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Abstract

We present a novel approach for video parsing and si-

multaneous online learning of dominant and anomalous

behaviors in surveillance videos. Dominant behaviors are
those occurring frequently in videos and hence, usually
do not attract much attention. They can be characterized
by different complexities in space and time, ranging from
a scene background to human activities. In contrast, an
anomalous behavior is defined as having a low likelihood
of occurrence. We do not employ any models of the entities
in the scene in order to detect these two kinds of behaviors.
In this paper, video events are learnt at each pixel with-
out supervision using densely constructed spatio-temporal
video volumes. Furthermore, the volumes are organized
into large contextual graphs. These compositions are em-
ployed to construct a hierarchical codebook model for the
dominant behaviors. By decomposing spatio-temporal con-
textual information into unique spatial and temporal con-
texts, the proposed framework learns the models of the dom-
inant spatial and temporal events. Thus, it is ultimately
capable of simultaneously modeling high-level behaviors
as well as low-level spatial, temporal and spatio-temporal
pixel level changes.

1. Introduction
In this paper, we seek to simultaneously parse an entire

video into local spatio-temporal regions in order to detect all
activities, anomalies and objects using unsupervised learn-
ing. In addition, we will show that this can be achieved us-

ing a single unified formalism without possessing any mod-

els of the contents beforehand. Normal events observed in a

scene will be referred to as the “dominant” behavior. These

are events that have a higher probability of occurrence than

others in the video and hence generally do not attract much

attention. We can further categorize dominant behavior into

two classes. In the literature on attention, one usually deals

with foreground activities in space and time[3, 2, 8, 14, 13]

while the other describes the scene background. Typically,
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Figure 1: Video parsing. The input video is parsed into three

meaningful components: background, dominant activities (walk-

ing pedestrians), and rare activities (the bicyclist).

the latter is more restrictively referred to as background sub-

traction, which is the building block of almost all computer

vision algorithms. However, dominant behavior detection is

more general and more complicated than background sub-

traction, since it includes the scene background while not

being limited to it. The manner in which these two differ

is the way that they use the scene information. Most back-

ground subtraction methods are based on the principle that

the photometric properties of the scene in the video, such as

luminance and color, are stationary. In contrast, dominant

behavior understanding can be seen as a generalization of

this in which all of the dynamic contents (foreground) of

the video come into play.

Here we concentrate on detecting two of the elements in

Figure 1, that is dominant spatio-temporal activities and ab-

normal behavior in a video. As opposed to trajectory-based

methods for behavior understanding [20, 22], our approach

is grounded on a pixel-by-pixel analysis. Using densely
sampled spatio-temporal video volumes (STVs), we create

both local and global compositional graphs of volumes at

each pixel. Although employing STVs in the context of bag

of video words (BOV) has been extensively studied for the

well-known problem of activity recognition, generally it in-

volves supervised training. Here we do not use any train-

ing sets at all but continuously update time-varying BOV

lookup tables. Therefore, our approach has the ability to

learn newly observed behaviors without any offline or su-

pervised training. After initializing the algorithm, typically

using one or two seconds of video, the system builds an

adaptive model of the dominant behavior while simultane-
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Figure 2: Algorithm overview: behavior understanding. Behaviors are learnt from local low-level visual information, which is achieved by

constructing a hierarchical codebook of the STVs. To capture spatio-temporal configurations of video volumes, a probabilistic framework is

employed by estimating probability density functions of the arrangements of video volumes. The uncertainty in the codeword construction

of STVs and contextual regions is considered, which makes the final decision more reliable. The high-level output can be employed to

simultaneously model normal and abnormal behaviors.

ously detecting anomalies.

Consider the structure of the algorithm in Figure 2. Ini-

tially, the video is densely sampled, STVs are constructed,

and similar ones are grouped to reduce the dimensions of

the search space. Codebook construction of STVs is per-

formed in an online manner while considering uncertainties

in the codeword assignment. Then, a large contextual re-

gion containing many STVs (in space and time) around each

pixel is examined and the compositional relationships be-

tween STVs are approximated using a probabilistic frame-

work. We are interested in detecting different kinds of be-

havior in the spatial and temporal domains. To achieve this,

we cluster all of the STVs that constitute all of the composi-

tional graphs obtained during a time period in the near past.

We use a modified version of online fuzzy clustering and

thereby track the dominant spatio-temporal activities (clus-

ters). These clusters of STVs provide concurrent distinctive

spatial and temporal models of the scene. For example, we

can determine all of the abnormal (“anomalous”) spatial and

temporal behaviors in a video.

The main contribution of this paper is an approach capa-

ble of learning both dominant and anomalous behaviors in

videos of different spatio-temporal complexity. This makes

it possible to construct a hierarchical layered model of the

scene to understand different behaviors. Thus, the algo-

rithm can simultaneously model high level behaviors and

detect abnormalities by considering both spatial and tem-

poral contextual information while also performing tempo-
ral pixel level change detection and background subtrac-

tion. This characteristic makes our algorithm more gen-

eral than both abnormality detection and background sub-

traction methods on their own. More precisely, the main

characteristic of our approach and also the contributions of

the paper are as follows: I- The spatio-temporal contextual

information in a scene is decomposed into separate spatial

and temporal contexts, which make the algorithm capable

of detecting purely spatial or temporal activities, as well as

spatio-temporal abnormalities. II- High level activity mod-

eling and low level pixel change detection are performed

simultaneously by a single algorithm. Thus the computa-

tional cost is reduced since the need for a separate back-

ground subtraction algorithm is eliminated. This makes the

algorithm capable of understanding behaviors of different

complexity. III- The algorithm adaptively learns the behav-

ior patterns in the scene in an online manner. This makes it

a preferable choice for visual surveillance systems. IV- The

major benefit of the algorithm is its extendibility, achieved

by a hierarchical clustering.

In order to evaluate capabilities of our approach we have

conducted experiments using different datasets with differ-

ent dominant behavior patterns. The results indicate that

our approach is comparable to the state-of-the-art, while it

can be extended to more difficult problems1.

2. Related work

To date, most of the reported approaches for behavior

understanding that are not based on a priori models are

grounded on trajectory analysis of the objects, which re-

quires precise tracking methods [20, 22]. On the other hand,

techniques that do not require object detection followed by

tracking focus on local spatio-temporal behaviors in videos

and have recently gained increased popularity [2, 11]. Most

1All videos and additional results are available at: http:
//www.cim.mcgill.ca/˜javan/index_files/Dominant_
behavior.html
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of these methods rely mainly on extracting and analyzing

low-level visual features, such as color, motion and tex-

ture in local regions in space and time. This is achieved

either by constructing a pixel-level background model and

behavior template [16, 14, 3, 8, 19] or by employing spatio-

temporal video volumes [6, 4, 15, 29]. The recent trend

in video analysis is to use spatio-temporal video volumes

in the context of BOV models2. The classical BOV and

probabilistic topic models often ignore the spatio-temporal

relationships between video volumes. However, this is cru-

cial for accurate scene understanding [25, 24]. Although

there have been some efforts to incorporate either spatial or

temporal compositions of the video volumes into the prob-

abilistic topic models, they suffer from high computational

complexity. Therefore, they cannot be employed for on-

line behavior understanding and real-time scene monitoring

[12].

More closely related to our proposed approach are those

methods that construct a spatio-temporal behavioral model

of the scene [14, 2, 13, 8]. To date, these have focussed on

detecting low-level local anomalies in a video by analyz-

ing the activity pattern of each pixel as a function of time.

In [14], each pixel is processed independently and the rela-

tionships between the pixels in space and time are ignored,

thereby making such methods too local. In an improved

version of [14], the spatial dependencies between pixels are

taken as a function of pixel location by constructing a co-

occurrence frequency matrix [2]. Although the latter has

achieved good results for abnormality detection, the method

requires that the activity pattern of each pixel be constructed

by employing a conventional method for background sub-

traction. These are known to be deficient for non-stationary

situations.

In contrast to the aforementioned approaches that at-

tempt to model either local spatio-temporal activity patterns

of a pixel or trajectories of moving objects, our goal is to

construct a hierarchical model for all of the activities in a

scene. We present a novel method for inference of motion

patterns, which overcomes the drawbacks and limitations of

the current methods, while employing simple yet powerful

hierarchical methodologies.

3. Behavior Understanding
Consider the structure presented in Figure 2. We use

densely sampled videos and construct a hierarchy of spatio-

temporal regions in the video to model dominant local ac-

tivity patterns. The proposed hierarchical codebook struc-

ture has two important characteristics: it codes the com-

positional information of the video volumes and analyzes

2Essentially, the probabilistic topic models, such as the Latent Dirichlet

Allocation (LDA) and its variations [29, 12], can also be considered as

BOV approaches since they ignore the spatio-temporal order of the local

features [17].

the spatial and temporal information independently, thereby

making it capable of detecting purely spatial or temporal

abnormalities. Moreover, the uncertainty in the codebook

construction process is considered in the hierarchical struc-

ture.

3.1. Low level scene representation

The first stage of the algorithm is to represent a surveil-

lance video by meaningful spatio-temporal descriptors.

This is achieved by dense sampling, thereby producing

STVs, and then clustering similar video volumes.

3.1.1 Spatio-temporal video volume descriptors

The 3D STVs, vi ∈ R
nx×ny×nt are constructed by assum-

ing a volume of size nx×ny×nt (typically 5×5×5) around

each pixel (in which nx×ny is the size of the spatial (image)

window and nt is the depth of the video volume in time).

These volumes are then characterized by the histogram of

the spatio-temporal gradient of the video in polar coordi-

nates [4, 27]. Assume that Gx (x, y, t) and Gy (x, y, t) are

spatial gradients and Gt (x, y, t) is the temporal gradient for

each pixel at (x, y, t). The spatial gradient used to calculate

the 3D gradient magnitude is normalized to reduce the ef-

fect of local texture and contrast. Hence, let:

G̃s =

√
G2

x (x, y, t) +G2
y (x, y, t)∑

(x,y,t)∈vi

√
G2

x (x, y, t) +G2
y (x, y, t) + εmax

(1)

where G̃s is the normalized spatial gradient and εmax is a

constant, set to 1% of the maximum spatial gradient magni-

tude in order to avoid numerical instabilities. Thus the 3D

normalized gradient is represented in polar coordinates:

[M, θ,φ] =[√
G̃2

s +G2
t , tan

−1

(
Gy

Gx

)
, tan−1

(
Gt

G̃s

)]
(2)

where M is the 3D gradient magnitude, and φ and θ are

the orientations within
[−π

2 , π
2

]
and [−π, π], respectively.

The descriptor vector for each video volume, taken as a his-

togram of oriented gradients (HOG), is constructed using

the quantized gradients of all pixels (into nθ + nφ bins) in

each video volume, and will be referred to as hi ∈ R
nθ+nφ .

This descriptor represents both motion and appearance and

possesses some degree of robustness to unimportant vari-

ations in the data, such as illumination changes [4, 27].

Notwithstanding its simplicity, the results obtained are very

promising. However, it should be noted that our algorithm

does not rely on a specific descriptor for the video volumes,

so that other more complex descriptors might enhance the

performance of the approach.
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3.1.2 Online clustering of video volumes

In the previous section, a set of spatio-temporal volumes, vi,
was constructed using dense sampling and represented by a

descriptor vector, hi. As the number of these volumes is

extremely large, it is advantageous to group similar spatio-

temporal volumes to reduce the dimensions of the search

space, as commonly performed in “bag of video words” ap-

proaches [4, 25]. To be capable of handling large amounts

of data, and also considering the sequential nature of the

video frames, the clustering strategy needs to be capable of

limiting the amount of memory used for data storage and

computations. Thus, we adopt an online fuzzy clustering

approach for very large datasets, which is capable of incre-

mentally updating the cluster centers as new data are ob-

served [9]. The basic idea is to consider a chunk of data,

cluster it, and then construct another chunk of data using the

new observations. The clusters are then updated [9]. Here

we adopt the online single-pass fuzzy clustering algorithm

of [10].

Let Nd denote the number of feature vectors in the dth

chunk of data and NC the number of cluster centroids

(codewords). These are represented by a set of vectors,

C = {cn}NC

n=1. We modify the objective function (J) [10]

for fuzzy probabilistic clustering as follows:

J =

NC∑
i=1

Nd∑
j=1

um
i,jwjdij (hj , ci) (3)

where the parameter wj is the weight of the jth sample.

Note that in the original version, wj = 1, ∀j [10]. Using the

Euclidean distance as the similarity measurement between

STVs descriptors, we define the update rule for the cluster

center, similarity matrix and the weights wi as follows:

un,j =

(
NC∑
i=1

(‖hj − cn‖
‖hj − ci‖

) 2
m−1

)−1

(4)

cn =

Nd∑
j=1

wju
m
n,jhj

Nd∑
j=1

wjum
n,j

, wi =

Nd+NC∑
j=1

ui,jwj (5)

Employing this clustering procedure, a set of clusters is

formed for the STVs. These are used to produce is a code-

book of STVs and sets of similarity values for every STV.

Ultimately, each STV, hi, will be represented by a set of

similarity values: {uj,i}NC

j=1.

3.2. Contextual information: Ensembles of volumes

As indicated earlier, in order to understand the scene

background and make the correct decision regarding normal

and suspicious (foreground) events, it is necessary to ana-

lyze the spatio-temporal arrangements of volumes [6, 25]
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Figure 3: Ensembles of video volumes. (a) An ensemble of STVs.

(b) Spatio-temporal contextual information. (c) Spatial and tem-

poral oriented ensembles.

in the clusters determined in section 3.1. The main draw-

back of many previously reported approaches is that they

do not consider the context (spatio-temporal composition

of the STVs) at each pixel in the video. In this paper, we

present a probabilistic framework for capturing these ar-

rangements. Instead of a single video volume, we consider

a large region R around each pixel. R contains many video

volumes and thereby captures both local and more distant

information in the video frames. Such a set is called an en-
semble of volumes around the particular pixel in the video

(Figure 3).

The ensemble of volumes (Es,t) surrounding each pixel

s in the video at time t, is defined as:

Es,t =
{
v
Es,t

i

}I

i=1
� {vi : vi ∈ Rs,t}Ii=1 (6)

where Rs,t is a region with pre-defined spatial and temporal

radii centered at point (s, t) in the video (e.g., rx× ry× rt),
and I indicates the total number of volumes in the ensemble.

To capture the spatio-temporal compositions of the video

volumes, we use the relative spatio-temporal coordinates of

the volume in each ensemble [25]. Thus, x
Es,t
vi ∈ R

3 is

the relative position of the ith video volume, vi(in space

and time), inside the ensemble of volumes, Es,t, for a given

point (s, t) in the video (Figure 3b). During the codeword

assignment process described in the previous section, each

volume vi inside each ensemble was assigned to all labels

cj with weights of uj,i using (4). Let the central volume

of Es,t be given by vc. Therefore, the ensemble is charac-

terized by a set of volume position vectors, codewords and

their related weights:

Es,t =

{
x
v
Es,t
i

, uji

}
i=1:I,j=1:NC

(7)

A common approach for calculating similarity between

ensembles of volumes is to use the star graph model

[6, 21, 4]. This model uses the joint probability between a

database and a query ensemble to decouple the similarity of

the topologies of the ensembles and that of the actual video

volumes [21]. To avoid such a decomposition, we estimate

the pdf of the volume composition in an ensemble. Thus,

the probability of a particular arrangement of volumes v in-

side the ensemble of Es,t is given by:
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P
Es,t

(v) = P (xv, c1, c2, ..., cn)

=
n∑

i=1

P (xv|v = ci)P (v = ci) (8)

The first term in the summation in (8), P (xv|v = ci),
expresses the topology of the ensembles, while the

second,P (v = ci), expresses the similarity of their descrip-

tors (i.e. the weights for the codeword assignments at the

first level). We would like to represent each ensemble of

volumes by its pdf, P
Es,t

(v). Therefore, given the set of

volume positions and their assigned codewords, the prob-

ability density function (pdf ) of each ensemble can be

formed using either a parametric model or non-parametric

estimation. Here, we approximate the pdf s describing each

ensemble using (nonparametric) histograms.

3.3. Space/Time decomposition of ensembles

As stated previously, we are interested in detecting nor-
mal spatial and temporal activities to ultimately distinguish

them from both spatial (shape and texture changes) and tem-

poral abnormalities. These are typically foreground regions,

and so our approach can also be considered as performing a

focus of attention task. In order to individually characterize

the different behaviors in the video, two sets of ensembles

of spatio-temporal volumes are formed, one for the spatially

oriented ensembles of volumes and the other, for the tem-

porally oriented ones.

DS = {Es,t|rt � min {rx, ry}}
DT = {Es,t|rt � max {rx, ry}} (9)

where DS and DT represent the sets of spatially-

and temporally-oriented ensembles, respectively, and

(rx × ry × rt) is the size of the ensembles in (6). The spa-

tial and temporal decomposition of ensembles of STVs is

illustrated in Figure 3c.

3.4. Clustering ensembles of STVs

Once a video clip has been processed by the first level of

BOV clustering in section 3.1.2, each ensemble of spatio-

temporal volumes has been represented by a pdf of its

spatio-temporal volume distribution, as described in 3.2.

Note that such an ensemble pdf represents a moving fore-

ground object in the video. The histogram of each ensem-

ble, as obtained from (8), is employed as the feature vector

to cluster the ensembles. This will then permit us to con-

struct a behavioral model for the video as well as infer the

dominant behavior. Using the pdf to represent each ensem-

ble of volumes makes it possible to use a divergence func-

tion from statistics and information theory as the dissimilar-

ity measure. Here we use the symmetric Kullback-Leibler

(KL) divergence to measure the difference between the two

pdf s [5]. Therefore the distance between two ensembles of

volumes, Esi,ti and Esj ,tj , is defined as:

d
(
PEsi,ti

, PEsj,tj

)
=KL

(
PEsi

,ti ||PEsj,tj

)
+KL

(
PEsj,tj

||PEsi,ti

)
(10)

where PEsi,ti
and PEsj,tj

are the pdf s of the ensembles

Esi,ti and Esj ,tj , respectively, and d is the symmetric KL

divergence between the two pdf s in (10). The next step is

to apply online fuzzy single-pass clustering, as described in

section 3.1.2, thereby, producing a set of membership val-

ues for each pixel. The clustering is performed indepen-

dently for the two sets of ensembles, DS and DT , obtained

from (9). The resulting two codebooks are then represented

by CS =
{
cSkS

}NS

kS=1
and CT =

{
cTkT

}NT

kT=1
, respectively.

4. Behavior analysis
The result of the processing in section 3 permits us to

construct a set of behavior patterns for each pixel. As stated

previously, we are interested in detecting dominant spatial

and temporal activities as an ultimate means of determin-

ing both spatial (shape and texture changes) and tempo-

ral abnormalities (foreground regions). Next, we consider

the scenario of a continuously operating surveillance sys-

tem. At each temporal sample t, a single image is added to

the already observed frames and a new video sequence, the

query, Q, is formed. The query is densely sampled in order

to construct the video volumes and thereby, the ensembles

of STVs, as described in section 3.

Given the already existing codebooks of ensembles con-

structed in 3.4, each pixel in the query, qi is characterized

by a set of similarity matrices, US
qi =

{
uS
kS ,i

}NS

kS=1
and

UT
qi =

{
uT
kT ,i

}NT

kT=1
. We note that uS

kS ,i and uT
kT ,i , respec-

tively, are the similarity of the observation to the kS spatial

and kT temporal cluster of ensembles. Then the description

that best describes a new observation is given by:

(k∗S , k
∗
T ) = arg

(
max
kS

{
uS
kS ,i

}
,max

kT

{
uT
kT ,i

})
(11)

To infer normality or abnormality of the query, qi, two

similarity thresholds, ΘkS
and ΘkT

, are employed:(
αuS

k∗S ,i + βuT
k∗T ,i

)
dominant

>
<

rare

(
αΘk∗T + βΘk∗S

)
(12)

where α and β are preselected weights for the spatial and

temporal codebooks, respectively and ΘkS
and ΘkT

are

the learnt likelihood thresholds for the kth codeword of

the spatial and temporal codebooks, respectively. To deter-

mine these, we employ the set of previously observed pix-

els, D = {pi}, as represented by the two cluster similarity
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matrices obtained in section 3.4, US
pi

=
{
uS
kS ,i

}NS

kS=1
and

UT
pi

=
{
uT
kT ,i

}NT

kT=1
. Thus, the previous observations can

be divided into N
S

and N
T

disjoint subsets:

DkS
=
{
pi|uS

kS ,i > ε
}
pi∈D,

NS⋃
kS=1

DkS
= D

DkT
=
{
pi|uT

kT ,i > ε
}
pi∈D,

NT⋃
kT=1

DkT
= D (13)

where DkS
and DkT

contain only the most representative

examples of each cluster, kS and kT respectively. Clearly,

representativeness is governed by the parameter ε. Then,

similar to [20], we construct the likelihood thresholds as

follows:

ΘkS
=

γ

|DkS
|
∑

i∈DkS

log uS
kS ,i

+
1− γ

|D| − |DkS
|
∑

i/∈DkS

log uS
kS ,i

ΘkT
=

γ

|DkT
|
∑

i∈DkT

log uT
kT ,i

+
1− γ

|D| − |DkT
|
∑

i/∈DkT

log uT
kT ,i

(14)

where the parameter γ ∈ [0, 1] controls the abnormal-

ity/normality detection rate and |D| indicates the number

of members of D. Returning to (12), the parameters α
and β are seen to control the balance between spatial and

temporal abnormalities based on the ultimate objective of

the abnormality detection. As an example, if the objective

is to detect the temporal abnormality in the scene (back-

ground/foreground segmentation), then one can assume that

α = 0.

5. Online model updating
In this section we describe how the algorithm is updated

in an online manner. The scenario we have considered

implies on-line and continuous surveillance of a particular

scene in order to simultaneusly detect dominant and anoma-

lous patterns. As described in section 3, the algorithm only

requires the first N frames of the video stream to initiate

the process. This is achieved by constructing the codebook

of STVs (section 3.1.2), ensembles of volumes (section 3.2)

and finally the codebook of ensembles (section 3.3).

When new data are observed, the past Nd frames are al-

ways employed to update the learnt codebooks, i.e. the clus-

ters of both STVs and ensembles of STVs. This process is

performed continuously and the detection thresholds, ΘkS

and ΘkT
are updated in an ongoing manner as described in

(14) based on the previously learnt codebooks.

(a) (b) (c)

Figure 4: Dominant behavior understanding on data captured by a

camera during different times of the day. The lighting conditions

change gradually from daylight to night. a) A sample frame. b)

The dominant behaviors are produced by the cars passing through

the lanes running from top to bottom and vise versa. c) The abnor-

malities are those cars entering the intersection from the left.

6. Experiments
The algorithm has been tested using the following

datasets: the dominant behavior understanding dataset in

[28]3, UCSD pedestrian dataset [18]4, and subway surveil-

lance videos [1]5. In all cases, we have assumed that local

video volumes are of size 5×5×5 and the HOG is calculated

assuming nθ = 16, nφ = 8 and Nd = 50 frames. Param-

eters α and β were selected depending on the desired goal

of the abnormality detection. These were set empirically to

0.1 and 0.9 for motion detection and to 0.5 for abnormal

activity detection. Quantitative evaluation and comparison

of different approaches are presented in terms of precision-

recall and ROC curves, obtained by varying the parameter

γ in (14)6.

The first dataset consists of three videos sequences. The

first one, Belleview, is a traffic scene in which lighting con-

ditions gradually change during different times of the day.

The dominant behaviors are either the static background or

the dynamic cars passing through the lanes running from

top to bottom. Thus, the rare events (“abnormalities”) are

the cars entering the intersection from the left. Figure 4

(a), (b), and (c) illustrate a sample frame, and the dominant

and abnormal behavior maps, respectively. In the Boat-
Sea video sequence, the dominant behavior is the waves

while the abnormalities are the passing boats since they

are newly observed objects in the scene. The Train se-

quence, is one of the most challenging videos available [28]

due to drastically varying illumination and camera jitter.

The background changes rapidly as the train passes through

tunnels. In this sequence the abnormality relates to peo-

ple movement. Figure 5 shows a sample video frame of

each video sequence, the detected abnormal regions and

the precision/recall curves. We followed the same initial-

ization strategy as [28] and compared the results with two

alternative pixel-level anomaly detection methods: spatio-

3http://www.cse.yorku.ca/vision/research/
spatiotemporal-anomalous-behavior.shtml

4http://www.svcl.ucsd.edu/projects/anomaly
5Obtained from the authors of [1]
6To make a quantitative comparison possible, the algorithm is evaluated

for abnormality detection and compared to the state-of-the-art.
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(c)

Figure 5: Dominant behavior understanding and abnormality de-

tection. Experiments with three videos are illustrated from top

to bottom in the figure: Belleview, Boat-Sea and Train. The first

experiment (first row) is concerned with detecting dominant and

abnormal behavior in a busy traffic scene. The second and third

experiments were conducted on videos in which the abnormalities

were defined as being rare but nevertheless acceptable foreground

motions. The anomalous regions are highlighted in green. Column

a) Sample frames from the three videos. Column b) The detected

anomalous regions are cars moving from right to left (top), a boat

moving to the right (middle), and a moving person (bottom). Col-

umn c) Precision/recall curves.

temporal oriented energies in [28] and local optical flow in

[1]. As the abnormalities in this dataset are low level mo-

tions, we also include the pixel-level background models

(Gaussians Mixture Models [30]) and the behavior template

approaches in [14] for comparison.

Comparing the performance of the different approaches

in Figure 5c, we observe that, in general, our method was

comparable or superior to the others shown. In particular,

the method based on spatio-temporal oriented energy filters

[28] produced results comparable to ours, but might not be

useful for more complex behaviors for two reasons: it is too

local and does not consider contextual information. It is also

clear that conventional methods for background subtraction

(GMM) fail to detect dominant behaviors in scenes contain-

ing complicated behaviors, such as the Train and Belleview
video sequences. However, they still do produce good re-

sults for background subtraction in a scene with a stationary

background (Boat-Sea video sequences). In the latter case,

the so-called abnormality (the appearance of the boat)is suf-

ficiently different from the scene model. Thus, GMM seems

promising for this video. On the other hand, we observe that

simple local optical flow features, combined with online
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Figure 6: Frame level abnormality detection using the UCSD

pedestrian datasets. Top: Ped1 dataset, Bottom: Ped2 dataset. a)

Sample frames. b) Detected anomalous regions: bicyclist (top), a

car (bottom). c) ROC curves for the proposed approach and alter-

natives (MDT [18], Local optical flow [1]).

Table 1: Quantitative comparison of the proposed method and

the state-of-the-art for anomaly detection using the Ped1 dataset.

(* indicates that the method is claimed to have real time perfor-

mance).

Algorithm EER (frame-
level)

EER (pixel-
level)

*Proposed algorithm 15% 29%
MDT (Mahadevan et al., 2010, [18]) 25% 58%
Sparse Reconstruction (Cong et al. 2011 [7]) 19% -
*Bertini et al., 2012, [4] 31% 70%
*Reddy et al., 2011, [23] 22.5% 32%
ST-MRF (Kim and Grauman, 2009, [15]) 40% 82%
*Local optical flow, (Adam et al. 2008 [1]) 38% 76%
Saligrama and Chen, 2012, [26] 16% -

learning [1], do not yield acceptable results in the scenes

with dynamic backgrounds. It appears that the optical flow

approach has difficulty capturing temporal flicker and dy-

namic textures.

We also conducted experiments with the UCSD pedes-

trian dataset7. It contains video sequences from two pedes-

trian walkways where abnormal events occur. The dataset

exhibits different crowd densities, and the anomalous pat-

terns are the presence of non-pedestrians on a walkway

(bikers, skaters, small carts, and people in wheelchairs).

Figure 6 contains samples of two videos with the detected

suspicious regions as well as the ROC curves for different

methods (Figure 6c). In order to make a quantitative com-

parison the equal error rate (EER) was also calculated for

both pixel and frame level detection as suggested by [18]8.

The results in Table 1 indicate that the proposed al-

7This dataset was employed as it includes pixel level ground truth

showing the exact location of the abnormal regions in each frame.
8Frame level detection implies that a frame is marked as suspicious if

it contains any abnormal pixel, regardless of its location. On the other

hand, pixel level detection attempts to measure the localization ability of

an algorithm. This requires that the detected pixels in each video frame be

compared to a pixel level ground truth map.
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gorithm outperformed all other real-time algorithms and

achieved the best results for the UCSD pedestrian dataset

at both frame level detection and pixel level localization.

Furthermore, the number of initialization frames required

by the proposed algorithm is significantly lower than the al-

ternatives (200 frames compared to 6400 frames). This is a

major advantage of the proposed method that can also learn

dominant and abnormal behaviors on the fly. Moreover

the computational time required by the method described

in this paper is significantly lower than others in the litera-

ture. In summary, our experiments signify that our approach

is capable of reasonably handling drastically and gradually

changing backgrounds and illumination conditions, as well

as detecting abnormal events with different spatial and tem-

poral complexities, ranging from the scene background to

human activities. Furthermore, the algorithm is adaptive.

It does not require a long training video and updates itself

after observing a small number of initialization frames.

7. Conclusions and future work
This paper presents a novel approach for simultaneously

learning dominant behaviors and detecting anomalous pat-

terns in videos. The algorithm is centered on three main

ideas: hierarchical analysis of multi-scalar visual features;

accounting for their spatio-temporal compositional infor-

mation; and spatial and temporal decomposition of the be-

haviors in order to learn dominant spatial and temporal ac-

tivities. A limitation of the current approach is that it does

not account for trajectories and hence, long term behaviors

are not learnt. Future research will extend the approach by

adding another level of analysis in the hierarchical structure

to model the spatial and temporal connectivity of the learnt

behaviors.
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