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Abstract

Domain adaptation addresses the problem where data

instances of a source domain have different distributions

from that of a target domain, which occurs frequently in

many real life scenarios. This work focuses on unsuper-

vised domain adaptation, where labeled data are only avail-

able in the source domain. We propose to interpolate sub-

spaces through dictionary learning to link the source and

target domains. These subspaces are able to capture the

intrinsic domain shift and form a shared feature represen-

tation for cross domain recognition. Further, we introduce

a quantitative measure to characterize the shift between two

domains, which enables us to select the optimal domain to

adapt to the given multiple source domains. We present ex-

periments on face recognition across pose, illumination and

blur variations, cross dataset object recognition, and report

improved performance over the state of the art.

1. Introduction

Figure 1. Examples of dataset shifts. Each column contains two

images of the same subject collected under different conditions.

Traditional classification problems often assume that

training and testing data are captured from the same under-

lying distribution. Yet this assumption is often violated in

many real life applications. For instance, images collected

from an internet search engine are compared with those cap-

tured from real life [28, 4]. Face recognition systems trained

on frontal and high resolution images, are applied to probe

images with non-frontal poses and low resolution [6]. Hu-

man actions are recognized from an unseen target view us-

ing training data taken from source views [21, 20]. We show

some examples of dataset shifts in Figure 1.

In these scenarios, magnitudes of variations of innate

characteristics, which distinguish one class from another,

are oftentimes smaller than the variations caused by distri-

bution shift between training and testing dataset. Directly

applying the classifier from the training set to testing set

will result in degraded performance. Therefore, it is essen-

tial to investigate how to adapt classification systems to new

environments. This is often known as the domain adapta-

tion problem which has recently drawn much attention in

the computer vision community [28, 14, 13, 17].

Domain Adaptation (DA) aims to utilize a source do-

main with plenty of labeled data to learn a classifier for a

target domain which is collected from a different distribu-

tion. Based on the availability of labeled data in the target

domain, DA methods can be classified into two categories:

semi-supervised, and unsupervised DA. Semi-supervised

DA leverages the few labels in the target data or correspon-

dence between the source and target data to reduce the di-

vergence between two domains. Unsupervised DA is inher-

ently a more challenging problem without any labeled target

data to build association between two domains. On the other

hand, unsupervised DA is more representative of real-world

scenarios. For instance, face recognition systems trained

under constrained laboratory environments will encounter

great challenges when applied to faces ‘in the wild’, where

the acquired face images suffer from a variety of degrada-

tions such as low resolution, poor illumination, blur, pose

variation, occlusion etc [8]. Sometimes the coupling effects

among these different factors give rise to more variations.
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Figure 2. Given labeled data in the source domain and unlabeled data in the target domain, our DA procedure learns a set of intermediate

domains (represented by dictionaries {Dk}
K−1

k=1
) and the target domain (represented by dictionary DK ) to capture the intrinsic domain

shift between two domains. {ΔDk}
K−1

k=0
characterize the gradual transition between these subspaces.

As it is very costly to collect labels for target data under

various acquisition conditions ‘in the wild’, it is more de-

sirable that the recognition system be able to adapt in an

unsupervised fashion.

An important class of unsupervised DA methods at-

tempts to find suitable representations whose characteris-

tics are shared between the two domains. In this paper, we

use subspace representations to model the source and tar-

get domains. Subspace modeling has been ubiquitous in

the field of computer vision. This is due to the fact that

data of high dimensionality usually lie on an intrinsically

low-dimensional subspace. In this work, we use a dictio-

nary to represent one domain, as dictionary learning based

methods [1, 24] have recently become very popular for sub-

space modeling. It is based on the fact that data signals

in the same subspace can be linearly decomposed with a

small number of atoms from an over-complete dictionary.

Unlike traditional subspace modeling using Principal Com-

ponent Analysis (PCA), these atoms are not constrained to

be orthogonal, which allows more flexibility to better adapt

to the given data signals [23]. The resulting sparse codes

are usually leveraged as a feature representation for classi-

fication. Effectively learned dictionaries have seen state-of-

the-art performance in reconstruction and recognition tasks

[11, 32, 22].

Yet the issue of dictionary learning under distribution

shifts has received less attention. Specifically, the presence

of domain shifts violates the assumption that test data lie in

the linear span of training data. As the dictionary atoms

learned from one domain are not optimal to fit a differ-

ent domain, and only a small subset of the atoms are al-

lowed for representation, it will incur large reconstruction

errors for the target data. Further, signals of the same class

in the target domain will not have similar sparse codes as

those from the source domain. These factors will cause in-

ferior performance for both reconstruction and recognition

tasks. Therefore, effectively leverage unlabeled target data

to adapt the dictionary from one domain to another while

maintaining certain invariant representation becomes cru-

cial for successful DA.

We make the following contributions in this paper. (1)

We propose a novel unsupervised DA framework by inter-

polating subspaces through dictionary learning. We hypoth-

esize existence of a virtual path which smoothly connects

the source and target domains. Imagine the source domain

consists of face images in the frontal view while the target

domain contains those in the profile view. Intuitively, face

images which gradually transform from the frontal to pro-

file view will form a smooth transition path. Recovering in-

termediate representations along the transition path allows

us to more likely capture the underlying domain shift, as

well as to build meaningful feature representations which

are preserved across different domains. We encapsulate this

intuition into our approach. Specifically, we sample sev-

eral intermediate domains along a virtual path between the

source and target domains, and represent each intermedi-

ate domain using a dictionary. We then utilize the good

reconstruction property of dictionaries, and learn the set of

intermediate domain dictionaries which incrementally re-

duce the reconstruction residue of the target data. In the

mean time, we constrain the magnitude of changes between

dictionaries for adjacent intermediate domains to ensure the

smoothness of the transition path ( refer to Figure 2 for an il-

lustration). (2) We then apply invariant sparse codes across

the source, intermediate and target domains to render inter-

mediate representations, which convey a smooth transition

in the data signal space. It also provides a shared feature

representation where the sample differences caused by dis-

tribution shifts are reduced, and we utilize this new feature

representation for cross domain recognition. (3) We provide

a quantification of domain shift by measuring the similarity

between the source and target domain dictionaries which

are learned using our DA approach. Presented with multi-

ple domains, this quantitative measure can be exploited to

select the optimal domain to adapt to. (4) We demonstrate

the wide applicability of our approach for face recognition

across pose, illumination and blur variations, cross dataset

object recognition, and report the improved performance of

our approach over existing DA methods.

Organization of the paper: The structure of the rest of

the paper is as follows: In Section 2, we relate our work

to existing work on DA. In Section 3, we present our gen-

eral unsupervised DA approach supported by a quantitative

measure of domain shift. We report experimental results on
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face and object recognition in Section 4. The contributions

of the paper are summarized in Section 5.

2. Related work

Several DA methods have been discussed in the litera-

ture. We briefly review the relevant work below.

Semi-supervised DA methods rely on labeled target data

to perform cross domain classification. Daume [9] proposed

a feature augmentation technique such that data points from

the same domain are more similar than those from different

domains. The Adaptive-SVM method introduced in [33] se-

lects the most effective auxiliary classifiers to adapt to the

target dataset. The method in [10] designed a cross-domain

classifier based on multiple base kernels. Metric learning

approaches [28, 18] were also proposed to learn a cross do-

main transformation to link two domains. Recently, Jhuo et

al. [17] utilized low-rank reconstructions to learn a trans-

formation so that the transformed source samples can be

linearly reconstructed by the target samples.

Given no labels in the target domain to learn the simi-

larity measure between data instances across domains, un-

supervised DA is more difficult to tackle. Therefore it usu-

ally enforces certain prior assumptions to relate source and

target data. Structural correspondence learning [7] induces

correspondence among features from two domains by mod-

eling their relations with pivot features, which appear fre-

quently in both domains. Manifold-alignment based DA

[31] computes similarity between data points in different

domains through the local geometry of data points within

each domain. The techniques in [25, 26] reduce the distance

across two domains by learning a latent feature space where

domain similarity is measured through maximum mean dis-

crepancy. Shi and Sha [29] define an information-theoretic

measure which balances between maximizing domain sim-

ilarity and minimizing expected classification error on the

target domain. Two recent approaches [14], [13] in the com-

puter vision community are more relevant to our method-

ology, where the source and target domains are linked by

sampling finite or infinite number of intermediate subspaces

on the Grassmannian manifold. These intermediate sub-

spaces appear to be able to capture the intrinsic domain

shift. Compared to their abstract manifold walking strate-

gies, our approach emphasizes on synthesizing intermediate

subspaces in a manner which gradually reduces the recon-

struction residue of the target data.

Also related is the recent work presented in [27], which

jointly learns aligned dictionaries from multiple domains

with correspondence available in those domains. Domain

invariant sparse codes are designed for cross domain recog-

nition, alignment and synthesis. Our DA approach differs

in that we can operate in the unsupervised mode where no

correspondence is available.

3. Proposed Method

In this section, we introduce our general framework for

unsupervised DA. We first describe some notations to facil-

itate subsequent discussions.

Let Ys ∈ R
n∗Ns , Yt ∈ R

n∗Nt be the data instances

from the source and target domain respectively, where n is

the dimension of the data instance, Ns and Nt denote the

number of samples in the source and target domains. Let

D0 ∈ R
n∗m be the dictionary learned from Ys using stan-

dard dictionary learning methods, e.g, K-SVD [1], where

m denotes the number of atoms in the dictionary. As in-

troduced in Section 1, our approach samples several inter-

mediate domains from a smooth transition path between the

source and target domains. We associate each intermediate

domain with a dictionary Dk, k ∈ [1,K], where K is the

number of intermediate domains which will be determined

in our DA approach.

3.1. Learning Intermediate Domain Dictionaries

Starting from the source domain dictionary D0, we

sequentially learn the intermediate domain dictionaries

{Dk}Kk=1 to gradually adapt to the target data. This is also

conceptually similar to incremental learning. The final dic-

tionaryDK which best represents the target data in terms of

reconstruction error is taken as the target domain dictionary.

Given the k-th domain dictionary Dk, k ∈ [0,K − 1], we

learn the next domain dictionary Dk+1 based on its coher-

ence with Dk and the remaining residue of the target data.

Specifically, we decompose the target data Yt with Dk and

get the reconstruction residue Jk:

Γk = argmin
Γ

‖Yt −DkΓ‖2F , s.t.∀i, ‖αi‖0 ≤ T (1)

Jk = ‖Yt −DkΓk‖2F (2)

where Γk = [α1, ..., αNt
] ∈ R

m∗Nt denote the sparse co-

efficients of Yt decomposed with Dk, and T is the sparsity

level. We then obtain Dk+1 by estimating ΔDk, which is

the adjustment in the dictionary atoms between Dk+1 and

Dk:

min
ΔDk

‖Jk −ΔDkΓk‖2F + λ‖ΔDk‖2F (3)

Equation (3) consists of two terms. The first term ensures

that the adjustments in the atoms of Dk will further de-

crease the current reconstruction residue Jk. The second

term penalizes abrupt changes between adjacent intermedi-

ate domains, so as to obtain a smooth path. The parameter

λ controls the balance between these two terms. This is a

ridge regression problem. By setting the first order deriva-

tives to be zeros, we obtain the following closed form solu-

tion:

ΔDk = JkΓ
T
k (λI+ ΓkΓ

T
k )
−1 (4)
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where I is the identity matrix. The next intermediate do-

main dictionary Dk+1 is then obtained as:

Dk+1 = Dk +ΔDk (5)

Note that when λ = 0, the Method of Optimal Direction

(MOD) [12] becomes a special case of equation (3), where

no regularization is enforced.

Starting from the source domain dictionary D0, we ap-

ply the above adaptation framework iteratively, and stop the

procedure when the magnitude of ‖ΔDk‖F is below cer-

tain threshold, so that the gap between the two domains is

absorbed into the learned intermediate domain dictionaries.

This stopping criteria also automatically gives the number

of intermediate domains to sample from the transition path.

We summarize our approach in Algorithm 1. We also show

in Proposition 1 that, in each step, the residue Jk is non-

increasing w.r.t the current intermediate domain dictionary

and the encoding coefficients. We demonstrate the empiri-

cal convergence of our algorithm in Section 4.

Proposition 1. Given the estimate of ΔDk using equation

(4), the residue Jk is non-increasing w.r.t Dk and the cor-

responding sparse coefficients Γk

‖Jk −ΔDkΓk‖2F ≤ ‖Jk‖2F (6)

Proof: We provide proof in the appendix.

Algorithm 1 Algorithm to interpolate intermediate sub-

spaces between source and target domains.

1: Input: Dictionary D0 trained from the source data, tar-

get data Yt, sparsity level T , stopping threshold δ, pa-

rameter λ, k = 0.

2: Output: Dictionaries {Dk}K−1

k=1
for the intermediate

domains, dictionary DK for the target domain.

3: while stopping criteria is not reached do

4: Decompose the target data with the current interme-

diate domain dictionary Dk, get the reconstruction

residue Jk using equations (1) and (2)

5: Get an estimate of the adjustment in dictionary atoms

ΔDk and the next intermediate domain dictionary

Dk+1 using equations (4) and (5). Normalize the

atoms in Dk+1 to have unit norm.

6: k ← k + 1
7: check the stopping criteria ‖ΔDk‖F ≤ δ
8: end while

3.2. Recognition Under Domain Shift

Up to now, we have learned a transition path which is

encoded with the underlying domain shift. This provides

us with rich information to obtain new representations to

associate source and target data. Here, we simply apply

invariant sparse codes across the source, intermediate, target

domain dictionaries {Dk}Kk=0. The new augmented feature

representation is obtained as follows:

[(D0α)
T , (D1α)

T , ..., (DKα)T ]T

where α ∈ R
m is the sparse code of a source data signal

decomposed with D0, or a target data signal decomposed

with DK . This new representation incorporates the smooth

domain transition recovered in the intermediate dictionaries

into the signal space. It brings the source and target data

into a shared feature space where the data distribution shift

is mitigated. Therefore, it can serve as a more robust char-

acteristic across different domains. Given the new feature

vectors, we apply PCA for dimension reduction1, and then

employ a SVM classifier for cross domain recognition.

3.3. Quantification of Domain Shift

We now introduce a numeric measure, Quantification of

Domain Shift (QDS) to compare the similarity of two do-

mains, which have much practical utility. For instance, we

may be faced with more than one source domains in some

scenarios. QDS will allow us to select the optimal source

domain which has the least domain shift w.r.t the target do-

main to perform adaptation. We propose to obtain QDS by

measuring the similarity between the source domain dic-

tionary D0 and the target domain dictionary DK which

is learned using Algorithm 1. This similarity character-

izes the amount of domain shift encoded along the transi-

tion path. Specifically, it is defined as Qs,t = ‖DT
KD0‖F ,

where a higher value indicates higher coherence between

D0 and DK , and less domain shift along the learned transi-

tion path. Similarly, by reversing the role of source and tar-

get domain to learn the transition path, we can obtain Qt,s

which is the amount of shift from target to source domain.

Then the symmetric QDS between two domains is defined

as (1/2)(Qs,t +Qt,s).

4. Experiments

In this section, we evaluate our DA approach on face

recognition across pose, lighting and blur variations, and

2D object recognition across different datasets.

4.1. Face Recognition Under Pose Variation

We carried out the first experiment on face recognition

across pose variation on the CMU-PIE dataset [30]. We

included 68 subjects under 5 different poses in this experi-

ment. Each subject has 21 images at each pose, with vari-

ations in lightings. We selected the frontal face images

as the source domain, with a total of 1428 images. The

1The number of principal components is chosen to preserve 98% of the

input data’s energy. Alternatively, one can choose any other dimension

reduction method for this step.
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Table 1. Face recognition under pose variation on CMU-PIE dataset [30]

c11 c29 c05 c37 average

Ours 76.5 98.5 98.5 88.2 90.4

GFK [13] 63.2 92.7 92.7 76.5 81.3

SGF [14] 58.8 89.7 89.7 72.1 77.6

Eigen light-field [16] 78.0 91.0 93.0 89.0 87.8

K-SVD [1] 48.5 76.5 80.9 57.4 65.8

target domain contains images at different poses, which

are denoted as c05 and c29 (yawning about ±22.5o), c37
and c11 (yawning bout ±45o) respectively. We chose the

front-illuminated source images to be the labeled data in

the source domain. The task is to determine the identity

of the images in the target domain with the same illumi-

nation condition. The classification results are in Table 1.

We compare our method with the following methods. 1)

Baseline K-SVD [1], where target data is directly decom-

posed with the dictionary learned from the source domain,

and the resulting sparse codes are compared using a near-

est neighbor classifier. 2) GFK [13] and SGF [14], which

perform subspace interpolation via infinite or finite sam-

pling on the Grassmann manifold. 3) Eigen light-field [16]

method, which is specifically designed to handle face recog-

nition across pose variations. We observe that the base-

line is heavily biased under domain shift, and all DA meth-

ods improve upon it. Our method demonstrates its advan-

tage over two other DA methods when the pose variation is

large. Furthermore, our average performance is comparable

to [16], which relies on a generic training set to build pose

specific models, while DA methods do not make such an as-

sumption. We also show some of the synthesized intermedi-

ate images in Figure 3 for illustration. As our DA approach

gradually updates the dictionary learned from frontal face

images using non-frontal images, these transformed rep-

resentations thus convey the transition process in this sce-

nario. These transformations could also provide additional

information for certain applications, e.g. face reconstruc-

tion across different poses.

4.2. Face Recognition Across Blur and Illumination
Variations

Next, we present the results of a face recognition exper-

iment for dealing with blur and illumination variations. We

chose the frontal images of 34 subjects under 21 lighting

conditions from the CMU-PIE dataset [30] in this experi-

ment. We selected images of each subject under 11 differ-

ent illumination conditions to form the source domain. The

remaining images with the other 10 illumination conditions

were convolved with a blur kernel to form the target do-

main. Experiments were performed with the Gaussian ker-

nels with standard deviations of 3 and 4, and motion blurs

with lengths of 9 (angel θ = 135o) and 11 (angel θ = 45o),

Figure 3. Synthesized intermediate representations between

frontal face images and face images at pose c11. The first row

shows the transformed images from a source image (in red box) to

the target domain. The second row shows the transformed images

from a target image (in green box) to the source domain.

Table 2. Face recognition across illumination and blur variations

on CMU-PIE dataset [30]

σ = 3 σ = 4 L = 9 L = 11
Ours 80.29 77.94 85.88 81.18

GFK [13] 78.53 77.65 82.35 77.65

SGF [14] 70.88 60.29 72.35 67.94

LPQ [2] 66.47 32.94 73.82 62.06

Albedo [5] 50.88 36.76 60.88 45.88

K-SVD [1] 40.29 25.59 42.35 30.59

respectively. We compare our results with those of K-SVD

[1], GFK [13] and SGF [14]. Besides, we also compare with

the Local Phase Quantization (LPQ) [2] method, which is a

blur insensitive descriptor, and the method in [5], which es-

timates an albedo map (Albedo) as an illumination robust

signature for matching. We report the results in Table 2.

Our method slightly improves upon GFK [13] and out-

performs all other algorithms by a large margin. Since the

domain shift in this experiment consists of both illumina-

tion and blur variations, traditional methods which are only

illumination insensitive or robust to blur are not able to fully

handle both variations. DA methods are useful in this sce-

nario as they do not rely on the knowledge of physical do-

main shift. We also show transformed intermediate repre-

sentations along the transition path of our approach in Fig-

ure 4, which clearly captures the transition from clear to

blur images and vice versa. Particularly, we believe that the

transformation from blur to clear conditions is useful for
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(a) (b) (c) (d)

Figure 5. Example images of the bike category from the (a) Caltech (b) Webcam (c) Amazon (d) DSLR dataset. (Images best viewed in

color)

Table 3. Cross dataset object recognition in both unsupervised and semi-supervised setting

Domain Unsupervised Semi-supervised

source target K-SVD [1] SGF [14] GFK [13] Ours K-SVD [1] SGF [14] GFK [13] Ours

Caltech Amazon 20.5±0.8 36.8±0.5 40.4±0.7 45.4±0.3 31.2±1.0 40.2±0.7 46.1±0.6 50.0±0.5

Caltech DSLR 19.8±1.0 32.6±0.7 41.1±1.3 42.3±0.4 34.6±1.0 36.6±0.8 55.0±0.9 57.1±0.4

Amazon Caltech 20.2±0.9 35.3±0.5 37.9±0.4 40.4±0.5 25.2±0.7 37.7±0.5 39.6±0.4 41.5±0.8

Amazon webcam 16.9±1.0 31.0±0.7 35.7±0.9 37.9±0.9 42.7±0.6 37.9±0.7 56.9 ±1.0 57.8±0.5

webcam Caltech 13.2±0.6 21.7±0.4 29.3±0.4 36.3±0.3 23.4±0.4 29.2±0.7 32.8±0.7 40.6±0.4

webcam Amazon 14.2±0.7 27.5±0.5 35.5±0.7 38.3±0.3 32.9±0.7 38.2±0.6 46.2±0.7 51.5±0.6

DSLR Amazon 14.3±0.3 32.0±0.4 36.1±0.4 39.1±0.5 31.2±1.2 39.2±0.7 46.2±0.6 50.3±0.2

DSLR webcam 46.8±0.8 66.0±0.5 79.1±0.7 86.2±1.0 49.9±1.4 69.5±0.9 80.2±0.4 87.8±1.0

Figure 4. Synthesized intermediate representations from face

recognition across blur and illumination variations (motion blur

with length of 9). The first row shows the transformed images

from a source image (in red box) to the target domain. The second

row shows the transformed images from a target image (in green

box) to the source domain. (The left most image in the second row

is an approximation to the blur-free image in the source domain.)

blind deconvolution, which is a highly under-constrained

and costly problem [19].

4.3. Cross Dataset Object Recognition

Following the experiment setting in [13], we evaluated

our DA approach for 2D object recognition on four datasets,

with a total of 2533 images from 10 categories. The first

three datasets were collected by [28], which include images

from amazon.com (Amazon), collected with a digital SLR

(DSLR) and a webcam (Webcam). The fourth dataset is

Caltech-256 (Caltech) [15]. Each dataset constitutes one

domain. We used a SURF detector [3] to extract interest

points. Then a randomly chosen subset of the interest point

descriptors from the Amazon dataset were quantized to vi-

sual words by k-means clustering. Each image was repre-

sented as a histogram over the quantized visual words of

dimension 800. Based on this data representation, we ap-

plied our DA approach.

We report performance on eight different pairs of source

and target combinations. In the source domain, we ran-

domly selected 8 labeled images per category for Web-

cam/DSLR/Caltech and 20 for Amazon. Our method is

compared with K-SVD [1], GFK [13] and SGF [14]. To

draw complete comparison with existing DA methods, we

also carried out experiments in the semi-supervised setting

where we additionally sampled 3 labeled images per cat-

egory from the target domain. We ran 20 different trials

corresponding to different selections of labeled data from

the source and target domains. The average recognition rate

and standard deviation was reported in Table 3 for both un-

supervised and supervised settings. It is seen that baseline

K-SVD has the lowest recognition rate except for one pair

of source and target combination in the semi-supervised set-

ting. Overall, our method consistently demonstrates better

performance over state-of-the-art methods.

Choice of parameters: In our experiments, the regu-

larization parameter λ varies from 1000 to 2000, and the

stopping threshold δ is chosen to be between 0.2 to 0.8.
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(a) (b) (c)

Figure 6. Average reconstruction error of the target domain decomposed with the source and intermediate domains. The combinations

of source and target domains are (a) frontal face images v.s. face images at pose c29 (b) DSLR v.s. Webcam (c) Caltech v.s. Amazon,

respectively.

Table 4. QDS values between Amazon/DSLR/Webcam/Caltech

datasets
Amazon DSLR Webcam Caltech

Amazon NA 8.13 9.03 9.78

DSLR 8.13 NA 9.60 8.25

Webcam 9.03 9.60 NA 8.96

Caltech 9.78 8.25 8.96 NA

Decrease of reconstruction residue along the tran-

sition path: Figure 6 shows the average reconstruction

residue of target data decomposed with the source, and in-

termediate domain dictionaries {Dk}Kk=0 along the transi-

tion path which were learned using Algorithm 1. We pro-

vide results on three pairs of source and target combina-

tions: frontal face images v.s. face images at pose c29,

DSLR v.s. Webcam dataset, Caltech v.s. Amazon, re-

spectively. We observe that the residue is gradually re-

duced along the transition path, and Algorithm 1 generally

stops within five to ten iterations in our experiments, which

demonstrates that our framework is able to bridge the gap

between two domains.

QDS values: In Table 4, we provide QDS val-

ues discussed in Section 3.3 between the Ama-

zon/DSLR/Webcam/Caltech datasets. These quantitative

values of domain shift are in line with our experimen-

tal performance, i.e., higher QDS values indicate less

domain shift, and a higher recognition rate between the

corresponding two domains.

5. Conclusions

We presented a fully unsupervised DA method by incre-

mentally learning intermediate domain dictionaries to cap-

ture the underlying domain shift. This allows us to trans-

form original data instances from different modalities into a

shared feature representation, which serves as a robust sig-

nature for cross domain classification. We evaluated our

method on public available datasets and obtain improved

performance upon the state of the art. We believe our syn-

thesized intermediate representations are also beneficial for

certain applications, e.g, face reconstruction across differ-

ent poses, blur removal etc.

Appendix: Proof of Proposition 1

Substitute (4) into (6), we have

‖Jk‖2F − ‖Jk −ΔDkΓk‖2F
=‖Jk‖2F − ‖Jk − JkΓT

k (λI+ ΓkΓ
T
k )
−1
Γk‖2F

=tr(2ΓT
k (λI+ ΓkΓ

T
k )
−1
ΓkJ

T
k Jk)− (7)

tr(ΓT
k (λI+ ΓkΓ

T
k )
−1
ΓkJ

T
k JkΓ

T
k (λI+ Γ

T
kΓk)

−1
Γk)

Let us define the Singular Value Decomposition (SVD) of

Γk as Γk = UΣV
T , whereU andV are orthogonal matri-

ces, and Σ = [Σ̃,0] is a rectangular diagonal matrix, with

Σ̃ = diag(σi) being a diagonal matrix. Then

Γ
T
k (λI+ ΓkΓ

T
k )
−1
Γk

=VΣT
U

T (λI+UΣΣ
T
U

T )−1
UΣV

T

=[V1,V2]Σ
T
U

T (λI+UΣ̃
2
U

T )−1
UΣ[V1,V2]

T

=V1Σ̃(λI+ Σ̃
2)−1

Σ̃V
T
1

=V1ΦV
T
1

(8)

where V = [V1,V2], with V1 being a square matrix, and

Φ = diag(
σ2

i

σ2

i
+λ

). Substitute (8) into (7), we have

‖Jk‖2F − ‖Jk −ΔDkΓk‖2F
=tr(2V1ΦV

T
1 J

T
k Jk)− tr(V1ΦV

T
1 J

T
k JkV1ΦV

T
1 )

=tr((2Φ−Φ2)VT
1 J

T
k JkV1)

=tr(HVT
1 J

T
k JkV1H)

=‖JkV1H‖2F ≥ 0

(9)

where H = diag(

√
σ4

i
+2λσ2

i

σ2

i
+λ

)

696696696696698698
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