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Abstract

Recently, the Counting Grid (CG) model [5] was devel-
oped to represent each input image as a point in a large grid
of feature counts. This latent point is a corner of a window
of grid points which are all uniformly combined to match
the (normalized) feature counts in the image. Being a bag
of word model with spatial layout in the latent space, the
CG model has superior handling of field of view changes
in comparison to other bag of word models, but with the
price of being essentially a mixture, mapping each scene to
a single window in the grid. In this paper we introduce a
family of componential models, dubbed the Componential
Counting Grid, whose members represent each input im-
age by multiple latent locations, rather than just one. In
this way, we make a substantially more flexible admixture
model which captures layers or parts of images and maps
them to separate windows in a Counting Grid. We tested the
models on scene and place classification where their com-
ponential nature helped to extract objects, to capture par-
allax effects, thus better fitting the data and outperforming
Counting Grids and Latent Dirichlet Allocation, especially
on sequences taken with wearable cameras.

1. Introduction
The most basic Counting Grid (CG) model [5] represents

each input image as a point k in a large grid of feature

(SIFT, color, high level feature) counts. This latent point

is a corner of a window of grid points which are all uni-

formly combined to form feature counts that match the (nor-

malized) feature counts in the image. Thus, the CG model

strikes an unusual compromise between modeling the spa-

tial layout of features and simply representing image fea-

tures as a bag of words where feature layout is completely

sacrificed. The spatial layout is indeed forgone in the repre-

sentation of any single image, as the model is simply con-

cerned with modeling the feature histogram. However the

spatial layout is present in the counting grid itself, which,

by being trained on a large number of individual image his-

tograms, recovers some spatial layout characteristics of the
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Figure 1. a) Images from 4 classes of the SenseCam dataset [6]

(Office, Atrium, Corridor, Lounge) b-c) Visualization of the top

words in each counting grid location. In c) in each location we

show the texton that corresponds to the peak of the distribution

(πi) at the location, while in b), we overlap these textons by as

much as the patches were overlapping during feature extraction

process, and then average to create a clearer visual representa-

tion. We also show few windows and their mapping position on the

Grid. Componential Counting Grids map each image in multiple

locations, in this figure we only show a window in correspondence

of the most likely location.

image collection to the extent needed to capture correla-

tions among feature counts. For example, in a collection

of images of a scene taken by a camera with a field of view

that is insufficient to cover the entire scene, each image will

capture different scene parts. Slight movement of the cam-

era produces correlated changes in feature counts, as certain

features on one side of the view disappear, and others appear

on the other side. The resulting bags of features show cor-

relations that directly fit the CG model. Ignoring the spatial

layout in the image frees the model from having to align

individual image locations, allowing for geometric defor-
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Table 1. Members of the Componential Counting Grid Family. W
and S are respectively the Window size and the Tessellation size.

Model Abbr. W S
Latent Dirichlet Allocation [7] LDA 1 × 1 1 × 1
Componential Counting Grid CCG > 1 × 1 1 × 1
Tessellated Compon. Counting Grid tCCG > 1 × 1 > 1 × 1
Layered Epitome lEP Nx × Ny Nx × Ny

mations, while the grid itself reconstructs some of the 2D

spatial layout needed for modeling feature count correla-

tions.

As shown in [5] and as we demonstrate in Fig. 1, arranging

counts on a topology that allows feature sharing through

windowing can have representational advantages beyond

this surprising possibility of panoramic scene reconstruc-

tion from bags of features. Counting Grids have been re-

cently used in the context of scene classification [4] and

video analysis in [19, 6].

In this paper we introduce the Componential Counting

Grids (CCG), a family of models which extend the basic

Counting Grid model so that each input image is repre-

sented by multiple latent locations in CG, rather than just

one. Through admixing locations, CCG models become

multi -part or -object models but, like their CG predecessor,

they recreate only as much of spatial layout in the counting

grid as necessary for capturing count correlations.

This family creates connections between two popular gen-

erative modeling strategies in computer vision, previously

seen as very different: By varying the image tessellation and

window size, we will get a variety of models among which

we find latent Dirichlet allocation [7, 1] as well as flexible

sprites [18]/Layered Epitomes at two ends, or rather cor-

ners, of the spectrum illustrated in Fig.2. In each of these

corners, substantial research effort has been invested to re-

fine and apply these basic approaches, but it turns out that

the CCG models at neither end of the spectrum tend to per-

form best in our experiments. A summary of these models

can be found in Tab.1.

Componential Counting Grids and Topic models [7]
The original counting grid model shares its focus on model-

ing image feature counts (rather than feature layouts) with

another category of generative models, the “topic models”,

such as latent Dirichlet allocation (LDA) [7, 1]. However,

neither of these is a generalization of another. The CG

model is essentially a mixture model, assuming only one

source for all features in the bag, while the LDA model is

an admixture model that allows mixing of multiple topics

to explain a single bag. By using large windows to col-

late many grid distributions from a large grid, CG model

can be a very large mixture of sources without overtrain-

ing, as these sources are highly correlated: Small shifts in

the grid change the window distribution only slightly. LDA

model does not have this benefit, and thus has to deal with a

smaller number of topics to avoid overtraining. Topic mix-

ing cannot quite appropriately represent feature correlations

due to translational camera motion.

The basic Componential Counting Grid model, however, is

a generalization of LDA, as it does allow multiple sources

for each bag, in a mathematically identical way as LDA.

But, the equivalent of LDA topics are windows in a count-

ing grid, which allows the model to have a very large num-

ber of topics that are highly related, as shift in the grid only

slightly refines any topic.

The most similar generative model to CCG comes from the

statistic community. Dunson et al. [17] worked on sources

positioned in a plane at real-valued locations, with the idea

that sources within a radius would be combined to produce

topics in an LDA-like model. They used an expensive sam-

pling algorithm that aimed at moving the sources in the

plane and determining the circular window size. The grid

placement of sources of CCG yields much more efficient

algorithms and denser packing. In addition, as illustrated

below, CCG model can be run with various tessellations ef-

ficiently making it especially useful in vision applications.

Generative models for vision: Tessellated Componential
Counting Grids and Layered Epitomes. In computer vi-

sion, instead of forming a single bag of words out of one

image, separate bags are typically extracted from a uniform

S = Sx×Sy rectangular tessellation of the image [6, 8, 10].

The Tessellated extension of CCG (tCCG) is as straightfor-

ward as was the corresponding extension of CG [4]. All

sections are mapped to the same grid, but, the correspond-

ing window is tessellated in the same way as the image,

and the feature histograms from corresponding rectangular

segments are supposed to match. Even with as coarse tes-

sellations as 2× 2, training CG on image patches can result

in panoramic reconstruction similar to that of the epitome

model which entirely preserves the spatial layout.1 When

the Tessellation is equal to the image size S = Nx×Ny , ev-

ery bag is composed by a single feature, and we obtain the

Layered Epitome. Like regular Epitomes [2] and flexible

sprites [18] preserves the spatial layout of features. How-

ever, differently from [2], tCCGs break each image into lay-

ers and maps them separately in the epitome space, and dif-

ferently from [18], it does not assume a pre-defined number

and an ordering between layers.

In Fig. 2, though, we show a variety of Componential

models one can obtain by varying the tessellation and the

window size for the mapping. The window size need not,

and usually in our experiments does not match the size of

the input image, except for the .

1Of course, when the data does not consist of patches from a single

image, but from patches or images with more geometric deformation, CG

or recently introduced SLCG [6] model typically have a significant advan-

tage.
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Figure 2. “CCG spectrum”: Relationship of Componential Counting Grids Family with Layered Epitomes and Topic models. Although

the Layered Epitome has the same capacity its height/width ratio is different as we are forced to set W = Nx ×Ny .

Images used in training contain multiple objects and a back-

ground captured from a moving field of view, and a subset

of frames is shown in the image.2 Due to visualization ad-

vantages for this illustration, all models were trained us-

ing discretized colors rather than SIFT features, and they

all have roughly the same capacity – the number of in-
dependent topics that can be created in the allotted space

without overlapping the windows. This means that count-

ing grids created with smaller windows have to be propor-

tionally smaller, but for better visualization we enlarged all

grids to the same size. Window overlaps create smooth in-

terpolations among topics that compensate for camera mo-

tion. When 1 × 1 windows are used, there is no sharing

of grid distributions among topics, and the model reduces

to LDA shown in the corner with its histograms for its top-

ics. As there is no sharing, the spatial arrangement of four

topics onto the 2 × 2 grid has no meaning or value. Lay-

2Frame time stamps are not used to create the models: No tracking!

ered epitomes or flexible sprites are another extreme where

both the window size and the tessellation match the resolu-

tion of input images3, but the CCG models with as coarse

a tessellation as 8 × 8 already look indistinguishable from

epitome/flexible sprite results.

The video sequence features prominently a man and a

women dressed in white clothing (see the Frames in Fig.2).

While LDA color model will obviously confuse the white

elements of the background with these foreground objects,

the model with full tessellation has to learn multiple ver-

sions of each person to capture the scale changes due to their

motion at an angle with the motion of the camera. The inter-

mediate tessellations and window size provide more inter-

esting tradeoffs. For example, we see a generalized repre-

sentation of each object, where some of the original spatial

layout of features is recovered, but the allowed rearrange-

3Note, however, that we do not learn object masks here, as was done in

flexible sprites
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ment of the features in the tessellation segments compen-

sates for scale. When the model is forced to simplify fur-

ther, through appropriate choice of window and tessellation

size, the two persons dressed in white are generalized into a

single object (though it may occur twice in one image).

While this illustration reinforces the naturally good fit

of CCG models to images of scenes with multiple moving

objects taken by a camera with a moving field of view, the

applicability of the CCG models hardly stops there. Fig.1 il-

lustrates the value of computing a grid of features in a very

different context, where one large grid is computed from

all images from 4 of the 32 class wearable camera dataset

[6]. Each image was represented by a single bag of features

(1× 1 tessellation) and the counting grid is computed using

38× 50 windows. A total of 200 feature centers were used,

and in each spot in the grid, only the peak of the histogram

is shown. The model tends to break up each bag into more

topics, and instead of reflecting a panoramic reconstruction,

the grid now models smaller scene parts, such as vertical

and horizontal edges found in windows and building walls

that the subject sees in his office and elsewhere. The choice

of edges placed close together shows that the model makes

sure that a window into the grid captures an appropriate fea-

ture mix found in some of the images in the training set. In

multiple places in the grid we see that when the window

is moved the orientation of the edges changes slightly and

in concert. Thus, in this case the CG real-estate and win-

dow overlapping strategy was often used to model rotation,

rather translation.

Next we mathematically describe the basic CG model,

which bears a lot of similarity with representations in Fig.

2, but as opposed to these, it does not model multiple scene

parts as mapped to different parts of the CG, but would

rather have to try to learn all foreground-background com-

binations. Then, we formally define the CCG model and

derive the learning algorithm for it. Finally, we demonstrate

the CCG performance on various datasets.

2. From Counting Grids to Componential
Models

The basic 2-D Counting Grid πi,z is a set of normalized

counts of words/features indexed by z on the 2-dimensional

discrete grid indexed by i = (ix, iy) where each id ∈
[1 . . . Ed] and E = (Ex, Ey) describes the extent of the

counting grid. Since π is a grid of distributions,
∑

z πi,z =
1 everywhere on the grid. Each bag of words/features, is

represented by a list of word {wt}Tt=1; we will assume that

all the samples have N words and each word wt
n takes a

value between 1 and Z.

Counting Grids assume that each bags follow a feature dis-

tribution found somewhere in the counting grid; In particu-

lar, using windows of dimensions W = (Wx,Wy), a bag

can be generated by first averaging all counts in the window
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Figure 3. a) Counting Grid geometry. b) Componential Counting

Grid/Layered Epitome generative model. c) CCGs generative pro-

cess. d) Illustration of UW ; e) Illustration of UWs in the case of a

S = 2× 2.

Wi starting at 2-dimensional grid location i and extending

in each direction d by Wd grid positions to form the his-

togram hi,z = 1∏
d Wd

∑
j∈Wi

πj,z , and then generating a

set of features in the bag. In other words, the position of the

window i in the grid is a latent variable given which we can

write the probability of the bag as

p({w}|i) =
∏
n

hi,z(wn) =
∏
n

( 1∏
d Wd

∑
j∈Wi

πj,z(wn)
)
,

An example of CG geometry is shown in Fig.3a.

Relaxing the terminology, E and W are referred to as, re-

spectively, the counting grid and the window size. The ratio

of the two volumes, κ, is called the capacity of the model

in terms of an equivalent number of topics, as this is how

many non-overlapping windows can be fit onto the grid. Fi-

nally, with Wi we indicate the particular window placed at

location i.

Componential Counting Grids As seen in the previous

section, Counting Grids generate words from a feature

distribution in a window W , placed at location i in the

grid. Locations close in the grid generate similar features.

As we move the window on the grid, some new features

appear while others are dropped. Learning the model that

can generate this way produces panoramic reconstructions

in the CG (as seen in Fig.1) or, at a higher level, captures

(or infers new) spatial or topological relationships among

features (i.e., features of the sea are close to sand, buildings

are often over a street). On the other hand in standard

componential models, [7], each feature can be generated
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by a different “process” or “topic.” These models capture

feature co-occurrences (e.g., sands often comes with sea),

and by breaking the bag into topics can potentially segment

the image into parts.

Componential Counting Grids get the best of both

worlds: using the counting grid embedding through

window overlapping, they can recover spatial layout, but

like componential models they can also explain the bags

as generated from multiple positions in the grid (called

components), explaining away the foreground and clutter,

or discovering parts that can be combinatorially combined

in the image collection (e.g., grass, horse, ball, athlete, to

explain different sports that may be created mixing these

topics).

In the CCG generative model each bag is generated by

mixing several windows in the grid following the location

distribution θ. More precisely, each word wn can be gener-

ated from a different window, placed at location ln, but the

choice of the window follows the same prior distributions

θl for all words. Within the window at location ln the word

comes from a particular grid location kn, and from that grid

distribution the word is assumed to have been generated.

The Bayesian network is illustrated in Fig.3b) and it defines

the following joint probability distribution

P =
∏
t

(
p(θ|α)

∏
n

∑
ln,kn

p(wn|kn, π)·p(kn|ln)·p(ln|θ)
)

where p(wn = z|kn, π) = πkn
(z) is a multinomial over the

word indices, p(kn|ln) = UW
kn−ln

is a distribution over the

Counting Grid, equal to ( 1
Wx·Wy

) in the upper left window

of size W and 0 elsewhere (see Fig.3d), p(ln|θ) = θl is a

prior distribution over the windows location, and p(θ|α) =
Dir(θ;α) is a dirichlet distribution of parameters α.

The generative process (Fig.3c), is the following:

1. Sample a multinomial over the locations θ ∼ α

2. For each of the N words wn

a) Choose a location ln ∼ θ for a window W

b) Choose a location within Wln ; kn ∼ UW
kn−ln

c) Choose a word wn from πkn

Since the posterior distribution p(k, l, θ|w, π, α) is in-

tractable for exact inference, we learned the model us-

ing variational inference [16]. By introducing the poste-

rior distributions q, and approximating the true posterior as

qt(k, l, θ) = qt(θ) ·∏n (q
t(kn) · qt(ln)) 4 we can write the

4q(kn) and q(ln) multinomials over the locations, and q(θ) a Dirac

function centered at the optimal value θ̂

negative free energy F , and use the iterative variational EM

algorithm to optimize it.

F =
∑
t

(∑
n

∑
ln,kn

qt(kn) · qt(ln) · log πkn
(wn)

· UW
kn−ln · θl · p(θ|α)

)
−H(q) (1)

where H(q) is the entropy of the posterior. Minimization of

Eq. 1 reduces in the following update rules:

qt(kn)∝πkn(wn) · exp
(∑

ln

qt(ln) · logUW
kn−ln

)
(2)

qt(ln)∝ θtln · exp (∑
kn

qt(kn) · logUW
kn−ln

)
(3)

θtl ∝αl − 1 +
∑
n

qt(ln) (4)

πk(z)∝
∑
t

∑
n

qt(kn = k)[wn=z] (5)

where [wn = z] is an indicator function, equal to 1 when

wn is equal to z. The minimization procedure described

by Eqs.2-5 must be iterated until convergence and can be

carried out efficiently in O(N logN) time using FFTs.

Tessellated Componential Counting Grids The proce-

dure described in the previous section does not require in-

formation about the spatial layout of features in the bag and

can be in principle applied to any kind of data. In computer

vision, it is useful to enrich the model and its E and M rules

to deal with image representations that consist not of one,

but several S = sx × sy bags of words, each corresponding

to a section of the image [8, 10]. When inferring the map-

ping of each “section” bag, the window Wk is tessellated

into section WS
k in the same way images are tessellated and

the histogram comparisons are done accordingly. Moreover

UW
kn−ln

becomes UWs

kn−ln
, where Ws is a window of the

same size and it is shown in Fig.3e. In a similar way non-

uniform and most descriptive image layout patterns can be

used [20].

Layered Epitomes In the limit, when S = Nx×Ny each

bag contains a single feature and the model becomes the

Layered (or componential) Epitome. In this case, n indexes

a pixel in the image coordinate i (e.g., wn = zi) and U i

highlights now the single pixel i. The E-Step thus becomes:

qt(ki)∝πki
(zi) · exp

(∑
li

qt(li) · [ki − li = i]
)

(6)

qt(li)∝ θli · exp
(∑

ki

qt(ki) · [ki − li = i]
)

(7)

where [·] is the indicator function. In both the layered epit-

ome and tessellated case θ and π are updated as in Eq.4 and

Eq.5.
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Single Bag model and comparison with [4] and [7]. b) Moderate Tessellation results c) Fine Tessellation results.

3. Experiments
In all the experiments as visual words we used SIFT

features, extracted from 16×16 patches spaced 8 pixels

apart, clustered in Z=200 visual words. In each task,

unless specified, we employed the dataset author’s train-

ing/testing/validation partition and protocol; if this informa-

tion was not available, we used 10% of the training data as

validation set.

We considered squared grids of various complexities E =
[2,3, . . . ,10,15,20, . . . ,40] and window size W =
[2,4,6, . . . ] but limiting the tests only to the combinations

with capacity κ =
Ex·Ey

Wx·Wy
between 1.5 and T/2, where T is

the number of training samples. We tried single bag models

(1× 1 tessellation), tessellated models 2× 2, 4× 4 and the

layered epitome (Nx ×Ny).

Place Classification on SenseCam: Recently in [6] a 32-

classes dataset have been proposed. This dataset is a subset

of the whole visual input of a subject who wore a wearable

camera for few weeks. Images in the dataset exhibit dra-

matic viewing angle, scale, illumination variations and a lot

of foreground objects, and clutter.

We compared CCGs with LDA [7] and CGs [4], learning

a model per class and assigning test samples to the class

that gives the lowest free energy. The capacity κ is roughly

equivalent to the number of LDA topics as it represents the

number of independent windows that can be fit in the grid;

we compared the results using this parallelism [4, 6].

Results are shown in Fig.4: the Componential Counting

Grid model outperforms LDA and CGs across the choices

of model complexity considered. Like [7], it breaks each

image into parts and, like regular CGs, it maps these onto

a bigger real estate, trying to recover their panoramic na-

Table 2. Comparison with state of the art on SenseCam dataset.

We reported accuracies from [6], where comparisons with other

methods can be found.
CCG [11] [10] [6] [8]

64.03% 43.65% 57.47% 60.12% 56.45%

ture, by laying out the features into a 2D window and stitch-

ing overlapping windows. This fits both the panoramic and

componential qualities of the data acquired by a wearable

camera.

Moderate tessellations (up to 4 × 4) significantly helped,

except for very small grid/window sizes, where the model

reduces itself to a very low resolution layered epitome, or

for high κs, where it probably overtrains. Layered epitomes

did not perform well (≤ 40%) as the training data is limited

and images are too diverse for panoramic stitching.

The overall accuracy after crossevaluation is 64% ± 1.7
strongly outperforming recent advances in scene recogni-

tion [11, 10, 6] and setting a new state-of-the-art by a large

margin (See Tab.4).

Scene Recognition: We tested our models on the video

sequences introduced in [9]. In addition to the comparison

with the original method [9], we also compared with Epit-

omes [3], as epitomic location recognition [3] was, among

recognition applications of epitome, one of the most suc-

cessful. The trick was to use low resolution epitome with

each low res image location represented by a histogram of

features. Results are presented in Fig.5; the improvement is

significant and once again, CCGs set a new state-of-the-art.

We finally considered the UIUC Sports dataset [12], this

dataset is particularly challenging as composing elements
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Figure 5. Results on Torralba sequences [9]. Our approach

strongly outperforms Nearest Neighbor, and [3, 9]. We also re-

ported the result of the layered epitome.

and objects must be identified in order to correctly classify

the sport event [15].

For this task, we learned a single model pooling the im-

ages from all the classes together. We considered models

of complexity E = [40,50, . . . ,90] and W = [2,4,6,8]
and we used training set’s θt as feature to learn a discrim-

inative classifier (We used SVM with histogram intersec-

tion kernel). The rationale here is that different classes

share some elements, like “water” for sailing and rowing

classes, but they also will have peculiar elements that dis-

tinguish them. This is shown in Fig.6a where we depicted

p(i|θ, c) = ∑
tc
θtci , where the sum is carried out separately

on the samples of each class. After learning a model, we

embedded the textual annotations available for this dataset,

simply iterating the M-step using textual words as observa-

Table 3. Comparison with other componential models after cros-

sevaluation. We did not use the annotations in the classification

task.
CCG CG LDA5 [14] [15] [12]

80.02% 43% 36% - 68% 78% 76.3% 73%

tions. In Fig. 6a we show where some selected words are

embedded in the grid.

Numerical accuracies on the test set are shown in Tab.3,

while in Fig.6b we reported the accuracy across κ. As ex-

pected, CGs [4] fail as they stick to classify the scene in

which the event takes place, but so does LDA [7]. CCGs,

similar in spirit to [15] (but somewhat simpler), look and ex-

tract object/texture/feature combinations to classify images

and reach compelling accuracies (see Fig.6b).

The variation in spatial layout of the objects here was

sufficient to render tessellations beyond 1× 1 unnecessary:

They do not improve classification results (but increase in

the window size is needed).

4. Discussion

The componential models introduced here can be seen

as a generalization of both LDA and template-based models

such as flexible sprites [18] or epitomes [3, 2]. As opposed

to the basic CG model, it allows for source (object, part)

admixing in a single bag of words. In addition, by partially

decoupling the feature layout modeling in the image from

the layout modeling in the latent space (the grid of feature

distributions as in the CG model), it empowers the modeler

to strike balance between layout following and transforma-

tion invariance in substantially different and more diverse

ways than these previous models, simply by varying the tes-

sellation and the mapping window size (which is typically

not linked to the original image size).
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on the database used in the experiments.

Keeping the capacity κ fixed, the increase in window size

incurs the proportional increase in the computational cost,

but provides for smoother reconstruction in the spatial lay-

out. As experiments show, once the W is “sufficiently

big”, recognition accuracies raise with κ. The tessellation S
guides the rough positioning of the features from different

image quadrants and moderate tessellations never hurt. In

our experiments we invariably find that the basic LDA and

epitome-like models, which are at opposite corners of the

model organization by tessellation and window size, under-

perform the CCG models from somewhere in the middle of

the triangle illustrated on the toy data in Fig. 2.

It is also interesting to analyze the performance of

the Componential Counting Grid family, Counting Grids

[4] and LDA [7] for various datasets. In Fig.7, for each

dataset considered in this paper, we colored the area

where we reached “reasonably good” results. To correctly

classify UIUC Sports images, objects/parts/athletes must

be extracted and recognized. Componential models (CCG,

LDA) break the image and perform well, while CGs fails

as they classify the scene in which the event take place.

Tessellations finer than S = 2 × 2, hurt the result as they

made CCGs stick to the scene. SenseCam images and

Torralba sequences are collected with a wearable camera

and in principle the spatial layout can be at least piecewise

reconstructed. Here all methods perform well and the

tessellations significantly helped. Torralba sequences

was the only dataset where layered epitomes were found

to perform well. The lack of training data made small

windows (and grids) preferable on SenseCam. Finally we

also analyzed the 15-Scenes dataset [8]6 where Counting

Grids and CCG outperformed LDA. Tessellation helped up

to S = 5× 5.

A number of refinements previously added to generative

models can be added to CCG, e.g., the mask model akin to

the ones used by flexible sprites and layered epitomes, mod-

6We did not report the results in the paper for lack of space

eling the spatial layout changes in tessellation segments as

in the spring lattice CG model [6], exotic priors and added

hierarchies as in LDA-based models, or as in any generative

model, addition of other hidden variables that relate to other

modalities or higher-level variables.
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