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Abstract

In this work, we return to the underlying mathematical
definition of a manifold and directly characterise learning a
manifold as finding an atlas, or a set of overlapping charts,
that accurately describe local structure. We formulate the
problem of learning the manifold as an optimisation that
simultaneously refines the continuous parameters defining
the charts, and the discrete assignment of points to charts.

In contrast to existing methods, this direct formulation
of a manifold does not require “unwrapping” the mani-
fold into a lower dimensional space and allows us to learn
closed manifolds of interest to vision, such as those corre-
sponding to gait cycles or camera pose. We report state-of-
the-art results for manifold based nearest neighbour clas-
sification on vision datasets, and show how the same tech-
niques can be applied to the 3D reconstruction of human
motion from a single image.

1. Introduction
One of the greatest challenges in computer vision lies in

learning from high-dimensional data. In high-dimensional

spaces, our day-to-day intuitions about distances are vio-

lated, and nearest neighbour (NN) and RBF based classi-

fiers are less predictive and more easily swamped by noise.

Manifold learning techniques attempt to avoid these diffi-

culties by learning low dimensional representations of the

data which preserve relevant information.

The majority of manifold learning techniques can be

characterised as variants of kernel-PCA [9] that learn a

smooth mapping from a high dimensional embedding space

R
n into a low-dimensional space R

d while preserving prop-

erties of a local neighbourhood graph. ISOMAP [20] pre-

serves global path distances; Locally Linear Embedding

(LLE) [18] preserves the linear approximation of points by

their nearest neighbours; Laplacian Eigenmaps [1] and Hes-

sian LLE [5] preserve local Laplacian and Hessian deriva-

tives of this graph respectively; while Local Tangent Space
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Alignment (LTSA) [26] and Weighted LTSA (wLTSA) [25]

preserve directions of greatest variance in each neighbour-

hood.

These methods rely on unwrapping the manifold into a

single chart isomorphic to R
d to characterise it. As such,

they have difficulty learning closed manifolds such as the

surface of a ball or a Klein bottle. This is a fundamental

limitation in computer vision where many of the manifolds

of interest are closed or contain closed components. Views

of an object under 360◦ rotation of camera or lighting form

a closed manifold; while the space of 3 × 3 image patches

form a closed manifold similar to that of a Klein bottle [12],

and in action recognition or 3D reconstruction, any repeti-

tive action such as walking or running forms closed cycles.

In practice, existing manifold learning techniques can be

adapted to handle closed cycles. For example, a one di-

mensional manifold of a gait cycle can be embedded in

a two-dimensional space, and a larger neighbourhood that

captures local second-order rather than the usual first-order
information can be used to prevent the manifold from col-

lapsing. We evaluate these standard approaches for NN

based 3D reconstruction of walking and running, and find

that they perform worse than using the original space.

The presence of noise causes further difficulties, as

points now lie near, but not on the manifold we wish to

recover. The local neighbourhood graph produced by k
nearest neighbours (k-NN) is extremely vulnerable to the

presence of noise, and the properties of the neighbourhood

graph which are preserved by the embedding do not cor-

respond to the underlying manifold. Here, many existing

manifold learning methods fail severely and collapse into

degenerate structures in the presence of noise (see Fig. 2).

In response to these difficulties, we present a novel for-

mulation for manifold learning, which we refer to as learn-

ing an atlas. As is common in differential geometry, we

characterise the manifold as an atlas, or set of overlapping

charts, each of which is isomorphic to R
d. Unlike exist-

ing machine learning approaches to manifold learning, this

allows us to directly learn closed and partially closed man-

ifolds. This differs from the standard formulations of dif-

ferential geometry, which presuppose direct access to the
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Figure 1. The overlapping charts found using Atlas. Left: The manifold of a gait cycle in the embedding space. Each colour indicates a
different chart. Large stick-men represent the mean shape, while the small are ± one standard deviation along the principal component.
Right: A manifold as overlapping charts. (a) shows a typical decomposition into overlapping charts. A point’s assignment to the interior
of a chart is indicated by its colour. Membership of additional charts is indicated by a ring drawn around the point. (b) shows a detail of
two overlapping charts. (c) shows a side view of the projected locations of the same point by different charts.

manifold; only in that we adaptively select the size of the

region assigned to a chart in response to the amount of lo-

cal noise, the intrinsic curvature of the manifold, and the

sparsity of data. We formulate this problem as a hybrid

continuous/discrete method that simultaneously optimises

continuous parameters governing local charts, and the dis-

crete assignment of points to those charts. We show how

good solutions can be efficiently found using a combina-

tion of existing graph-cut based optimisation and PCA. Un-

like methods that preserve unstable numerical properties of

the local neighbourhood graph, our method only preserves

coarse topological properties. Namely:

1. Any solution found using our approach has the prop-

erty that if p is a point lying on or near the manifold

there exists a local chart ci ∼= R
d to which both p and

all of its neighbours are assigned1, and this allows the

use of fast NN look up within ci for classification.

2. If two points p and q are path connected in the neigh-

bourhood graph then any local charts cp and cq con-

taining them will be path connected, in a dual graph

of charts, in which charts are directly connected if and

only if they share an assigned point in common. We

make use of this property in manifold unwrapping.

As the method we propose finds charts corresponding to

affine subspaces of the original space R
n we can directly

use these for classification or for out-of-sample reconstruc-

tion from incomplete information. We illustrate this by

demonstrating state-of-the-art results in NN based classi-

fication (Sec. 4), and 3D reconstruction from 2D tracks

(Sec. 5).

The notion of a manifold as a collection of overlapping

charts has been exploited in the literature. Both [3, 15] for-

1This is possible as the charts are overlapping and a point may belong

to more than one chart.

mulated manifold learning as finding a set of charts that cor-

respond to affine subspaces. As a final stage, both methods

tried to align the subspaces found in R
d, and cannot learn

closed manifolds. In motion tracking, [14] performed ag-

glomerative clustering over predefined affine subspaces to

learn closed manifolds. Their approach made use of tempo-

ral information and was only applied to tracking.

In optimisation, the closest works to ours are the graph-

cut based [10, 16, 24] which adaptively grow and elimi-

nate models to best fit the data. Within manifold learn-

ing, this adaptive shaping of regions is closest to methods

such as [3], or the contraction and expansion (C&E) method

of [25] and the sparsity inducing method of [6], that ad-

just the neighbourhood before unwrapping. We extensively

compare to the most recent of these [6, 25] in Sec. 4.

Outside of manifold learning, there is a strong relation-

ship between our approach and methods of subspace clus-

tering [22]. Like us, K-subspaces [21] alternates between

assigning points to subspaces, and refitting the subspaces.

While [21] keeps a fixed set of k subspaces, we start with

an excess and discard those that do not explain the data.

2. Formulation and optimisation
We define an atlas A, as a set of charts A =

{c1, c2, . . . cn}, over points P , with each chart ci containing

a subset of points Pi ⊆ P . Unlike the formal definition of

a manifold that allows a chart to be warped as it is mapped

into the embedding space using any continuous invertible
mapping, we restrict ourselves to affine transforms. This

restriction to affine transforms in approximating the local

manifold does not limit the expressiveness of our approach2

and means that PCA can be used to find embeddings.

Our aim is to find a compact atlas containing few charts,

such that: (i) for every point p, at least one chart contains

2Lie algebras make use of this equivalence between the two forms.

164116411643



both p and a predefined neighbourhood3 Np of points in

its vicinity, and (ii) the reconstruction error associated with

mapping a point from its location in the chart back into the

embedding space is as low as possible.

We decompose the problem of finding the best choice

of atlas into two subproblems: Assigning points to charts

subject to constraint (i), and choosing the affine mappings

to minimise reconstruction error. Given an initial excess of

chart proposals (generated using PCA on random subsets

of the data) we assign points to charts in such a way that

they share points (Sec. 2.1), and alternate between refitting

the subspaces associated with a chart (Sec. 2.2) and point

reassignment.

2.1. Point assignment to overlapping charts

Similar assignment problems have been addressed in the

context of model fitting by the Non-rigid Structure from

Motion community [7, 16, 17] , and we follow [16] in for-

mulating this as an assignment of a set of models (or in our

case charts) to each point, that minimises the accumulated

reprojection error (summed over all points and all assigned

models), and that satisfies constraint (i). We define Ic, the

interior of chart c, as the set of all points whose neighbours

also belong to chart c; and we note that constraint (i) is sat-

isfied if and only if every point lies in the interior of some

chart. We use x = {x1, . . . ,xP }, where xp refers to the set

of charts assigned to point p, and seek an assignment that

minimises:

argmin
x∈(2A)P

C(x) =
∑
p∈P

⎛
⎝ ∑

c∈xp

Up(c)

⎞
⎠ + λMDL(x), (1)

such that each point belongs to a chart’s interior:

∀p ∈ P, ∃c ∈ A : p ∈ Ic, (2)

p ∈ Ic =⇒ ∀q ∈ Np c ∈ xq, (3)

where Up(c) is the reconstruction error of assigning point p
to chart c, and

MDL(x) =
∑
c∈A

Δ(∃p ∈ Ic), (4)

where Δ(·) denotes the Dirac indicator function that takes

value 1 if (·) is true, and 0 otherwise. MDL(x) is a minimum
description length prior [11] that penalises the total number

of charts used in an assignment.

Despite the large state-space considered ((2A)P rather

than the standard AP ), this can be solved with a variant of

α-expansion that assigns points to the interior of only one

chart [16].

3In practice we take Np to be the k-nearest neighbours of p.

Pairwise regularisation In classification problems and

when faced with relatively dense data, it can be useful to add

additional regularisation terms to encourage larger charts

that cover more of the manifold. Where necessary, we

use the additional pairwise regularisation proposed in [17].

Writing yp for the assignment of point p to the interior of

one chart the regularisation takes the form of the standard

Potts potential:

ψp,q(yp, yq) = θΔ(yp 	= yq), (5)

defined with constant weight θ > 0 over all edges in the

k-NN graph. We use Atlas to refer to the method using the

cost function of (1), and Atlas+ to refer to the same method

with the additional pairwise regularisation of (5).

2.2. Subspace costs and fitting

We use p to refer to the vector location of point p. We de-

fine the d dimensional subspace associated with chart ci in

terms of its mean μi, and an orthonormal matrix Ci which

describes its principal directions of variance. We set the re-

construction error for point p belonging to chart ci to

Up(ci) = ||p− μi −CT
i Ci(p− μi)||22, (6)

i.e. the squared distance between a point and the back-

projection of the closest vector on the chart ci. Given a

set of points Pi assigned to chart ci, the optimal parameters

for minimising the reconstruction error
∑

p∈Pi
Up(ci) can

be computed by setting μi to the mean of Pi, and Ci as the

top d eigenvectors of the covariance matrix of Pi.

In practice, both the subspaces corresponding to charts

and the assignment of points to charts are initially unknown,

so we bootstrap our solution by estimating an excess of

possible subspaces, initialised by performing PCA on ran-

dom samples as described above. Then, we perform a hill

climbing approach that alternates between assigning points

to charts, and refitting the subspaces to minimise the recon-

struction error.

3. Manifold unwrapping for visualisation
Unlike existing approaches to manifold learning, our

method has no requirement to unwrap the manifold and af-

ter characterising it as an atlas, as in the previous section,

we can immediately perform classification (Sec. 4), or 3D

reconstruction (Sec. 5). However, one of the principal uses

of manifold learning [18, 20, 26] is in creating a mapping

from a high dimensional space into R
2 or R

3 suitable for vi-

sualising data. As a way of illustrating our method’s robust-

ness to sparse data, the presence of noise, and to systematic

holes, we illustrate unwrapping on standard datasets.

Given a partitioning of the data into overlapping charts

isomorphic to R
d, for each affine chart ci we wish to find an

affine mapping Ai from R
d → R

n into the original space in
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(a) Original data (b) Atlas (c) 27 embedded charts (d) 27 charts unwrapped

(k = 5, λ = 1)

(e) MDS[2] (k = 8) (f) PCA (g) Isomap[20] (k = 5) (h) LLE[18] (k = 8)

(i) Hessian LLE[5] (j) Laplacian Eigenmaps[1] (k) Diffusion Maps[4] (l) LTSA[26]

(k = 8) (k = 5) (σ = 2, α = 1) (k = 8)

(a) Original data (b) Atlas (c) 13 embedded charts (d) 13 charts unwrapped

(k = 5, λ = 0.1)

(e) MDS (k = 8) (f) PCA (g) Isomap (k = 5) (h) LLE (k = 8)

(i) Hessian LLE (j) Laplacian Eigenmaps (k) Diffusion Maps (l) LTSA

(k = 8) (k = 10) (σ = 1, α = 10) (k = 8)

Figure 2. Unwrapping a Manifold Top row: (a) The original data; (b) the unwrapping generated by Atlas; (c) the charts found by Atlas;
(d) the charts unwrapped. Other rows: (e-l) Other methods. All methods shown with optimal parameters. Left: Swiss Roll with Gaussian
noise. Right: Sharply peaked Gaussian manifold with no noise. Additional examples in supplementary materials. Discussion in Sec. 3.1.

such a way that a point is projected into the same location

by each subspace that it belongs to; the centres of each sub-

space are far from one another; the affine projection is not

degenerate and distinct points in the subspace do not col-

lapse on top of one another; and the reconstruction is as flat

as possible, with most of the coefficients that do not corre-

spond to a projection into the plane being small.

As neither visualisation nor unwrapping is a primary fo-

cus of the paper, we defer the precise form of the objective

used to the supplementary materials and focus on results.

3.1. Comparison with existing methods

Fig. 2 illustrates the failure of existing methods, with op-

timally tuned parameters, on standard synthetic datasets4.

Although the examples are straightforward for a human to

unwrap –consisting of distinct 2D manifolds, with no self

intersections, and lying in a 3D space– all methods except

ours fail. For the Swiss roll this can be attributed to the

Gaussian noise. As argued, if the points sampled lie not on

the manifold, but near it, many of the properties of the k-

NN graph (such as, in LLE, how points can be expressed as

a weighted average of their neighbours) are unrepresenta-

tive of the underlying manifold and preserving these prop-

erties does not help in finding a good embedding. Our mini-

mal assumption that neighbouring points in the k-NN graph

should belong to the same subspace is robust to the presence

of noise.

The failure of the Gaussian reconstruction is more repre-

sentative of the general problems faced by any unwrapping

method. Here, samples are more sparsely sampled in the

tail of the Gaussian than in the central peak, and choos-

ing a graph that is sufficiently connected in the tail leads to

an over-connected graph about the peak, where the local k-

NN graph characterises the local 3-dimensional structure in-

stead of the 2D manifold. While such local degeneracies are

4Generated using MANI [23].

to be expected occasionally, for all nearest neighbours graph

based methods, the local degeneracy spreads throughout the

manifold and leads to a mapping in which the manifold is

folded over itself. In the classification and reconstruction

problems we discuss next, our method is used without un-

wrapping and such failures can never propagate throughout

the manifold, and local mistakes remain local.

4. Nearest neighbour classification
Manifold learning classification is typically done by un-

wrapping the manifold and performing 1-NN on the result.

In our approach, we simply perform nearest-neighbour in

each chart independently. During the manifold learning,

each point p is assigned by α-expansion to the interior of

a single chart, and we assign a label to p simply by per-

forming nearest neighbour in this chart. It is an empirical

question whether we should include all points assigned to

the chart when performing nearest neighbour or just those

that belong to the interior of the chart. On the Yale Faces

dataset, we observed that using only the interior points led

to a small (∼ 0.03%) consistent improvement, and we re-

port all scores for Atlas using only interior points.

We compare against standard approaches LLE [18],

LSTA [26], and PCA, and the recent state-of-the-art ap-

proaches of [6, 25]. We evaluate our approach on face

recognition on the Extended Yale Face Database B [8, 13],

and the classification of handwritten digits on Semeion. In

both cases, following [25], we randomly split the data for

100 folds and report average error.

SMCE [6] is a sparsity based method controlled by a pa-

rameter λ. The solution found provides local neighbour-

hood sizes, and dimensionality d. We report the score asso-

ciated with the best value of λ ∈ [0, 100] that gives a man-

ifold of dimensionality d. As SMCE [6] is intended to be

used as a clustering algorithm, we report both clustering ac-

curacy (SMCE clust), and 1-NN classification (SMCE NN).
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Figure 3. Left: Atlas based nearest neighbour. Points lie on the manifold (black circle). The manifold is decomposed into a set of charts
(coloured straight lines) each of which approximates a local region of the embedding space (coloured curve) as an affine subspace. Interior
points are mapped into the charts using the associated projection, and nearest neighbour look up is performed within each chart. Here
you can see the point marked ‘?’ has a nearest labelled neighbour of ‘1’ in the chart space, rather than ‘2’ in the original space. Centre:
Minimal NN classification error(%) on Semeion using the best value of k for each choice of dimensionality. Right: Minimum(Fine),
mean(Bold), and mean+standard deviation of NN classification error(%) on Semeion, as k varies. For Atlas the error is also averaged
over λ = 10−1, 100, . . . , 103.

Summary Across both datasets we substantially outper-

form wLTSA, LTSA, LLE, and SMCE. This is most no-

ticeable in the Yale Faces dataset where our method Atlas+

obtains 0.70% error versus 3.01%, the best reported error

of [25], which used weighted LTSA with an adaptive neigh-

bourhood, and 1.12% obtained by SMCE. The stability of

our approach is also a substantial advantage; we obtain a

classification accuracy of 0.71 ± 0.01% for dimensionality

5-10 despite fixing to constant values the parameters k, λ,

and θ. On the Semeion dataset, we present a 1% improve-

ment over wLTSA, LLE, and SMCE, again without varying

k or λ. In contrast, all other methods are tuned fully for

each choice of dimensionality.

Extended Yale Face Database B contains 2,432 frontal

face images of 38 individuals under a fixed pose and 64

illumination conditions. We pre-processed the original

192 × 168 images in the same way as [25]. Each image

is resized to 32 × 28 and every pixel is represented as an

8-bit binary vector. Moving around the 8-neighbourhood of

each pixel, vector bits are set to 1 if its neighbouring pix-

els are of lower intensity and 0 otherwise. The vectors are

concatenated to give a 7168-dimensional image vector. In

each of the 100 folds, 16 images of each individual lie in

the training set and 48 in the testing set.

Examination of the data provided by [25] showed a con-

sistent “off by one” error in the image annotation. Images

were provided ordered sequentially by individual, but rather

than the expected 62 images, the first person had only 61

images associated with them, and every 1st image was con-

sistently misclassified as belonging to the previous person.

Visual inspection confirmed the “off by one” error, which

has an approximate 1% impact on the results of [25]. Tables

for uncorrected annotations are in the supplementary mate-

rial, where we still consistently outperform other methods.

Table 1(a) shows 1-NN based face recognition in the

original space and in lower-dimensional spaces of dimen-

sionality 8 through 10 learnt with SMCE [6] while vary-

ing λ, and PCA, Atlas, and Atlas+ keeping their parame-

ters fixed. Also shown are the uncorrected results of LLE,

LTSA, and wLTSA given in [25], which provided state-of-

the-art results using Contraction and Expansion(C&E) [25].

Table 1(b) shows the error of a 1-NN classifier using

corrected image annotations, over [2-7]-dimensional spaces

learnt with PCA, LLE, LTSA, SMCE, Atlas, and Atlas+, all

using the same random splits. The neighbourhood size is

tuned in [2, 20] for LLE and LTSA, while the parameters for

Atlas and Atlas+ are fixed. Atlas outperforms PCA, LLE,

LTSA, and SMCE clust for this range of d, with Atlas+ low-

ering the error further and outperforming all methods on all

but one choices of d. Fig. 4 shows a representative sample

of misclassified and correctly classified images. The major-

ity of the images (∼ 94%) are always classified correctly,

while a small number of completely black images or heav-

ily shadowed ones from specific subjects are consistently

misclassified.

Semeion contains 1593 16 × 16 grey scale images of

handwritten digits (0 to 9) written by approximately 80 peo-

ple5. We follow[25] in extracting a 256-dimensional binary

vector from each image by applying a fixed threshold. In

each split of the data 796 images are assigned to the train-

ing set and 797 to the testing set.

Table 2(a) contains the classification results we produced

using PCA, SMCE, and Atlas, alongside results for LLE,

LTSA, and wLTSA as reported in [25]. As neither the orig-

inal folds, nor the code for wLTSA is available, we ran

versions of LLE and LTSA provided by [23] on our folds,

and confirmed that the performance was approximately the

same. See supplementary materials for numbers.

As the performance of LLE and LTSA depends strongly

on the choice of k (see Fig. 3 centre), we select the best

5available for download from http://archive.ics.uci.edu/ml/
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Figure 4. Random sample of Yale Faces left: misclassified and right: correctly classified, by Atlas+ for d = 8.

Figure 5. Random sample of Semeion images left: misclassified and right: correctly classified, by Atlas for d = 31.

Table 1. Yale Faces classification error (%) using 1-NN. The classification error of 1-NN in the original space is 4.39, and the lowest
classification error of PCA 1-NN is 4.02 for d = 292. #c is the number of charts found by Atlas(+). For LTSA and LLE, k ∈ [2, 20]. SMCE
uses λ ∈ [1, 100] . For Atlas, λ = 700 and k = 4. For Atlas+, λ = 700, k = 2, and the pairwise terms use 5 neighbours with θ = 1000.

(a) LLE(C&E), LTSA(C&E), and wLTSA(C&E) as reported by [25] ver-

sus PCA, SMCE, Atlas, and Atlas+.

PCA LLE LTSA wLTSA SMCE SMCE Atlas Atlas+
C&E C&E C&E clust NN

d ε(%) ε(%) ε(%) ε(%) ε(%) λ ε(%) λ ε(%) #c ε(%) #c

8 47.13 5.93 3.88 3.01 25.04 7 3.80 7 1.92 52 0.70 67
9 45.92 6.85 4.40 3.22 33.92 6 3.60 6 1.95 58 0.71 69
10 42.23 6.59 4.18 3.13 47.50 4 3.42 4 1.90 58 0.71 69

(b) PCA, LLE, LTSA, SMCE, Atlas, and Atlas+ results from our experi-

ments for manifold dimensionality 2 to 7.

PCA LLE LTSA SMCE SMCE Atlas Atlas+
clust NN

d ε(%) ε(%) k ε(%) k ε(%) λ ε(%) λ ε(%) #c ε(%) #c

2 97.53 3.37 4 8.22 5 11.81 44 1.12 63 1.99 112 0.80 65
3 97.40 3.17 4 10.51 6 10.90 23 1.28 34 1.97 118 1.92 67
4 88.18 3.08 4 16.78 9 11.56 21 3.03 21 1.93 129 0.79 69
5 73.60 2.33 4 10.83 10 11.31 13 4.35 14 1.92 142 0.71 69
6 62.22 2.51 4 5.92 10 12.38 11 4.73 11 2.16 152 0.71 70
7 53.63 2.47 4 7.02 13 17.23 9 4.36 9 2.25 160 0.72 72

Table 2. Semeion dataset classification error (%) of 1-NN classifier with PCA, LLE, LTSA, Atlas, and wLTSA. The classification error of
1-NN classifier in the original space is 10.92 with 10.90 reported in [25]. #c denotes the number of charts found by Atlas.

(a) Columns 3, 4, and 5 contain the results reported in [25]. The best value of

k ∈ {10, 15, 20, 25} for LLE and k ∈ {35, 40, 45, 50} for LTSA and wLTSA;

For Atlas, λ = 100 and k = 6.

PCA LLE LTSA wLTSA SMCE SMCE Atlas
clust NN

d ε(%) ε(%) k ε(%) k ε(%) k ε(%) λ ε(%) λ ε(%) #c

12 11.37 12.47 10 11.89 45 11.09 45 27.58 14 9.26 16 10.85 4
14 10.28 12.01 15 10.27 40 10.12 40 31.44 8 10.77 8 10.19 4
16 10.41 11.67 10 10.53 50 9.89 35 28.05 0.89 11.72 0.97 9.88 4
18 9.63 10.85 10 10.08 50 9.87 40 28.61 0.61 11.40 0.59 9.51 4
20 9.41 10.23 10 9.93 35 9.85 50 28.64 0.27 11.59 0.32 9.32 4

(b) Semeion dataset classification error (%) of NN classifier with PCA, LLE,

LTSA, and Atlas. The best value of k ∈ [2, 50] for LLE and LTSA. For Atlas,

λ = 100 and k = 6.

PCA LLE LTSA SMCE SMCE Atlas
clust NN

d ε(%) ε(%) k ε(%) k ε(%) λ ε(%) λ ε(%) #c

21 9.34 9.80 8 9.56 34 29.17 0.22 11.67 0.2 8.99 4
23 9.23 9.61 8 9.89 33 35.55 0.05 12.02 0.05 8.90 4
25 8.97 9.73 9 9.75 39 - - - - 8.64 4
27 8.77 9.57 8 9.86 40 - - - - 8.61 4
29 8.74 9.41 16 9.75 42 - - - - 8.48 4
31 8.66 9.54 8 10.16 43 - - - - 8.27 4
33 8.67 9.69 16 10.29 44 - - - - 8.50 4

k ∈ [2, 50] and report the lowest error for each choice of

manifold dimensionality d. In contrast, for our method we

fix our parameters to k = 6 and λ = 100 as we vary the

local manifold dimensionality d. Nevertheless, Atlas out-

performs all other methods for almost all choices of d. Ta-

ble 2(b) shows additional results for dim 21-33, where all

methods except SMCE achieve their best performance.

The additional pairwise regularisation of Atlas+ does not

help on this problem, with the best results for Atlas+ oc-

curring as the pairwise regulariser θ → 0, at which point

Atlas+ and Atlas are equivalent. Fig. 3 right shows a graph

of results over a wide range of k. Atlas consistently out-

performs other methods and is robust to a wide choice of

dimensionality.

5. Reconstructing human motion

We apply our method to the task of non-rigid 3D re-

construction of human motion6 using 2D measurements ac-

quired by a camera from a known viewpoint. Having learnt

a manifold on 3D mocap data from one person using Atlas,

we estimate the 3D pose of a new person directly from a test

6CMU Motion Capture Database http://mocap.cs.cmu.edu/

image showing the 2D image locations of the mocap mark-

ers. This is an inverse problem of reconstructing the 3D

pose given 2D input data and knowledge of our piecewise

affine manifold.

Assuming an orthographic camera of known orientation,

both the affine subspaces of the manifold and the back-

projection of points into 3D form hyper-planes. The prob-

lem of 3D reconstruction from 2D image data can then be

posed as out-of-sample reconstruction, or finding the point

lying on any of the affine subspaces that is closest to the

back-projected hyper-plane. This can be done by an ex-

haustive search over the subspaces7, and finding the closest

points on the two hyper-planes, which can be done using

standard linear algebra e.g. [19]. The closest point on the

manifold subspaces is picked as the 3D reconstruction.

This technique cannot be directly applied to standard

manifold learning methods, such as LLE and LTSA, which

do not provide an explicit embedding of the manifold in

the original space. For these methods, we learn the motion

manifold using the 2D joint locations of all training and test

sequences, then reconstruct by finding the nearest neigh-

7This is fast, as typically, less than 10 subspaces are used to characterise

a gait cycle. See Fig. 1.
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Figure 6. Reconstruction of CMU running sequence with σ = 3cm
Gaussian noise added to both the image reconstructed and the
training data. The reconstructions of 21-NN and Atlas have aver-
age RMS reconstruction error (ε) of 5cm and 3.74cm respectively.
Marker colours are based on squared reconstruction error.

bours in the low-dimensional space and averaging their 3D

coordinates in the original space. In a similar way, we per-

form k-NN reconstruction in the 3D projection of the orig-

inal space. Reconstruction using PCA is done by treating it

as a degenerate case of our method with only one subspace.

For evaluation we selected two subsets of the CMU mo-

cap database; dataset I containing walking sequences and

dataset II containing both walking and running sequences.

Dataset I uses as training set 4 walking sequences of one

subject and as testing set 8 sequences of two different sub-

jects. Dataset II has a training set of 4 walking sequences

of one subject and 4 running sequences of another subject,

testing contains 16 sequences of two different subjects, 4

walking and 4 running from each. The test images are gen-

erated by projecting the 31 mocap markers onto each frame

using an orthographic camera model. The image measure-

ments are registered to the centroid of each image to elim-

inate the translation component. Each walking or running

sequence includes about 4 cycles of motion. The subjects

used for training and testing do not overlap. Gaussian noise

is added to the original 3D data used in training. We add 5

different levels of Gaussian noise with standard deviation σ
ranging from 0.5cm to 5cm.

We show reconstruction results for PCA, k-NN, and At-

las. The error shown in all cases is the root mean squared 3D

reconstruction error (RMS) in cm, averaged over all mark-

ers and frames in the testing set. For our method, we keep

the parameters fixed for each dimensionality across all lev-

els of noise, with λ ∈ {100, 101, . . . , 106} and k ∈ [2, 21].
For k-NN we show both the best k per noise level and the

value of k that gives the lowest error averaged for all levels

of noise.

Fig. 7 shows comparative results of the 3D reconstruc-

tion error for PCA, k-NN, and Atlas when the scene is

Figure 7. CMU average RMS reconstruction error for manifold
dimensionality 1 to 20. Top row: dataset I walking sequences
and bottom row: dataset II walking and running sequences. Left
column shows 0cm noise case and right column 2cm noise.

viewed from a generic view-point on datasets I (top) and

II (bottom). We show results for varying values of the di-

mensionality d in the noise-less case (left) and the case of

noisy data with σ = 2cm (right). Atlas clearly outperforms

all other methods and, unlike PCA, its performance does

not degrade as the dimensionality increases.

Fig. 6 shows the reconstruction results of a running se-

quence with 3cm Gaussian noise. Table 3 shows more ex-

tensive comparisons: with 6 levels of noise and local dimen-

sionality d ∈ [1, 20]; and two different camera view-points:

a side view and a generic view-point. The same pattern can

be observed of our method outperforming all others.

We observed experimentally that k-NN on the manifold

spaces learnt by LLE and LTSA had consistently poorer per-

formance than k-NN in the original space and their results

are omitted.

6. Conclusion

Starting from the formal definition of a manifold, as an

atlas of overlapping charts, we have presented a novel ap-

proach to manifold learning that directly characterises the

manifold in the original embedding space. In comparison

with existing methods, our method has substantial theoreti-

cal advantages. In particular, unlike existing methods, it can

potentially learn any form of manifold rather than being re-

stricted to manifolds that can be expressed by a single chart.

We show a substantial boost in performance classification

and robustness to the choice of both manifold dimensional-

ity and neighbourhood graph.

Unlike existing approaches, our characterisation of the

manifold directly in the embedding space allows us to re-

cover previously unseen and partially missing data easily,

and we have shown applications in the reconstruction of hu-

164616461648



Table 3. CMU average RMS reconstruction error in cm. Noise
standard deviation in cm.

dataset I walking sequences
side view

noise 0 0.5 1 2 3.5 5

d PCA Atlas PCA Atlas PCA Atlas PCA Atlas PCA Atlas PCA Atlas

1 3.46 2.39 3.46 2.40 3.46 2.43 3.47 2.52 3.48 2.77 3.51 2.99
5 2.51 1.99 2.51 2.00 2.52 2.09 2.55 2.13 2.64 2.41 2.79 2.64
10 1.98 1.87 1.99 1.87 2.00 1.88 2.06 2.03 2.29 2.33 2.69 2.69

15 1.85 1.85 1.86 1.86 1.88 1.86 1.96 1.96 2.31 2.31 2.75 2.75

20 1.68 1.68 1.69 1.69 1.76 1.76 1.90 1.90 2.34 2.37 2.88 2.79
21-NN ε 2.47 ε 2.47 ε 2.47 ε 2.47 ε 2.56 ε 2.80

k-NN ε 2.43 k 7 ε 2.43 k 7 ε 2.44 k 8 ε 2.46 k 13 ε 2.56 k 21 ε 2.80 k 21

generic view-point
noise 0 0.5 1 2 3.5 5

d PCA Atlas PCA Atlas PCA Atlas PCA Atlas PCA Atlas PCA Atlas

1 3.75 2.49 3.75 2.49 3.75 2.50 3.76 2.57 3.76 2.82 3.79 3.05
5 3.06 2.21 3.06 2.20 3.07 2.25 3.11 2.33 3.13 2.48 3.21 2.78
10 3.19 2.12 3.20 2.11 3.18 2.19 3.21 2.26 3.35 2.50 3.40 2.88
15 3.42 2.11 3.43 2.08 3.43 2.13 3.34 2.21 3.55 2.49 3.48 2.95
20 3.60 2.15 3.60 2.04 3.64 2.10 3.58 2.18 3.61 2.50 3.74 3.06
21-NN ε 2.51 ε 2.50 ε 2.50 ε 2.51 ε 2.62 ε 2.89

k-NN ε 2.49 k 9 ε 2.48 k 8 ε 2.48 k 9 ε 2.50 k 14 ε 2.62 k 21 ε 2.89 k 21

dataset II walking and running sequences

side view
noise 0 0.5 1 2 3.5 5

d PCA Atlas PCA Atlas PCA Atlas PCA Atlas PCA Atlas PCA Atlas

1 5.85 3.14 5.85 3.16 5.85 3.14 5.86 3.33 5.87 3.63 5.87 3.75
5 3.28 2.43 3.28 2.43 3.29 2.43 3.31 2.52 3.38 2.75 3.49 3.02
10 2.60 2.30 2.61 2.34 2.62 2.34 2.66 2.42 2.86 2.67 3.10 2.96
15 2.61 2.25 2.61 2.26 2.63 2.29 2.69 2.39 2.91 2.64 3.26 2.99
20 2.55 2.44 2.56 2.24 2.58 2.23 2.66 2.39 2.95 2.68 3.39 3.03
13-NN ε 3.17 ε 3.17 ε 3.17 ε 3.17 ε 3.29 ε 3.49

k-NN ε 3.12 k 5 ε 3.12 k 5 ε 3.12 k 5 ε 3.15 k 7 ε 3.28 k 18 ε 3.40 k 21

generic view-point
noise 0 0.5 1 2 3.5 5

d PCA Atlas PCA Atlas PCA Atlas PCA Atlas PCA Atlas PCA Atlas

1 6.08 3.27 6.08 3.31 6.08 3.34 6.09 3.41 6.09 3.70 6.09 3.82
5 3.86 2.70 3.86 2.69 3.86 2.70 3.88 2.75 3.94 3.01 4.01 3.20
10 3.49 2.42 3.49 2.52 3.50 2.62 3.54 2.72 3.68 3.20 3.82 3.43
15 3.91 2.29 3.92 2.41 3.97 2.58 3.97 2.77 4.04 3.18 4.28 3.54
20 4.23 2.23 4.23 2.37 4.24 2.48 4.27 2.72 4.30 3.18 4.43 3.67
15-NN ε 3.27 ε 3.28 ε 3.27 ε 3.27 ε 3.38 ε 3.55

k-NN ε 3.24 k 4 ε 3.24 k 5 ε 3.24 k 6 ε 3.25 k 8 ε 3.38 k 20 ε 3.49 k 21

man motion.

References
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral

techniques for embedding and clustering. Advances in neural
information processing systems, 14:585–591, 2001. 1, 4

[2] I. Borg and P. Groenen. Modern multidimensional scaling:
Theory and applications. Springer, 2005. 4

[3] M. Brand. Charting a manifold. In Advances in Neural In-
formation Processing Systems, pages 961–968, 2003. 2

[4] R. R. Coifman and S. Lafon. Diffusion maps. Applied and
Computational Harmonic Analysis, 21(1):5 – 30, 2006. 4

[5] D. Donoho and C. Grimes. Hessian eigenmaps: Lo-

cally linear embedding techniques for high-dimensional

data. Proceedings of the National Academy of Sciences,

100(10):5591–5596, 2003. 1, 4

[6] E. Elhamifar and R. Vidal. Sparse manifold clustering and

embedding. In Advances in Neural Information Processing
Systems, pages 55–63, 2011. 2, 4, 5

[7] J. Fayad, C. Russell, and L. Agapito. Automated articulated

structure and 3d shape recovery from point correspondences.

In International Conference in Computer Vision, 2011. 3

[8] A. Georghiades, P. Belhumeur, and D. Kriegman. From few

to many: Illumination cone models for face recognition un-

der variable lighting and pose. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(6):643–660, 2001. 4

[9] J. Ham, D. Lee, S. Mika, and B. Schölkopf. A kernel view

of the dimensionality reduction of manifolds. In Proceed-
ings of the twenty-first international conference on Machine
learning, page 47. ACM, 2004. 1

[10] H. Isack and Y. Boykov. Energy-based geometric multi-

model fitting. International Journal of Computer Vision
(IJCV), 97(2), 2012. 2

[11] L. Ladicky, C. Russell, P. Kohli, and P. Torr. Graph cut based

inference with co-occurrence statistics. In European Confer-
ence on Computer Vision, 2010. 3

[12] A. B. Lee, K. S. Pedersen, and D. Mumford. The nonlinear

statistics of high-contrast patches in natural images. Interna-
tional Journal of Computer Vision, 54(1-3), 2003. 1

[13] K. Lee, J. Ho, and D. Kriegman. Acquiring linear sub-

spaces for face recognition under variable lighting. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

27(5):684–698, 2005. 4

[14] J. C. Nascimento and J. G. Silva. Manifold learning for ob-

ject tracking with multiple motion dynamics. In European
Conference on Computer Vision, pages 172–185, 2010. 2

[15] S. Roweis, L. K. Saul, G. E. Hinton, et al. Global coordina-

tion of local linear models. Advances in neural information
processing systems, 2:889–896, 2002. 2

[16] C. Russell, J. Fayad, and L. Agapito. Energy based multiple

model fitting for non-rigid structure from motion. In Com-
puter Vision and Pattern Recognition, 2011. 2, 3

[17] C. Russell, J. Fayad, and L. Agapito. Dense non-rigid struc-

ture from motion. 3dimPVT, 2012. 3

[18] L. Saul and S. Roweis. Think globally, fit locally: unsuper-

vised learning of low dimensional manifolds. The Journal of
Machine Learning Research, 4:119–155, 2003. 1, 3, 4

[19] G. Strang. Introduction to Linear Algebra. Wellesley-

Cambridge Press, 1993. 6

[20] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global

geometric framework for nonlinear dimensionality reduc-

tion. Science, 2000. 1, 3, 4

[21] P. Tseng. Nearest q-flat to m points. Journal of Optimization
Theory and Applications, 105(1):249–252, April 2000. 2

[22] R. Vidal. Subspace clustering. IEEE Signal Processing Mag-
azine, 28(2):52–68, 2011. 2

[23] T. Wittman. Manifold learning matlab demo, 2005. URL:
http://www.math.umn.edu/˜wittman/mani/index.html. 4, 5

[24] R. Zabih and V. Kolmogorov. Spatially coherent clustering

using graph cuts. In Computer Vision and Pattern Recogni-
tion, pages 437–444, 2004. 2

[25] Z. Zhang, J. Wang, and H. Zha. Adaptive manifold learning.

Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 34(2):253 –265, feb. 2012. 1, 2, 4, 5, 6

[26] Z. Zhang and H. Zha. Principal manifolds and nonlinear di-

mension reduction via local tangent space alignment. SIAM
Journal of Scientific Computing, 26:313–338, 2002. 1, 3, 4

164716471649


