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Abstract

Metric learning methods, for person re-identification, es-
timate a scaling for distances in a vector space that is op-
timized for picking out observations of the same individ-
ual. This paper presents a novel approach to the pedestrian
re-identification problem that uses metric learning to im-
prove the state-of-the-art performance on standard public
datasets. Very high dimensional features are extracted from
the source color image. A first processing stage performs
unsupervised PCA dimensionality reduction, constrained to
maintain the redundancy in color-space representation. A
second stage further reduces the dimensionality, using a
Local Fisher Discriminant Analysis defined by a training
set. A regularization step is introduced to avoid singular
matrices during this stage. The experiments conducted on
three publicly available datasets confirm that the proposed
method outperforms the state-of-the-art performance, in-
cluding all other known metric learning methods. Further-
more, the method is an effective way to process observa-
tions comprising multiple shots, and is non-iterative: the
computation times are relatively modest. Finally, a novel
statistic is derived to characterize the Match Characteris-
tic: the normalized entropy reduction can be used to define
the ’Proportion of Uncertainty Removed’ (PUR). This mea-
sure is invariant to test set size and provides an intuitive
indication of performance.

1. Introduction

In recent years, the re-identification of people from

medium-range CCTV observations has attracted consid-

erable attention, particular with multiple non-overlapping

source cameras. The main challenges in person re-

identification can be attributed to the variations in pose, il-

lumination and viewpoint. We briefly review the existing

methods in literature below.

Many researchers have approached the problem by

proposing feature-based methods which estimate a reliable

and distinctive signature per person regardless of the scene

by combining one or more extracted feature types. Swain

and Ballard [30] first proposed the use of histograms as sta-

ble representations of objects, for identification and recog-

nition. A recent study [4] evaluated the performance of var-

ious local features for person re-identification: it has been

proposed [10] to augment maximally stable color regions

(MSCR) with histograms and recurrent local color patches.

A similar proposal [5] is to use histograms along with ‘epit-

ome’ - a collection of recurrent stable color patches ex-

tracted over a series of frames. Another approach [34]

is the computation of region covariance descriptors com-

bining Gabor and local binary patterns from several non-

overlapping regions. More complex models have been pro-

posed, e.g. a decomposable triangulated graph to be fitted

on a over segmented image [12]. Feature-based methods

can suffer from illumination variations and human shape

deformations. To address the illumination variation across

cameras, a learned inter-camera Brightness Transfer func-

tion (BTF) has been proposed [19].

Some methods focus on feature extraction for fast match-
ing, e.g. per-person signatures using Camillia key-points

[15], stored in a KD-tree; a code-book using a Global color

context [15]; or Random forests to weight the most infor-

mative features [25]. Code-book representations and the

addition of spatial information in a layered framework were

proposed in [22].

Several researchers [1, 21] investigate the possibility

of acquiring more distinctiveness by determining the pose

prior to feature extraction. Also, the use of ‘multi-shot’ data

(from multiple observations) to estimate appearance models

may be advantageous, e.g. using a histogram of gradients

(HoG) detector to extract different body parts over a series

of frames [7]. Semantic segmentation is the basis of works

[10, 6] in which multiple observations are analysed.

Researchers have also learning framework to iteratively

select the most reliable subset of features, using Adaboost

to select the most discriminative e.g. Haar-like features [2].

Adaboost has also been used to learn discriminative features

and an ensemble of weak classifiers for a given dataset [14];

and a set of weak RankSVMs have been boosted [28] by

making various overlapping partitions of the training data.

Model estimation using Adaboost to improve ranking re-

sults has also been proposed [18].

Person re-identification can be formulated as a data asso-
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ciation problem, to match observations obtained from pairs

of cameras. In this case, it is assumed that a mapping space

common to both sets of observations can be found, in which

a nearest neighbor classification solves the data association

problem. Various methods have been proposed to learning

this mapping space: the ‘Large Margin’ Nearest Neighbor

(with Rejection) – LMNN(-R) algorithm has been used [8]

to learn the most effective metric to match data from two

arbitrary cameras. To account for the non-linear nature of

the feature space, it has been proposed to use a kernel [32]

as part of the PCA to find an appropriate low dimensional

manifold. Other learned metrics include the PRDC [35],

estimated by measuring the probabilistic distance between

features belonging to same and different persons; or one

learnt from a number of SVMs trained on random subsets

of data [24], similar to the work in [28].

‘Rank-loss optimization’ has been proposed, to improve

the re-identification accuracy [31], whereas RLPP, a variant

of Locality Preserving Projections (LPP) formulated over

Riemannian manifolds, has also been introduced [16]. Re-

cently, metric learning has been proposed from equivalence

constraints in pairwise difference space. PCCA was pro-

posed in [27] the focus of which was to address the sit-

uations when only a small set of limited examples [23],

whereas Zheng em et al [36] reformulate the person re-

identification problem as a set-based verification task and

show that discriminant information can be learnt from unla-

belled data. Out of the various methods listed above, metric

learning methods can be identified as providing a significant

improvement in performance.

Dimensionality reduction and distance metric learning

are known to have a significant contextual dependency. In

the case of unsupervised distance metric learning, a low-

dimensional manifold space is estimated for which the ob-

jective is to maximize the preservation of geometric rela-

tionships (e.g. distances) between the data. As an example,

the principle Eigenvectors ϕi of the covariance matrix can

be used to define a distance metric

Dm =
∑
i

ϕiϕ
′
i (1)

The distance between two samples, y and x is then

dyx = (y − x)
′
Dm (y − x) (2)

Typically, a single embedding space based on the above

approximation may not be adequate for this class of near-

est neighbor classification problems. Hence, the idea of

projecting simple features into different, local, embedding

spaces is explored in this work. This is refered to as LF:

Local Fisher Discriminant Analysis.

The main contributions of this work are i) to apply the

Local Fisher Discriminant analysis to the pedestrian re-

identification problem; ii) to propose that the PCA-reduced

representation of the features should maintain the dual

color-space representation; iii) to apply a regularization pro-

cess to the Discriminant Analysis to achieve a working so-

lution and iv) propose a characterization of the Match Char-

acteristic curve that in essence reports the percentage of the

re-identification problem solved, from 0% to 100%.

The rest of the paper is organised as follows. Section

2.1 proposes the features to extract. The first and second

stages of dimensionality reduction are described in sections

2.2 and 2.3 respectively. The regularization required for the

second stage is explained in 2.5 and the information the-

oretic performance measure in 3.1. Experiments on three

public datasets are described in section 4, demonstrating the

efficacy of the proposed approach.

2. Proposed Method
The proposed method LF uses a feature extraction tech-

nique followed by supervised and then unsupervised di-

mensionality reduction stages. In common with most other

investigations, the starting point is a fixed-size sub-image

containing an observation of a pedestrian.

2.1. Feature Extraction

The color descriptor ui is extracted for the observation

indexed with i, working in the HSV color space. It is the

concatenation of a parametric c and non-parametric h rep-

resentations of colors in each of the m densely sampled

(overlapping) tiles defined within the observation (see Fig.

1). For each tile j , cj is the first three moments calcu-

lated separately on each of the three components in the color

space. Similarly, hj is the normalized 8-bin histogram cal-

culated separately for each component of the color space.

In addition, the color descriptor vi is defined identically ex-

cept that it uses the YUV color space as the input. Both

of these vectors have 33m dimensions: in the experiments,

m = 341, implying an initial dimensionality of 11,253. Be-

low, the dimensionality reduction framework is described.

2.2. Unsupervised Dimensionality Reduction

The first stage employs an unsupervised dimensionality

reduction technique to estimate a low dimensional embed-

ding space from the high dimensional feature space. Let

xi ∈ {i = 1, 2, ...N} be the index of each individual avail-

able in the dataset and u, the descriptor matrix of all individ-

uals in HSV color space. Similarly, v is the color descriptor

matrix in YUV color space. The use of color descriptors de-

fined in more than one color space is useful for estimating

a reliable embedding space in the sibsequent stages. It is

common for the descriptor matrix u to be high dimensional

and also the accumulation of descriptors from a dense grid

is likely to introduce noise. For a given color space, the

matrix u is de-noised, and its dimensions reduced, by using

Principal Component Analysis (PCA) [20].For simplicity,

331733173319



Figure 1. Proposed feature extraction and first processing stage

the data projected into the low dimensional manifold esti-

mated by PCA is written u′i = Duui, where Du is the em-

bedding transformation matrix corresponding to the Eigen-

vectors derived from PCA. Similarly, for the YUV channel,

v
′
i = Dvvi. This differs from the conventional approach of

using PCA globally, to the whole feature space [8]. It is hy-

pothesised that separate estimation and use of Dv and Du

retains information more effectively. The overall output xi

from the first stage is the concatenation of the two sets of

principal components: xi = {u′
i|v

′
i}.

2.3. Supervised Dimensionality Reduction

The second stage uses a supervised dimensionality re-

duction method to estimate a lower dimensional embedding

space into which xi may be transformed. Supervised tech-

niques which preserve the locality relations of the data per-

form relatively well compared to unsupervised techniques.

In this work, Local Fisher Discriminant Analysis (LFDA)

[29] is employed to learn a distance metric between a set

of descriptor pairs corresponding to pairs of observations

of a set of individuals. The LFDA transformation can

be estimated using generalized Eigenvalues and the objec-

tive that between-class separability is maximized and multi-

class modality is preserved. It combines the supervised as-

pect of Fisher Discriminant Analysis (FDA) [11] while pre-

serving the local neighborhood structure preserving nature

(LPP) [17]. We briefly review LFDA below.

2.4. Local Fisher Discriminant Analysis

A descriptor matrix is defined, X ≡ (x1|x2|...|xn),
consisting of n samples of C different classes with labels

xi ∈ {1, . . . , C} and feature vectors xi ∈ R
d. We can then

define a transformation matrix T such that

zi = T ′xi (3)

where zi ∈ R
m (1 ≤ m ≤ d) is a lower dimensional space

of dimensionality m. In Fisher Discriminant Analysis

(FDA), the scatter matrices between classes and within a

class are defined as

S(b) =
N∑
i=1

ni (μi − μ) (μi − μ)′ (4)

S(w) =
N∑
i=1

∑
j:xj=i

(xj − μi) (xj − μi)
′

(5)

respectively. Here, μi is the mean of data belonging to class

i and μ is the mean of all the data. Then, an Eigenvalue

problem can be formulated using S(w) and S(b) as S(b)ϕ =
λS(w)ϕ, where {ϕi}di=1 are the eigenvectors associated to

the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λd. Even though FDA

is a supervised process, for multi-modal distributions the

the performance tends to be poor. One possible reason for

this is that it processes the data as a whole, and so local

variations in the transformation cannot be accommodated.

The Locality-Preserving Projection (LPP) uses an n× n
affinity matrix A, describing the affinity between various

samples within the data. Typically, the affinity value be-

tween two samples separated by a small Euclidean distance

will be higher than two samples separated by a larger dis-

tance. Let D be a diagonal matrix: each element sums

all affinity values over the columns of A, such that Dii =
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∑n
j=1Aij . Subject to the constraint T ′XDX ′T = I , the

transformation matrix for LPP is given by

TLPP = (ϕd−m+1|ϕd−m+2|...|ϕd) (6)

where {ϕi} are the d eigenvectors associated with the d
eigenvalues {γi} of the following eigenvalue problem:

XLX ′ψ = γXDX ′ψ (7)

where L = D − A. However, this (LPP) preservation of

local affinities is indiscriminate.

LFDA combines the above with a Fischer Discriminat

Analysis: both the within-class scatter matrix SW and be-

tween class scatter matrix SB are weighted by the affinity

matrix A of data. The Affinity matrix is calculated by using

a local scaling method [33], i.e. choosing the n-th nearest

neighbor and assigning individual scaling factors for sam-

ples of the same class; for all LF experiments reported in

this paper, n is set to 6. With the use of affinity matrix, the

contribution made by far apart in-class pairs of samples is

almost negligible in the calculation of SW and SB :

SW =
1

2

n∑
i,j=1

Aw
i,j (xi − xj) (xi − xj)

′
(8)

SB =
1

2

n∑
i,j=1

Ab
i,j (xi − xj) (xi − xj)

′
(9)

where

Aw
i,j =

{
Ai,j/nc if yi = yj = c
0 if yi �= yj

(10)

Ab
i,j =

{
Ai,j

(
1
n − 1

nc

)
if yi = yj = c

1
n if yi �= yj

(11)

Here, nc is the number of samples in class c and n is the

total. The transformation Tlfda can then be defined as

Tlfda = argmax
T

r

((
T ′SWT

)−1
T ′SbT

)
(12)

where T ∈ R
d × R

m. Similar to FDA, the estimation of

Tlfda is achieved by representing the above as a generalized

Eigenvalue problem, SBϕ = λSWϕ, where {ϕi} and {λi}
are the eigenvectors and eigenvalues of this system. Using

equation 3, the final projection into the embedding space

characterized by LFDA is written as

zi = T ′lfdaxi (13)

In this space, the Euclidean distance is used to measure sim-

ilarity between two samples i and j:

D(i, j) = |zi − zj | (14)

2.5. Regularization in LFDA

The size of the transformation matrix in LFDA is d×m,

where d is the dimensionality after stage 1 and m is the di-

mensionality of embedding space. If the number of classes

in the data is C, then the value of m will be C − 1 or less, a

constraint caused by SB . When d is large compared to the

number of samples n, then SW can be singular, making the

Eigenvalue system impossible to solve. This is a drawback

of LFDA and to overcome this problem, a small multiple of

the identity matrix can be added as follows:

ŜW = (1− β)SW + β.
Tr

(
SW

)
n

.I (15)

where β is the regularization parameter, 0 ≤ β ≤ 1 and by

default it is set to 0.5. The within-class scatter matrix SW

defined in Eqn.9 is replaced with the above, and the corre-

sponding Eigensystem is solved. The resulting eigenvectors

constitute the final transformation matrix, Tlfda, for project-

ing X into the space in which similarities can be measured.

3. Performance Evaluation
The standard methodology to evaluate person re-

identification algorithms is adopted here, with one addi-

tional contribution. This methodology assumes separate

training and test sets, both containing exactly two obser-

vations of a number of different subjects. Every subject

is a distinct individual and no individual is contained in

both training and test sets. The test procedure is to se-

lect a ‘probe’ observation and compare against a ‘gallery’

of observations including the single remaining ‘correct’ ob-

servation of this probe subject; the remainder of the gallary

are distractors. Each re-identification method is required to

rank the gallery observations, in order of their likelihood of

representing the same individual as the probe observation.

The rank of the correct observation is recorded and aggre-

gated over the entire test set to generate a Match Character-

istic M(r), the propbability that the rank r choice will be

correct. This is accumulated into the familiar CMC curve.

These are calculated by repeatedly resampling the partition

between training and test sets, to improve confidence in any

observed differences between re-identification algorithms.

3.1. The Proportion of Uncertainty Removed

A useful performance indicator can be derived as fol-

lows. In these particular experimental conditions, in which

a probe observation is compared against a gallery set of

S observations, let us assume that each member of the set

has an equal prior probability of being correct. Therefore,

the initial uncertainty of the state is simply log(S). Af-

ter a measurement (by any chosen method), the members

of the gallery set are ranked by order of their similarity to

the probe measurement. Assuming a stationary and ergodic

331933193321



data source, the posterior probability that the member at

rank r is the correct match, is equal to the match characteris-

tic M(r). The expected uncertainty of this state is therefore

−∑S
r=1M(r) log(M(r)). The difference between this and

log(S) is the information added by the identity estimate.

Furthermore, it is useful to normlise this entropy reduc-

tion by the original entropy: this ‘Proportion of Uncertainty

Removed’ (PUR) is invariant to the test data set size S, and

the base of the logarithm used for the entropy:

PUR ≡ log(S)−∑S
r=1M(r) log(M(r)

log(S))
(16)

Thus, the PUR is the normalised entropy reduction be-

tween a randomized rank and any given method’s output

rank. Also it accommodates information from across the

entire CMC, rather than at arbitrary values of r.

4. Experimental Results and Discussion
The evaluation of the proposed method is carried out on

VIPER [13], 3DPES [3] and CAVIAR [9] datasets.

Each has specific characteristics, as explained below.

4.1. VIPER

VIPER is a hand-generated dataset containing 632

pedestrian image pairs taken from arbitrary viewpoints un-

der varying illumination conditions. The data was collected

in an academic setting over the course of several months.

Each image is scaled to 128x48 pixels. The dataset is halved

Figure 2. VIPER dataset - Pairs of consecutive images belong to

a person in 2 cameras

into testing and training in a random fashion over multiple

runs in the experimental set up. In each run, the training

images are divided into 8x8 blocks with 50% overlap from

which 8 bin histograms and 3 moments are estimated for

each of the color channels in HSV and YUV color spaces.

For a given color space and a block, the resulting histograms

and moments within that block are concatenated as a single

vector of 33 dimensions. In the same color space, for each

image, the concatenation of all color descriptors will result

in a 11,253-dimensional vector.

Such vectors are generated for each of the training im-

ages after which PCA is performed on the mean subtracted

RANK 1 10 25 50 PUR
LF 24.18 67.12 85.10 94.12 42.35

eLDFV 22.34 64.04 81.97 88.92 40.56

KISSME 19.81 62.56 80.99 91.93 38.58

LMNN-R 18.28 55.49 74.43 87.65 33.76

Table 1. Performance comparison on VIPER. PUR represents

the proportion of uncertainty removed (see Sec 3.1) and columns

[1,10,25,50] represent the recognition percentage scored by each

of the methods at given rank index.

data after which first 20 and 80 principal vectors are chosen

for HSV and YUV color spaces respectively. The training

data is then projected into each of the respective spaces and

the resulting transformed data is concatenated in the two

color spaces to form a 100 dimensional subspace for Stage

2. Regularized LFDA is applied on this PCA-projected data

to further estimate a 50-dimensional manifold. Color de-

scriptors for test data are extracted in a similar manner in

training and they are then projected into PCA and LFDA

manifolds (in the same order) using the transformation ma-

trices estimated in training phase. The number of princi-

pal components in Stage 1 for each color space and LFDA

sub space dimensionality in LF are fixed to the above men-

tioned values for all the reported experimental results.

The method is evaluated and compared with three state-

of-the-art methods KISSME [23], LMNN-R [8] and eLDFV

[26]. For all four methods, the mean CMC and PUR are

computed from100 CMCs generated random re-partition of

the test and training set. The performance is also reported

with in the range of first 50 ranks in table 1 and the PUR

value introduced in 3.1. The VIPER experiment shows

that at rank 1, LF was able to achieve 1.68% improvement

over eLDFV, 4.37% improvement over KISSME and 5.9%

over LMNN-R. The PUR values also indicate that LF has

performed significantly better than the other two methods.

However, the authors of eLDFV [26] also report the perfor-

mance of sLDFV, a variant of eLDFV when combined with

a metric learning method, which outperforms LF by 2.38%

at rank 1.

4.2. 3DPES

3DPES dataset consists images of 191 individuals cap-

tured on multiple occasions along their trajectory through

an academic campus, from 8 different surveillance cameras.

Data was collected during various times of the day, re-

sulting in strong variations of lighting conditions. Signifi-

cantly, of the dataset is that it contains a high viewing angle

for the cameras which is typical of surveillance cameras in

outdoor scenes, e.g. town centers. Once again, LF is evalu-

ated and compared with KISSME [23], and LMNN-R [8].

The dataset is partitioned into training and test sets in a

random fashion with each containing 95 persons. The re-
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Figure 4. CMC performance for VIPER, DPES and CAVAIAR datasets

Figure 3. 3DPES dataset: Pairs of consecutive images above be-

long to a person in 2 cameras

RANK 1 10 25 50 PUR

LF 33.43 69.98 84.80 95.07 34.85

KISSME 22.94 62.21 80.74 93.21 25.49

LMNN-R 23.03 55.23 73.44 88.92 21.11

Table 2. Performance comparison on 3DPES. PUR represents

the proportion of uncertainty removed (see Sec 3.1) and columns

[1,10,25,50] represent the recognition percentage scored by each

of the methods at given rank index.

sults for this experiment are reported as CMC in 4, recog-

nition percentage at a given rank and PUR values in table

2. LF outperforms the other two methods with significant

margins, especially in the lower rank indices {1, 10, 25}.

4.3. CAVIAR

CAVIAR is another person re-identification dataset con-

taining images of 72 individuals captured from 2 cameras

in a shopping center scenario. The main complexity of this

dataset is the presence of intra- and inter-camera lighting

variation; also images of individuals were extracted from

a significantly smaller source image resolution. Moreover,

images from the second camera are dominated by back-

ground lighting making the dataset very challenging when

compared to the existing datasets in person re-identification

literature. The complete set of images were resized to to a

resolution of 128x48 in experiments.

Figure 5. CAVIAR Re-identification dataset: Pairs of consecu-

tive images above belong to a person in 2 cameras. These images

are typical of indoor legacy surveillance systems, e.g. airports

RANK 1 10 25 50 PUR

LF 36.19 88.56 99.89 100 50.02

(A)HPE 9.70 55.60 79.30 93.30 20.52

Table 3. Performance comparison on CAVIAR

x (A)HPE [6], the only method which has been tested

on this dataset. It was unclear as to how the authors of

(A)HPE have carried out their experiment for this dataset

but given that their method does not involve training, it is

assumed that all 50 persons in one camera were matched

against their observations in the other camera. The experi-

ment conducted for LF makes use of the multi-shot nature

of the dataset for which 5 images per person were used dur-

ing training phase. The dataset is split into training and test

sets with each set containing 36 persons and 5 images per

person. In the test set, the features extracted from all ob-

servations belonging to a person are averaged to give one

feature vector. The reason for doing is two fold. One is to

provide many training examples so that multi-modality is

introduced within the feature set of the training data. Two,

the average of all features is likely to be an estimate of the

centroid for all samples and hence is a good representa-

tion for making on-on-one criterion for each person during

matching stage.

The performance of LF is evaluated as CMC for 36 in-

dividuals and to make a fair comparison between the two

methods, CMC reported in [6] and CMC generated for LF
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are both normalized on a scale of 1 to 100 ranks. Similar

to the results reported for other datasets in this work, recog-

nition percentage for a given rank index and PUR values

are reported in 4.3. From the results it is clear that LF was

able to achieve good recognition performance compared to

(A)HPE and PUR value is as high as 50% for LF. This can

be attributed to the multi modal learning ability of LF and

also the relatively smaller test set size.

4.4. PCA Encoding

Experiments have been conducted on VIPEr dataset to

support the claim in 2.2 by performing PCA on the com-

bined features generated in HSV and YUV colour spaces.

The recognition performance was better for the case of

separately encoding each of the colour spaces when com-

pared to the joint encoding, for example, rank 1 result is

24.02% (separate encoding) vs 21.07% (joint encoding).

This can be attributed to the fact the colour space conversion

between HSV and YUV is non-linear in nature and sepa-

rately encoding features collected in each colour space with

PCA retains the most informative principal components.

4.5. Feature Selection

The use of the parametric and non-parametric features

in the method proposed was analysed by the comparison of

recognition performance for each of the feature set.

Histogram features are robust compared to colour mo-

ments, and they achieve about 7% improvement in recogni-

tion performance. The non-parametric nature of histograms

does not make any assumptions of the underlying data and

hence are very robust. This robustness is simply not enough

when compared 6 to the joint feature constructed by adding

the colour moments, the parametric representation of data.

The joint features outperform histogram features with an in-

creased recognition performance of 6% at rank 1 and 13%

for the case of colour moments alone.

4.6. Colour Space Analysis

The features generated from YUV colour space provide

better recognition performance compared to the HSV colour

space. This is reflected by the number of principal compo-

nents chosen during PCA projection step for each colour

space: 80 of the principal components contribute to the

YUV colour space where only 20 components from HSV

colour space are used. In this case, the features extracted

from both the colour spaces 6 improve the recognition per-

formance by 2% at rank 1 for YUV and 13% for HSV

colour space respectively. It is also interesting to note the

recognition performance without the use of the stage 1 pro-

cess of feature data projection into PCA subspace. The ap-

plication of LFDA alone on accumulated parametric and

non-parametric features from both the colour spaces pro-

vides a recognition percentage of 17% at rank 1. This ob-

Figure 6. Inclusion of feature types and colour spaces.

servation suggests that PCA encoding is crucial to remove

the noise that may reduce the richness of the LFDA learnt

subspace.

5. Conclusion

This work presented a novel approach for person re-

identification by combining parametric (color moments)

and non-parametric (histograms) representation of colors

as feature. The proposed method is a two stage train-

ing based low manifold learning framework using unsuper-

vised (PCA) and supervised (LFDA) dimensionality reduc-

tion methods. A regularized form of the supervised dimen-

sionality reduction was also proposed for LFDA technique

used in second stage of the framework. Additionally, for

performance evaluation purposes; the percentage of uncer-

tainty removed (PUR) was presented as a dataset size invari-

ant measure for recognition problems. Experiments were

conducted to evaluate and compare the proposed method on

three different person re-identification datasets with better

performance compared to state of the art methods.
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