age segmentation.

The winding number of a point induced by a closed curve

is defined as the number of times this curve travels around

the point counterclockwise [15]. For a set of contour, the

induced winding number can be defined as the sum of wind-

ing numbers induced by every contour. Provable by the cel-

ebrate Residue Theorem [15], the winding number of all

the image points inside an atom region must be all equal.

Based on this remarkable result, we reach our winding num-
ber constraint, viz.

The label of a region can be identified by its winding
number induced by contour.

Winding numbers in region segmentation are not unique.

Different partitions lead to different winding numbers.

Figure-2 illustrates how different contour labels result in

different segmentations. We emphasize that the winding

1
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Figure 1. Winding numbers induced by a set of closed contours.

-1011 1

1 1

2

0 0

0 0

Figure 2. The top row shows an image of two circles. The rest

of the figure shows different segmentations induced by different

contour orientation. The winding numbers are shown in respective

regions. Regions with the same winding number are considered as

in the same region.

number constraints, unique or not, guarantee the consis-

tency between region labels and the corresponding contour

labels. First of all, the winding numbers of adjacent re-

gions will be different if one of the conjugate edges be-

tween them is active.1 Secondly, the Residue Theorem also

suggests that two regions which are not separated by any

edges must have the same winding number. In other words,

these two regions cannot have different labels. In conclu-

sion, this winding number scheme does encode the region-

contour consistency condition compactly and efficiently.

The benefit of such winding number scheme also lies

in that: it leads to a set of linear constraints. This can be

made evident by examining the fast computation procedure

of winding number computation (c.f. [15]). Given an im-

age, consider everything outside the image frame (image

border) is void. We assign a label of zero (0) to that part.

Then we draw an arbitrary path starting from inside a region

to outside of the image frame, then the winding number of

the region equals to the number of edges crossing the path

from the right side minus the number of edges crossing from

the left side. This fast computation procedure is illustrated

1If both of the conjugate edges are active, the two regions must share

the same label in the same way as when both edges are inactive.
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Figure 3. Fast winding number computation. Draw an arbitrary

path to outside of the image frame, the winding number of a point

equals the number of edges crossing from right (red dot) minus the

number of edges crossing from the left (green dot).

in Figure 3. Formally, the winding number of the region i
is computed as:

xi =
∑

α∈Pi

yα −
∑

β∈Ni

yβ , ∀i (5)

where Pi and Ni are the edges crossing from right to left,

and edges crossing from left to right, respectively. Eq (5) for

all atom regions together can be represented as the follow-

ing winding number constraint, denoted as ΦW in Eq (2):

x = My, (6)

where M is a matrix whose entries are 0, 1, or −1.

To ensure that the extracted contour form cycles, we in-

troduce the edge-continuity constraint:

∑

i∈jin

yi =
∑

i∈jout

yi, ∀j ∈ V, (7)

where j is one index of the vertex index set V . jin and

jout denote the edges indices heading into and moving out

of the vertex j, respectively. These edge continuity con-

straints for all vertices are denoted as ΦC(y) = 0. These

constraints say that the net flow at every vertex is zero. For

a network without source and sink, it can be shown that all

the flows can be decomposed into a set of cycles and the

winding number can be computed. 2

For a general K-way cut problem, the winding num-

ber constraint may restrict the feasible set of region la-

bels. However, for the figure-ground segmentation problem,

which is of interest to this paper, the following proposition

shows that the winding number constraints do not restrict

the solution of segmentation at all.

Proposition 1. For any segmentation in which the regional
labels can only be zero and one, there always exists a set of
oriented boundaries such that the regional labels equal the
winding numbers induced by the set of boundaries.

2The degenerate cycle formed by conjugate edges cannot be excluded

by these constraints. However, they do not affect correctness of the wind-

ing number computation.

Proof. First of all, we assume that edges do not overlap and

each edge is only adjacent to two regions. If the assumption

is not valid, the edges can be divided into smaller segments

to satisfy the assumption. Then, for an atom region whose

label is one, we set a cycle of its adjacent edges in counter-

clockwise direction to be active. This cycle of edges will

induce a winding number one to this region, and a winding

number zero to other regions. Since edges are not shared by

more than two regions, this operation can be done to every

atom region without conflict. Consequently, every atom re-

gion in the foreground has a winding number one. Last, the

conjugate edges which are both active can be removed with-

out affecting the winding number of any region. Therefore,

the resulted contour is the one consistent with the given seg-

mentation.

4. Ratio-Contour with region cue
The rest of the paper is focused on solving the figure-

ground segmentation problem as a special case of Eq (1).

Ratio-based contour detection and segmentation methods

have been studied in [22] [19] [11] [17]. Using the con-

tour cue, the objective function can be the ratio of contour

gap over total contour length or figural areas. Here, we use

ratio-based method as an example to demonstrate the effec-

tiveness of our winding number scheme. In Section 4.1,

we will show how the contour gap information is integrated

with the region similarity cue. Section 4.2 will explain how

curvature cue is integrated.

4.1. Incorporation of region similarity cue

The contour-based energy function our method adopts is

a ratio between the contour gap and the areas of foreground,

defined as ([19]):
EB(y)

A(x)
(8)

The boundary term measures the gap in the contour:

EB(y) = αb

∑

i

viyi (9)

where vi is the gap length in edge i. The parameter αb con-

trols the strength of the boundary term. This term will favor

the foreground with a salient boundary. The denominator is

the total areas of the foreground:

A(x) =
∑

i

aixi (10)

where ai is the areas of region i. In their work, the areas are

converted into second edge weights of a graph, and the op-

timal solution is obtained by solving a graph cycle-finding

problem. The problem with objective function Eq (8) is that

there may be strong distracting contours inside the object or

in the background. Here region similarity term is added to
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increase the accuracy of segmentation. The new objective

function is defined as:

E(x,y) =
ER(x) + EB(y)

A(x)
(11)

The new addition is the region term, defined as the sum of

the affinity between figure and ground superpixels:

ER(x) = αr

∑

(i,j)∈PR

wij |xi − xj | (12)

where PR denotes the set of pairs of region whose distance

is smaller than a threshold. The weight wij of the cut of re-

gion i and j encodes the color difference of the two regions.

αr is a parameter to control the strength of the region term

as a whole. This term favors large figure-ground contrast.

To ensure region-contour consistency, we use three sets

of constraints. The first two sets of constraints are the con-

tinuity constraints Eq (3) and winding number constraints

Eq (2). They have been discussed in Section 3. For the

figure-ground segmentation problem, it is necessary to limit

any region and edge label to be zero and one. In sum, our

ratio-based segmentation model is as follows:

min
x,y

ER(x) + EB(y)

A(x)
(13)

s.t. ΦW (x,y) = 0

ΦC(y) = 0

x ∈ X ,y ∈ Y

where the label spaces are defined as X = {0, 1}Nr and

Y = {0, 1}Ne . Although Eq (13) is good enough for en-

suring the region-contour consistency, the formulation can

be further simplified by replacing region labels with edge

labels using Eq (6). As a result, our problem formulation

depends on edge variables only.

min
y

ER(My) + EB(y)

A(My)
(14)

s.t. ΦC(y) = 0

My ∈ X
y ∈ Y

4.2. Incorporation of curvature cue

Recognized as the Gestalt law of good continuity, hu-

man vision systems have the preference for grouping the

smooth contours together. Our method can be extended to

encode such curvature prior. The smoothness of contour is

traditionally measured by integral of squared curvature of

all the contour points. Let PE denote the indices of all pairs

of edges sharing one vertex. The binary junction variable

zij is associated with the junction formed by edge yi and

1
y

2
y

3
y

4
y5

y

6
y

2,5
z

2,4
z

Figure 4. Our junction model. The first figure shows one junction

detected in the image. The second figure shows the 6 variables

representing the associated edges. The third and forth figures show

two possible L-junctions if edge y2 is active.

yj . Let z = {zij |(i, j) ∈ PE} denote all Nj junctions

variables, and Z = {0, 1}Nj is the label space of junction

variables. In our model, the total curvature cost is defined

as:

EC(z) = αc

∑

(i,j)∈PE

uijzij (15)

where the parameter αc controls the strength of the curva-

ture term as a whole.The curvature weight uij is the sum of

squared curvature along both edges. In [11], only the cur-

vature cost within the edge fragments is taken into account.

However, our curvature term also penalizes the sharp turns

at the junctions.

Our junction model is illustrated in Figure 4. To ensure

correct junction configuration, a set of junction constraints

are devised, denoted as ΦJ(y, z) ≤ 0. These constraints are

adapted from the connectedness constraints for undirected

edges [14]. These constrains consist of two parts. First,

every active edge should form transition to at least one edge

whose tail connects to the head of the current edge. Second,

every junction variable can be active only when both of its

associated edges are active. The junction constraints are

translated into the following linear inequities:

∑

j|(i,j)∈PE

zij ≥ yi, ∀i (16)

zij ≤ yi, ∀(i, j) ∈ PE (17)

zij ≤ yj , ∀(i, j) ∈ PE (18)

The inequities (16) correspond the first part of junction con-

straint. The inequities (17) (18) correspond to the second

part of junction constraints. In sum, our ratio-based seg-

mentation model is as follows:

min
x,y,z

ER(x) + EB(y) + EC(z)

A(x)
(19)

s.t. ΦW (x,y) = 0

ΦC(y) = 0

ΦJ(y, z) ≤ 0

x ∈ Y,y ∈ Y, z ∈ Z
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Figure 5. An example in which the curvature term affects our

model’s output. The first image is the input image. The second

image shows the output without curvature term. Last image shows

the output using curvature term. (Better viewed in color.)

The effectiveness of adding curvature term is illustrated

by the example in Figure 5. The left is the input image.

Two shapes have comparable sizes. The star is favored by

the boundary term and the region term due to its stronger

contrast to background. Therefore, the model without the

curvature term chooses the star as the figure as shown in

the middle of Figure 5. When curvature term is added, the

smoother disk is extracted as shown in the right of Figure 5.

4.3. Inference by linear relaxation

The energy minimization problems Eq (13) and Eq (19)

of our model are nonlinear integer programming. In the

following, they are relaxed into linear programs which can

solved in polynomial time. First, the domain of all the labels

is relaxed to be interval [0, 1]. Second, note that all the terms

in the objective function are linear except for ER which is

the sum of the absolute values according to Eq (12). Each

absolute value |xi − xj | is replaced by a variable tij , and

two constraints which are tij > xi − xj , and tij > xj −
xi. Then our model becomes a standard linear fractional

program (20). Since the denominator representing the total

areas is the strictly positive, the fractional program can be

transformed into a linear program [6]. In general, the linear

fractional program is written as follows:

min
ξ

cT ξ + d

eT ξ + f
(20)

Aξ = b

ξ ≥ 0

where the real-valued vector ξ here refers to all the vari-

ables, and A to f are constants. The denominator is posi-

tive, i.e. eT ξ+ f > 0. Let η = ξ
eT ξ+f

,τ = 1
eT ξ+f

, then the

equivalent linear program is:

min
η,τ

cT η + dτ (21)

Aη = bτ

η ≥ 0

eT η + fτ = 1

The solution of the fractional program can be obtained as

ξ = η/τ . The ξ is not necessarily integral in general. How-

ever, in our experiments the solutions are usually very close

to be integral.

4.4. Implementation details

The boundary gap measure vi in Eq. (9) equals to the

number of edge pixels in the segment minus the sum of the

probability of each edge pixel being a true contour point.

The probability is estimated according to [11]. The re-

gion affinity wij measure in Eq. (12) is the sum of the

similarity of all pairs of pixels in these two regions, i.e.

wij =
∑

pq|p∈i,q∈j w(p, q). The pixelwise weight w(p, q)
is computed based on the similarity of pixel color and loca-

tions using a RBF kernel.

We use the LP SOLVE library to solve the linear pro-

gramming problem. An image is usually oversegmented

into 300 to 400 superpixels, and our algorithm consists of

ten to twenty thousand variables and thirty to forty thou-

sands of constraints. LP SOLVE solves the problem in

about twenty seconds on a modest laptop with Intel 2G Cen-

trino 2 core processor/3G RAM.

5. Extension to other objective functions
Other well established objective function such as nor-

malized cuts can also be transformed into a function based

on the edge labels. Although this objective function is more

difficult to optimize, it is included in this paper for com-

pleteness. The objective function of normalized cuts [18] is

defined as:

min
x∈X

∑
ij wij |xi − xj |

(
∑

i wixi)(
∑

i wi(1− xi))
(22)

where wij are affinity between superpixel i and j. The la-

bels xi and xj are binary. The parameter wi =
∑

j wij

denotes the volume of xi. x denotes all the region labels.

The transformation leads to the following problem:

min
y

∑
ij wij |mT

i y −mT
j y|

(
∑

i wimT
i y)(

∑
i wi(1−mT

i y))
(23)

s.t. ΦC(y) = 0

My ∈ X
y ∈ Y

6. Experiments
To demonstrate the effectiveness of combining region

and contour information, our method is compared with

the superpixel closure method (SC for short) [11] and

the normalized cuts [18] (Ncuts) on the Weizmann horse

dataset [5]. Then we show sample results on BSDS 300

dataset. These results show that our method achieves better

results than methods only using region or contour cue.

6.1. Comparison with the SC and Ncuts methods

The normalized cuts is a popular segmentation method

based on pairwise regional affinities. Similar region cue is

282128212823



used in our region term. Paper [19] proposes a cost func-

tion which is the ratio of contour gap over areas. The SC

method, in the standard form, optimize this cost function on

superpixels edges. The cost function in [19] is used as the

boundary term in our model, and our method used the same

set of input superpixels as SC. In this experiment, the cur-

vature term is not used and the weight between the region

term and boundary term is fixed by a validation set.

The image set contains salient unoccluded horses in the

middle of image. However, obtaining a complete contour

of horses is still challenging due to several reasons. For

example, there are strong distracting contours in the back-

ground and inside the horse region. True contours on the

other hand may be faint or missing because of low contrast

with the background region. Since the horses usually are

not camouflaged, we expect the incorporation of region cue

will be helpful in obtaining cleaner contour.

Both SC and our method was initialized on the Pb

detection results. The Ncuts implementation is obtained

from [18]. The results are shown in Figure 6. SC method

outputs ten solutions for each image, the best one is shown

in the figure. We can see that the our model’s outputs better

separate the horse region from the background. In the SC’s

outputs, the legs are often connected as a single blob re-

gion. However, the region similarity cue used in our model

helps distinguish background region from the foreground

horse region. The two-way Ncuts method often cuts out

a homogeneous background area. The ten-way segmenta-

tion results, however, tend to produce spurious edges (e.g.

those in the sky and grass). This results show that region

homogeneity cue alone is not enough for segmenting salient

foreground region. Note that our results in Figure 6 appear

to be a single contour due to the property of the objective

function. The winding number constraints, however, do not

require the solution to be a Jordan curve.

We qualitatively evaluate our method and SC using the

F-measure on 100 horse dataset images. Their model pro-

duces up to 10 solutions for each image. According to [11],

the F-value of each solution is computed by comparing the

segmentation mask with the groundtruth mask. The F-value

of an image is the best F-value of all the solutions. The av-

eraged F-value of test set converges to 76.48%. However,

as shown in [11], the performance is much worse when the

number of solution is small. Our model outputs only one

solution for each image and achieves an F-value of 74.12%.

6.2. Tests on BSDS300 dataset

Our method is also tested on the BSDS 300 dataset which

contains images of a variety of urban and natural scenes.

Our method, which aims to extract salient closed contours

is not successful for detecting occluded, obscured, or cam-

ouflaged figural objects in this dataset. However, it works

very well for images in which the foreground object/region

Image Contour Directed edges

Figure 7. Sample results on BSDS300 dataset. The first column is

the input images. The second column is the output contour over-

laid on the input images. The third column shows the directed

active edges. (Better viewed in color.)

is evident. Some sample results are shown in Figure 7. The

first column shows the original image, the second column

shows the results of contour overlaid on the image. The

third column shows the found directed active edges. These

results match our perception of salient region.

7. Conclusion and future work

A winding number based method, is introduced in this

paper for enforcing the region-contour consistency con-

straints. This model is simple and appealing, as it natu-

rally leads to a more compact set of linear constraints, and

thus is more efficient than previous methods. Our exper-

iments show that evident improvements can be made for

the task of salient contour extraction when both region cue

and contour cue are employed. In future, we are interested

in finding efficient optimization methods for more complex

objective functions and extend this method to multiple-label

segmentation.
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Images

SC 

Our method

Ncuts

2 Regions

Ncuts

10 Regions

Figure 6. Comparison with superpixel closure method (SC) and the normalized cuts method (Ncuts). The first row shows the input images.

The second row shows our results. The third row shows the SC results. Only the best solution of each image is shown out of 10 solutions.

The fourth row shows the 2-way segmentation result by Ncuts. The last row shows 10-way segmentation results by Ncuts. (Better viewed

in color.)
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