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Abstract

We present a quadratic unconstrained binary optimiza-
tion (QUBO) framework for reasoning about multiple ob-
ject detections with spatial overlaps. The method maxi-
mizes an objective function composed of unary detection
confidence scores and pairwise overlap constraints to deter-
mine which overlapping detections should be suppressed,
and which should be kept. The framework is flexible enough
to handle the problem of detecting objects as a shape cov-
ering of a foreground mask, and to handle the problem of
filtering confidence weighted detections produced by a tra-
ditional sliding window object detector. In our experiments,
we show that our method outperforms two existing state-of-
the-art pedestrian detectors.

1. Introduction

Detecting people is a difficult problem due to body pose
articulation and variation in human shapes and appearances.
Notwithstanding these difficulties, good progress has been
made on the problem of detecting individual walking pedes-
trians through the use of statistical machine learning meth-
ods for training pedestrian object detectors [4]. However,
although the current results are promising, the problem be-
comes more difficult when there are many people at differ-
ent locations and scales in a scene. There is still need for
improvement, and one outstanding problem is how to han-
dle the detection of multiple occluded people.

Conventional approaches find an object based on run-
ning a single-object detector on sliding windows through-
out the image spatially and across scale levels, followed by
non maximum suppression to remove multiple responses of
the detector on the same individual at slightly shifted spa-
tial locations and neighboring scales. However, when mul-
tiple people are close together or even partially overlapped
in the image, non-maximum suppression can remove a cor-
rect cluster of responses, resulting in a missed detection. As
shown in Figure 1 using the PLS detector [20] with its de-
fault non maximum suppression method, correct candidate
detections were present that were suppressed by stronger

(b)

Figure 1. (a) PLS detector using its default non maximum sup-
pression method misses one person. (b) Examining candidate ob-
ject center locations from the PLS detector without non maximum
suppression shows that candidate detections were generated for
that person, but they were subsequently suppressed.

neighboring detections. The aim of this paper is to show
that quadratic optimization for reasoning about overlapping
detections can improve the performance of a pedestrian de-
tection system, especially when there are multiple overlap-
ping people.

We propose an approach that reasons directly over the
space of overlapping object detections by formulating a
quadratic objective function that contains both unary scores
measuring the quality of an individual detection, and pair-
wise scores measuring the joint compatibility of pairs of
overlapping detections. Loosely speaking, the unary scores
reward candidates with high detector confidence, whereas
the pairwise scores impose a penalty for excessive amounts
of overlap between two candidates. The problem is to find a
binary vector that maximizes the quadratic objective func-
tion, which is a classic problem of quadratic unconstrained
binary optimization (QUBO). Although this is an NP-hard
problem, efficient approximate methods are available that
yield high quality solutions on large problem sizes.

An example usage of our framework is shown in Fig-
ure 2. First, a large set of possible detection candidates
(Figure 2(b) and 2(f)) is generated, based on shape cover-
ing of a foreground mask in the top row, or sampling from
a confidence map produced by a standard pedestrian detec-
tor (with non-maximum suppression disabled) in the bottom
row. In both cases, the object configuration that maximizes
the quadratic objective function is found and shown in Fig-
ure 2(c) and 2(g). Our framework thus looks for a subset of
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Figure 2. Example usage of our proposed algorithm. The top row
uses a foreground shape covering approach to produce a large set
of candidate detections. The bottom row samples from confidence
maps produced by a sliding window human detector to generate
candidate detections. In both cases, we perform the same binary
quadratic optimization procedure to choose the solution set of can-
didates that maximize a quadratic objective function. (a) fore-
ground image. (b) candidate detections generated from (a). (c)(d)
our detection results. (e) sliding window detector confidence map
(only one scale level shown). (f) candidate detections sampled
from the confidence map. (g)(h) our detection results.

candidate detections to optimize the tradeoff between unary
confidence scores and pairwise overlap penalties.

2. Related Work

Object detection has been widely studied and significant
progress has been made in recent years. Of the several
approaches that have been proposed for detecting pedes-
trians, one common method uses a pre-trained classifier
within a sliding window to scan the whole image looking
for people at all locations and scales. For example, [1] pro-
poses a state-of-the-art human detection method using the
Histograms of Oriented Gradients (HOG) descriptor and
SVM as a linear classifier. [7] compares this HOG-based
approach with other methods on large datasets including
more than 20,000 images, and shows that it outperformed
other methods. Many variants have been proposed, seek-
ing improvements through novel features and/or classifiers
[ , 3] or by leveraging feature space transformation
methods, e.g. Partial Least Squares (PLS) analysis [20], for
feature generation and dimensionality reduction. Since slid-
ing window methods usually generate multiple overlapping
detections on a person, the common final step is to apply
non-maximum suppression as an attempt to remove false
positive detections [9, | 1].

In video, alternative approaches based on motion or
background subtraction can be used to detect pedestrians.
One line of work proposes to segment foreground blobs
into human shapes using an MCMC-based optimization ap-
proach to determine the number and configuration of over-
lapping shapes [23, ]. These methods generate good
results for detection and counting tasks, but the sampling-
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based MCMC search mechanism is very time-consuming.
We propose to use Quadratic Unconstrained Binary Op-
timization (QUBO) for pedestrian detection in order to rea-
son more directly/thoroughly about overlapping detection
candidates and their associated confidence scores and over-
lap penalties. Recently, several other papers have also ex-
plored the application of combinatorial optimization meth-
ods to the problem of object detection [8, 2, 1. [2]
introduces a unified model for recognizing multi-class ob-
ject configurations by learning the spatial arrangement of
those objects. A quadratic cost function is used to represent
criteria relating object confidence, overlapping hypotheses,
and spatial interactions between pairs of objects from dif-
ferent classes. [18] apply a similar framework to crowd
scene analysis and integrate it with a term related to crowd
density. Both of these papers use a heuristic greedy search
method to seek a solution to the QUBO problem. Another
heuristic method for solving binary optimization problems
is Tabu search, a stochastic local search approach which has
been used in various fields [12, 17], e.g. to solve the multi-
assignment problem in Intelligent Visual Surveillance [5].

s Vs

3. Proposed Optimized Detection Framework

Figure 3 presents a “big picture” overview of how our
approach would be incorporated into a typical pedestrian
detection pipeline. Our framework consists of two steps.
First, an existing pedestrian detector is applied to produce a
detection confidence score map, or if that is not available as
output, a set of unfiltered bounding boxes with associated
confidence scores. Our method then samples a large but fi-
nite set of plausible candidates. A unary confidence score
is computed for each candidate, to represent the quality of
that proposed detection. Furthermore, for candidates that
overlap, a pairwise score is computed to specify a penalty
that will be incurred if both candidates are kept in the final
solution. The purpose of this penalty is to prohibit exces-
sive amounts of overlap while still allowing some amount
of reasonable overlap to occur.

In the second step, unary and pairwise scores are
grouped into a cost matrix to form the objective function
for a quadratic unconstrained binary optimization (QUBO)
problem. In this QUBO problem, the unknown binary vari-
ables to solve for represent whether to keep or discard each
pedestrian candidate from the final solution set of detec-
tions. An optimization algorithm is then applied to search
for an assignment of 0’s and 1’s to candidates yielding a
high, ideally the maximum, objective function value.

Section 3.1 discusses generation of candidates and ob-
jective function scores for two very different types of de-
tection approach. The first is a shape covering approach,
based on finding size and placement of a set of pedestrian
shapes in order to cover the pixels of a foreground mask
computed by, e.g., background subtraction. The second ap-
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Figure 3. Overview of the Proposed Optimized Detection Framework

proach uses a multi-scale confidence map produced by an
existing, publicly available appearance-based detector. Sec-
tion 3.2 discusses the second step of transforming into a bi-
nary quadratic objective function and efficient methods for
generating high-quality approximate solutions to the result-
ing QUBO problem.

3.1. Generating a Set of Detection Candidates
3.1.1 Detection Candidates by Shape Covering

Previous works have considered the problem of detect-
ing people as a “shape covering” of foreground mask data
[10, 23]. That is, given a foreground mask computed by
background subtraction or motion analysis, a solution is
sought as to the number, location, size and possibly articula-
tion of a set of shapes to cover as many foreground pixels as
possible while leaving as many background pixels as possi-
ble uncovered. To avoid unnecessary proliferation of over-
lapping shapes, these methods augment the covering quality
term of the objective function with either prior terms on the
number of objects present, or with data terms that penalize
object overlap. Both [10, 23] used an expensive Markov
Chain Monte Carlo stochastic search procedure to find a
good shape covering. In this paper, we address the shape
covering problem using QUBO.

To use this shape covering approach in practice, we first
generate a lookup table relating location (x,y) in the im-
age to expected height and width of a pedestrian centered
at that location. In our experiments we have created this
lookup data from ground truth camera calibration informa-
tion, however in Section 3.1.3 we discuss how this prior
size information can be learned automatically from a train-
ing sequence. Given an automatically computed foreground
mask, a candidate set of shapes is generated by methodi-
cally sampling midpoint locations every 10 pixels in x and
y, looking up the expected width and height at each loca-
tion, and computing a unary score c¢; for each candidate x;.
We use three common pedestrian poses shown in Figure 4
as the three shapes that can be proposed for shape covering.

For each candidate z;, three unary confidence scores
are computing using each of these three pedestrian shapes,
scaled to the size of the detection candidate bounding box.
The maximum score is selected. Each score ¢;(z;) is com-
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Figure 4. Pedestrian silhouette shapes used in shape covering.

puted as
ci(xz;) = on(z;) — aoff(x;)

ey

where function on(z;) returns the number of foreground
pixels that are “on” within the shape, and off(x;) returns
the number of off pixels. In all of our experiments, o« = 0.5
and candidates with ¢; < 0 are discarded.

3.1.2 Detection Candidates by Bounding Box Filtering

Many object detection approaches use a sliding window
based detector to generate a confidence score map, and
then generate a set of final detections through a process of
non maximum suppression. For our approach, we modify
an existing Histogram of Oriented Gradients (HOG) based
pedestrian detector [!], available in OpenCYV, and apply it
at multiple scales without non maximum suppression to
generate a multi-scale detection confidence map. In the
experiment, a set of 500 detection candidates is then ran-
domly sampled from each detection scale, with the likeli-
hood of a candidate being sampled at location (x,y) being
proportional to the detector confidence at that location and
scale. Figure2(f) shows candidate samples generated from
the confidence score map in Figure2(e) (only one scale level
of the map is shown).

3.1.3 Learning a Prior on Bounding Box Size

The camera viewpoint obviously affects the range of detec-
tion scales that are observed. For example, images taken by
a camera near eye level will have a large allowable range of
scales, whereas an elevated camera much farther away may
not see any difference in pedestrian size across the image.
Sliding window detectors that do not have access to such in-
formation are prone to a greater number of false positives,
due to detections that are either too large or too small. At
the very least, having access to a minimum and maximum



Figure 5. Expected pedestrian bounding box size learned as a re-
gression function between y location in the image and height of a
detected pedestrian at that location.

scale at which to expect detections is helpful, yet even this
small amount of information is scene specific and trouble-
some to set by hand.

When camera calibration information is available, ex-
pected size effects can be computed automatically; how-
ever, calibration information is often not available. Some
previous works have used apriori pedestrian height distribu-
tions to estimate camera calibration information from noisy
pedestrian detections [ ]. In our work, we employ
a simple online learning approach that learns a regression
function on expected bounding box height versus location
in the image from a set of detections of pedestrians at dif-
ferent locations in images taken from a stationary camera
view. Figure 5 shows a sample plot comparing image y lo-
cation with height of detected boxes in the image. When
there are multiple heights of people observed over many
different image locations, we can compute an approximate
expected height model from this data. The light blue line is
a quadratic regression function learned for one frame only,
while the dark blue line is the height approximation found
using data acquired over several frames. These approxi-
mation curves could be used to identify outlier detections,
represented by green dots, that do not have an appropriate
size. However, rather than apply a hard threshold to filter
improperly sized detections, we reduce unary confidence
scores according to the dissimilarity between a candidate
bounding box scale and the expected detection height at that
location. The detection confidence score will be greatly re-
duced when the detected box is much larger or smaller than
the learned size estimate, reducing the chances that the can-
didate will be kept in the solution vector returned by QUBO.

s

3.2. Quadratic Unconstrained Binary Optimization

Binary optimization is the problem of finding a binary
vector x [€1,x2,...,x,] that maximizes an objective
function f(x). The objective function is typically repre-
sented by a multi-linear polynomial expression of degree
of 1 (linear), 2(quadratic) or possibly higher order. In this
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work, we use the quadratic objective function

flz) = Z Z CijTiT; + Z Ty
i=1

i=1 j=1

where x; € {0,1},¢ = 1,...,n are the binary variables to
be solved for, ¢; are n unary coefficients, and c;; are O(nz)
pairwise coefficients. The goal is to assign 0,1 values to
each x; in a way that maximizes the objective f(z). Noting
that x; = xf for binary variables, we can combine all the
coefficients ¢; and ¢; ; into a single square matrix ¢ and
solve the binary integer maximization

(@)

/
max f(r) = maxx (Jxr
max f(z) = max 2'Q

3

The resulting Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem is known to be NP-hard [17].

3.2.1 Objective Function

The quadratic objective function in Eq. 2 is computed by
combining unary and pairwise terms. Each unary score ¢;
is a measure of confidence that candidate z; represents a
person, while the pairwise scores c¢; ; penalize excessive
overlap between pairs of candidates. These pairwise terms
are based on the overlap ratio, computed as the intersec-
tion area (in pixels) of two overlapping shapes, divided by
the area of the smaller one. If there is only a small overlap
penalty, it might be reasonable to keep both candidates. On
the other hand, if there is a large overlap, a higher penalty is
applied, and it is probably better to keep only one of them.
Figure 6 presents an example of objective function com-
putation. The three elliptically shaped candidates from left
to right have unary values 3425, 4412 and 3658 computed
from Eq. 1. For each pair of distinct overlapping candi-
dates x; and x;, the overlap penalty c¢; ;(z;, z;) is -4594 for
shapes x1 and x2, -1998 for shapes x1 and x3, and -3432
for shapes x2 and x3. From Eq. 3, we want to find a maxi-
mal value of ’Qx with the constraint that x = [z, X2, T3]
can take only binary values. We find that the optimal so-
lution [1, 0, 1] specifies that candidates x1 and x3 should
be kept, while candidate x2 should be discarded. Note that
if we applied a traditional, greedy non maximum suppres-
sion approach where the candidate with highest confidence
score is chosen and overlapping candidates of lesser score
are suppressed, we would have chosen to keep only the mid-
dle candidate x2, while suppressing the other two.
In general, the matrix () in the objective function of Eq. 3
can be formed as
Q=w1U —wy P “
where U is a diagonal unary score matrix, P is the pair-
wise score matrix (overlap ratios), and wy, wo are relative
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Figure 6. Using quadratic binary optimization to find the best set
of detection candidates.

weights determined as described in the following section,
with wy +we = 1. Both U and P are normalized to be val-
ues between 0 and 1. Furthermore, we can extend Eq. 2 by
adding a second unary term that represents the score from a
second detector or other additional information. For exam-
ple, in our experiments we have explored combining unary
scores computed from foreground shapes with scores com-
puted from a detector confidence map. In this case, the ma-
trix @ is formed as
Q=w Uy

—ws P 4+ w3 Uy )

with wy + we + w3 = 1.

3.2.2 Weight Parameter Estimation

Even though the unary and pairwise scores are both normal-
ized values between 0 and 1, they represent very different
types of information, one being an appearance-based detec-
tion confidence and the other being an area ratio. Further-
more, the amount of “acceptable” bounding box overlap for
a given situation may depend on the expected density of
people in the scene as well as on the camera viewpoint. For
this reason, it is better to weight the relative contributions
of the unary and pairwise terms with weighting parameters
learned from representative training data.

We use the Pattern Search algorithm [15] to find appro-
priate weight values w; + wy = 1 that maximize detec-
tion performance on a separate training dataset. During the
search, different proposed weight values are evaluated by
plugging them into Eq 4, solving the resulting QUBO prob-
lem, and comparing the results against known ground truth.
The pattern search algorithm is ideal for use with an algo-
rithmic objective function like this because it requires no
knowledge of the gradient of a function, nor even that the
function be differentiable.

3.2.3 Seolving QUBO

Although QUBO is NP-hard, several methods are available
for efficiently finding good approximate solutions. In this
paper we compare three algorithms: Tabu search, Greedy
forward search, and quadratic programming.
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Tabu search is an efficient stochastic local search ap-
proach for handle QUBO problems of large size, and has
been successfully used in many applications [5, ].
An important concept of Tabu search is the use of adaptive
memory; starting with an initial solution point, the method
sequentially adjusts the value of a small subset of variables
in an attempt to find an improved solution in a local neigh-
borhood, while maintaining a “tabu” list to make sure that
previously searched locations are not soon revisited.

Greedy algorithms can also yield good approximate so-
lutions in practice [2]. We test the greedy forward search
method used in current state-of-the-art papers [2, 18]. The
single candidate that gives the highest unary score is first se-
lected. Then, given a set of previously selected candidates,
each remaining candidate is tentatively added to the set, and
the set yielding the highest new objective function value be-
comes the new current solution set. The process stops when
adding any single candidate to the solution set will reduce
the objective function value.

As a third approach, we relax the binary variable con-
straints into 0 < z; < 1 to transform QUBO into a contin-
uous quadratic programming problem. We used Matlab’s
trust-region method to solve for the maximization [16]. A
subsequent rounding procedure forces the continuous vec-
tor result into a binary solution vector.

s

4. Experimental Results

In this section we evaluate our proposed quadratic bi-
nary optimization framework to detect overlapping pedes-
trians. Three methods are tested for generating candidates
and forming the quadratic objective function: shape cover-
ing of a foreground pixel mask, sampling from a confidence
map produced by a multi-scale sliding window detector, and
a hybrid approach that generates candidates from a detec-
tor confidence map but also incorporates foreground shape
covering information into the objective function as a second
unary confidence term. We also evaluate three methods for
solving the constructed QUBO optimization problem: Tabu
search, greedy algorithm, and relaxation into a continuous
quadratic program. We use the ITS Multistart Tabu algo-
rithm by Palubeckis [17]'. We follow the Greedy approach
used in [2, 18]. We use Matlab’s trust-region method to
solve the relaxed quadratic programming problem.

Dataset We perform quantitative evaluation of our ap-
proach using a pedestrian dataset from EPFL called the Ter-
race sequences’ and on the PETS 2009 dataset. These two
datasets were chosen because of the large number of occlu-
sions, a challenging issue in pedestrian detection.

I'The Iterated Tabu Search (ITS) code provided by Palubeckis is avail-
able for research use

2from CVLab, Ecole Polytechnique Federale de
(http://cvlab.epfl.ch/data/pom/)

Lausanne
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Figure 7. Plots of miss rate vs FPPI (lower curves are better). (a) Comparison between Tabu search, Greedy, and Quadratic programming
methods using foreground shape covering. (b) Comparison of three QUBO variants and two baseline methods on the EPFL dataset. (c)

Comparison on the PETS 2009 dataset.

Figure 7(a) shows a quantitative comparison between
Tabu Search, greedy algorithm, and quadratic programming
results when candidates are generated based on foreground
shape covering. Both greedy algorithm and quadratic pro-
gramming perform reasonably well. They have lower miss
rate and fewer false positives than Tabu search. The over-
all accuracy of greedy method is 0.6849, slightly lower than
quadratic programming’s overall accuracy of 0.6925.

Based on this result, we decided to use quadratic pro-
gramming to evaluate our three options for generating can-
didates and unary confidence scores (foreground shape cov-
ering, detector confidence, confidence+foreground shape
cover). These three approaches are compared by plot-
ting Miss Rate vs False Positives Per Image (FPPI) for
two datasets, EPFL (Fig. 7(b)) and PETS 2009 (Fig. 7(c)).
Lower curves are better. Two other approaches compared
in those plots are OpenCV’s HOG-based human detector
[1] and the PLS detector of [20], both using their default
non-maximum suppression methods.

Approach 1 based on finding shape covering of a fore-
ground mask works surprisingly well given the simplicity
of the approach compared to the sophisticated appearance-
based detectors it is being compared against. Comparing
approaches 1 and 2, using detector confidence scores yields
better results on the EPFL dataset, whereas foreground
shape covering gives the better result on PETS. This can
be explained by the size/resolution of pedestrians in those
two datasets. In EPFL, people are large, with clearly visi-
ble edge appearance information, whereas the small / low-
resolution crowds in PETS is a situation where fitting body
shapes to cover foreground blobs yields better results. In
approach 3 we attempt to improve results using a hybrid of
detector confidence combined with foreground covering as
a second unary term, but with mixed results. However, it
demonstrates that the QUBO framework is flexible enough
to be applied to a variety of detectors or combinations of
unary and pairwise information.
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Table 1 shows quantitative results of the five methods
tested. The first three are all variants of our proposed
QUBO approach, and all of them have higher numbers of
true positives and higher accuracy than the state-of-the-
art HOG and PLS detectors. Here, accuracy is defined as
accuracy = (tp +tn)/(tp +tn + fp + fn).

Figure 8 shows several illustrative results from the three
QUBO variants and two baseline methods HOG and PLS.
Yellow ellipses in the images represent true positives, blue
boxes are false positives, and red boxes are false negatives.

5. Conclusion

We have presented a framework for improving pedes-
trian detection performance in cases where there are mul-
tiple, overlapping objects. A QUBO framework is adopted
where a quadratic objective function is formed from unary
confidence scores and pairwise overlap penalties. The unary
terms are not limited to a specific type of detector and can
be applied to various types of detection confidence scores
with some adjustment. Solving for the binary solution vec-
tor that maximizes this quadratic objective function auto-
matically balances the trade off between encouraging mul-
tiple, high-quality detections, while discouraging excessive
amounts of overlap. Since finding exact solutions for large-
scale QUBO problems is not possible, we evaluate three ap-
proximate methods: heuristic Tabu search, greedy forward
search, and relaxation to a continuous quadratic program.
All three variants find good quality approximate solutions
in the experiments, however the last two methods quantita-
tively outperform the first.

Our results show that the use of binary quadratic op-
timization to explicitly reason about pedestrian candi-
date confidences and overlaps yields a performance im-
provement over existing detection methods that use non-
maximum suppression, in terms of lower miss rates and
lower false positives. Furthermore, the proposed method
can be used to improve the performance of any existing



Dataset A Dataset B
Method TP | FN | FP | Accuracy| Precision| TP | FN | FP |Accuracy|Precision
shape covering 602 | 98 112 | 0.7414 0.8431 3142| 1240 92| 0.7023 | 0.9716
confidence score 544 | 156 | 34 0.7411 0.9412 | 2183| 2199 399| 0.4566 | 0.8455
confidence score+FG 560 | 140 | 46 0.7507 0.9241 3142 1240 94| 0.7020 | 09710
HOG based detector 437 | 263 14 0.6120 0.9690 1580| 2802| 106 0.3520 | 0.9371
PLS detector 403 | 297 | 47 0.5395 0.8956 | 2017| 2365 193| 0.4409 | 09127

Table 1. Quantitative comparison of the five methods tested. Dataset A is the EPFL Terrace dataset. Dataset B is the PETS 2009 dataset.

sliding window detector that produces either a detection
confidence map or a set of unfiltered, thresholded bound-
ing boxes with associated confidence scores. We have also
demonstrated how our method can be used to detect peo-
ple as shape coverings of a foreground mask. This cover-
ing approach can be generalized to use a library of realistic
pedestrian shapes, such as those in [10, 23].
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Figure 8. Comparison of three QUBO variants and two baseline methods. Yellow means correct detection, red is a missed detection, and

blue is false positive. (a) Our approach 1: foreground shape covering. (b) Our approach 2: detector confidence score. (c) Our approach 3:
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