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Abstract

When describing images, humans tend not to talk about
the obvious, but rather mention what they find interesting.
We argue that abnormalities and deviations from typical-
ities are among the most important components that form
what is worth mentioning. In this paper we introduce the
abnormality detection as a recognition problem and show
how to model typicalities and, consequently, meaningful
deviations from prototypical properties of categories. Our
model can recognize abnormalities and report the main rea-
sons of any recognized abnormality. We also show that ab-
normality predictions can help image categorization. We
introduce the abnormality detection dataset and show in-
teresting results on how to reason about abnormalities.

1. Introduction
The variability between members of a category influ-

ences infants’ category learning. 10-months-old infants

can form a category structure and distinguish between cat-

egory prototypes and atypical examples [19]. 14-months-

olds use properties of objects to report atypical instances

[11]. Wouldn’t it be nice to have a recognition system that

achieves exact same capability? In computer vision, there

has been significant progress in forming the category struc-

tures. However, little attention has been paid to deviations

from prototypical examples of categories. This paper is cen-

tered on modeling the typicalities from categories to be able

to reason about abnormalities. Inspired by infant category

learning, we propose to learn the structure of typical im-

ages using their attributes and then recognize abnormalities

as special deviations from prototypical examples. Similar to

infants’ learning, we want to reason about abnormalities by

only observing typical instances. Taxonomies of abnormal-

ities are not known. This makes defining any fixed vocabu-

lary for abnormalities unjustifiable. We believe that any rea-

soning about abnormalities should be based on understand-

ings of normalities and should not require any observations

about abnormal instances.

There has been recent interest in investigating what

should be reported as an output of a recognition system

[8]. When describing an image, humans tend not to men-

tion the obvious (simple category memberships) instead to

report what is worth mentioning about an image. We argue

that abnormalities are among major components that form

what is worth mentioning. We want to form category struc-

tures in terms of common attributes in categories and reason

about deviations from categories using attributes.

A diverse set of reasons may cause abnormality. An ob-

ject can be abnormal due to the absence of typical attributes

(a car without wheels) or the presence of atypical attributes

(a car with wings). Also, abnormality can be caused by de-

viations from the extent by which an attribute varies inside

a category (a furry dog). Furthermore, contextual irregular-

ities and semantical peculiarities can also cause abnormali-

ties such as an elephant in the room [32, 31]. In this paper

we mainly focus on abnormalities stemming from the object

itself, not from the context around the object.

What does studying abnormality in images tell us about

object recognition? While being slower, humans seem to be

able to recognize abnormalities and reason about category

memberships of atypical instances without learning on any

atypical instance [20]. Can state-of-the-art computer vision

object categorization and detection algorithms generalize as

well to atypical images? We argue that studying generaliza-

tion to atypical images, without optimizing on them, pro-

vides insights on how a recognition algorithm might simu-

late human performance. In addition, there are various ap-

plications for developing an intelligent system that can de-

tect abnormalities. Certain types of abnormality in images

can be an indication of abnormal event.

There are multiple contributions for this paper. 1) This

is the first in-depth study of objects abnormalities that are

stemmed from the object itself; 2) This paper provides an

abnormality dataset for qualitative and quantitative analysis.

Quantitative evaluation is tricky as the notion of abnormal-

ity is subjective. 3) This paper introduces results of human

subject experiments on how humans reason about abnor-

malities. 4) This paper shows a model to recognize abnor-

mal images, reason about the category memberships for ab-

normal objects and also provide evidence beyond each ab-
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Figure 1. Examples of abnormal images. Columns: images from six categories (cars, airplanes, chairs, sofas, motorbikes, boats)

normality prediction. The main intuition behind our model

is that typical instances impose very characteristic distribu-

tions over categories and, consequently, over attributes. By

discovering these interactions one can reason about abnor-

malities.

2. Related Work

Human judgments of typicality: The idea that members of

categories vary in the degree of typicality is fundamental to

the modern psychological literature on categorization [27],

which is based on the idea of family-resemblance structure

in which category members vary in their degree of fit [26].

The exact mechanism by which human learners determine

typicality, or determine category membership as a function

of typicality within a given category, is the main focus of

most prominent theories of human categorization. Some

leading theories are based on exemplar matching, similar to

K nearest neighbor techniques (e.g. [23]) while others are

based on central prototypes and thus more akin to mean-

of-class techniques (e.g. [1]). More recently the notion

of typicality has been put into a Bayesian framework (e.g.

[9, 34, 30], with typicality understood as the likelihood of

the object conditioned on the category. Nevertheless, the

computational mechanisms by which human observers as-

sess visual typicality of objects drawn directly from images

remain an unsolved problem.

Abnormality Detection: The problem of abnormality detec-

tion for single images is not really well explored. Boiman

and Irani [2] studied the problem of irregularities in images

and videos. In their definition, irregularities happen when a

visual data cannot be composed by a large number of pre-

viously known data. They have shown interesting examples

and applications in human activity recognition and detect-

ing salient parts of images.This definition cannot be directly

applied to abnormalities in objects. Detecting salient re-

gions in images has attracted many researchers [13, 15].

Our goal is different from saliency detection; abnormali-

ties in objects are not necessarily aligned with definitions

of saliency in the literature. Image memorability [12] is

also related to abnormalities. Abnormality is one the rea-

sons that makes an image memorable [12]. In this paper

we only focus on abnormality predictions. Abnormality

prediction has been extensively explored in temporal do-

mains [35, 29, 14, 33]. Our focus in this paper is on abnor-

malities of objects in images.

Very recently, out-of-context objects have been studied

in [22, 24]. [22] uses a latent support graph to model the

context and [24] use a generative model that learns for mul-

tiple criteria of normality and abnormality. Contextual ir-

regularities are one of the reasons of abnormality. However,

in this paper we are mainly focused on abnormalities stem-

ming from the object itself regardless of the context. In that

sense our work is complementary to [22, 24].

Outside computer vision literature, anomaly detection

has been studied in a wide variety of applications ranging

from credit card fraud to health care systems. Space does

not allow a comprehensive review of this literature. We re-

fer interested readers to [3]. In terms of using abnormal

instance, several methods need to observe abnormal exam-

ples to model abnormality. This is not feasible in images as
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degrees of variations among atypical instances are unman-

ageably large. Our model appears in the group of methods

that only require observation of the normal instance. Our

model predicts abnormality by reasoning about normality

in terms of attributes.

Visual Attributes: The choice of features upon which to de-

termine typicality is context-sensitive and depends on what

features are considered [28]. The notion of attributes comes

from the literature on concepts and categories (reviewed

in [21]). The fluid nature of object categorization makes

attribute learning essential. For this reason, we make at-

tribute learning the basis of our framework, allowing us to

reason about abnormalities. Farhadi et al. [7] and Lam-

pert et al. [17] show that visual attributes can be transferred

across object categories, allowing description and naming

of objects from categories not seen during training. These

attributes were learned and inferred at the image level, with-

out localization. Attributes have been used as intermediate

representation for object [7, 17, 25], face [16], and activity

recognition[18]. Recently, relative attributes have shown to

produce promising results in recognition [4]. In this paper

we adopt the attribute based representation of [7]. In [7]

abnormalities due to the absence of typical attributes and

presence of atypical attributes are explored. They use de-

viations from mean SVM scores to find abnormalities. In

this paper, we argue that the SVM scores are not the best

typicality scores and show that by modeling the interaction

between attributes and categories of typical objects one can

compute a better normality score.

3. Abnormality Dataset and Human Subject
Experiments

3.1. Abnormality Dataset

For the purpose of our study, we needed to collect an ex-

ploratory dataset of abnormal images. We believe no such

dataset exists in the computer vision community. There are

datasets for studying abnormal activities in videos, how-

ever our goal is to study abnormalities in images. To be

in line with the image categorization research we chose ob-

ject classes from PASCAL dataset [5] to build our dataset.

To collect the abnormal images in our dataset, we used im-

age search engines, in particular Google images and Ya-

hoo images where we searched for keywords like “Abnor-

mal”, “Strange”, “Weird” and “Unusual” in combination

with class labels like cars, airplanes, etc. The top results

from the search engines were pruned by removing dupli-

cates, obviously irrelevant images and very low quality pic-

tures. Unlike typical images, it is not that easy to find abun-

dance of abnormal images. As a result we narrowed down

the object classes to only six classes of PASCAL where

we could collect at least 100 images: namely “Airplane”,

“Boat”, “Car”, “Chair”, “Motorbike” and “Sofa”. The over-

Figure 2. Statistics for Abnormality reasons in our Dataset

all data set contains 617 images. The collected images were

annotated by marking a bounding box around the salient

object in each image.

3.2. Human Subject Experiments

The subject of abnormality is rooted in people’s opinion,

so any work on detecting strange images without any com-

parison to the human decision is not informative. There are

other multiple reasons that motivates studying human sub-

jects’ responses to our collected images. 1) Validating our

collected dataset. 2) Providing ground truth 3) Providing

some insight about how people judge about the abnormality

of images.

Therefore, we designed a preliminary survey for human

subjects and we used Amazon Mechanical Turk to collect

people responses. Given an image with a bounding box

around the most salient object, subjects were asked follow-

ing questions. First, the subjects were asked whether the

image seems to be normal or abnormal. If the subject de-

cided that the image is abnormal, the following questions

were asked where multiple selections are allowed: 1) Which

category best describes the object, from a list of the six cat-

egories in our dataset. 2) Whether abnormality is because

of the object itself or its relation to the scene. 3) Rate the

importance of each of the attributes in affecting their deci-

sion about normality (Color, Texture/Material, Shape/Part

configuration, Object pose/viewing direction) 4) Also the

subjects were asked to comment about context abnormality

if it is the case.

Figure. 3-top shows the subjects’ average rating for the

different causes of abnormality for each category. This is

for the images that subjects decide that the abnormality

stems from the object itself. The figure clearly shows that

in all categories atypical shape is the most common cause

of abnormality, followed by texture/material, then pose and

color. As figure 2 shows except for the airplane category,

the variances in the ratings for each cause of abnormality

is relatively small. The rating for the airplane has a large
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Figure 3. Bottom: Categorization Confusion Matrix for Human

Subjects. Top: Subject’s rating of different sources of abnormality

variance which might indicate that the real reason for abnor-

mality is not one of the four reasons given. Fig. 3-bottom

shows the confusion matrix for the human subjects in de-

ciding the categories. An important conclusion from this

study is that the variance in subjects’ decisions about Nor-

mality/Abnormality is much less than the variance in their

decisions about the object categories.

4. Abnormality Detection Framework

Graphical Model: Our goal is threefold: to detect

whether the instance in the image is abnormal, to recog-

nize and quantify the reason of abnormality, and to cate-

gorize the instance despite of abnormality. Class member-

ship for normal objects can be viewed as a unimodal dis-

tribution in the space of class-likelihood. This distribution

for a normal image will be peaky around the correct object

class and takes low value for all other classes. Normal ob-

jects of each class impose characteristic distributions over

visual attributes. This means normality affects the class

distribution and consequently attribute distributions through

classes. This suggests modeling these dependencies with a

graphical model depicted in figure 4. The normality gener-

ates a distribution over classes where they themselves gen-

erate distributions over attributes. Attributes generate dis-

tributions over features. In this model, A1, · · · , AN denote

that attribute random variables, which in turn give rise to

the observed image features.

At inference, our task is to figure out if a given im-

age contains an abnormal object or not. This means

that we can infer the P (N |A) and use its complement to

reason about abnormality: P (¬N |A) = 1 − P (N |A),
where A denote the joint attribute distribution. We in-

fer P (N |A) as follows: using Bayes’ rule we can write

P (N |A) = P (A|N) ∗ P (N)/P (A). The joint attribute

likelihood P (A|N) can be estimated by marginalizing over

categories; P (A|N) =
∑

j P (A|Cj , N)P (Cj |N). Condi-

Figure 4. Graphical Model for Normality Detection

tioned on categories attributes become independent, mean-

ing that P (A|N) =
∑

j

∏k
i=1 P (Ai|Cj)P (Cj |N) .

In the model we treat attributes as observable variables

which are the outcomes of a calibrated discriminative at-

tribute classifiers [7]. The responses of attribute classi-

fiers are normalized between 0 and 1. The attribute value

given each category typically looks like a normal distribu-

tion. Therefore, we use a Gaussian distribution to model the

distribution of each attribute classifier response given each

class. This gives us a model for P (Ai|Cj) ∼ N (μij , σij
2),

where we can learn the parameters using Maximum Likeli-

hood Estimation given training data. By inferring P (N |A)
one can make predictions about normality/abnormalities of

given images.

Information Theoretic Treatment: Abnormality is di-

rectly related to rareness and surprise. Imagine you are

driving you car and your child in the back seat is telling you

what he sees from the rear window. You will not be sur-

prised if he tells you things like, ”I see a car with wheels”

or ”I see car with wiper blades”. However if he tells you,

”I see a car with wings” or ”I see a car with fur” you will

be surprised and intrigued to check it out. This relation

between surprise and rareness directly motivates the use

of information-theoretic formulation tied to the Graphical

model above.

Given the response of attribute classifier, we can mea-

sure the information content of a certain attribute classifier

response, a, given a category as

I(Ai = a|Cj , N) = − logP (Ai = a|Cj , N)

The information content will be a direct indication of

rareness of observing the response value a given the learned

distribution P (Ai|Cj , N).
In this formulation, certain facts about attributes are ig-

nored. Attributes are not equally relevant to each category.

Different attributes play different roles within one class of
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objects to another. We use the inverse of the conditional

entropy of attributes given classes to encode the relevance,

i.e. we define relevance(Ai|Cj) = 1/H(Ai|Cj) computed

on normal objects. The intuition behind this is that if the

distribution P (Ai|Cj , N) is peaky, it should be relevant

and discriminative for the purpose of measuring normal-

ity/abnormality, while a uniform distribution is not really

useful.

On the other hand, the performance of attribute classi-

fiers is not consistent across different attributes; some at-

tributes are harder to learn than others. Attribute classi-

fiers do not work perfectly even on normal images, which

can result in unreliable measures that can affect inference

about abnormality. To measure attribute reliability, we com-

pute the accuracy of attribute classifiers evaluated on a val-

idation set. A measure of reliability can be defined as

reliability(Ai) = acc(Ai), where acc(Ai) is the accuracy

of the classifier for attribute Ai, which ranges between 0.5
and 1. Now we can a define relevance-adjusted accuracy-

adjusted surprise measure of observing attribute classifier

response a for attribute Ai and class Cj as

(1)
surprise(Ai|Cj)

(a) = reliability(Ai) ∗
I(Ai = a|Cj) ∗ relevance(Ai|Cj)

The surprise is a function surprise(Ai|Cj)
: [0, 1] → [0,∞)

that is defined for each pair of categories and attributes,

which takes the output of attribute classifier and assesses

the strangeness/abnormality in that score.

Notice that, to learn the model we need only normal im-

ages. The relevance factor, based on the conditional en-

tropies, is computed during the training time on normal im-

ages and will appear as a fixed term for each combination

of attributes and object classes. The reliability factor is only

measured offline on normal training images.

Attributes responsible for Abnormalities: Each abnor-

mality prediction for an image can be supported by a set of

abnormality causes in terms of attributes. The surprise mea-

sure in Eq. 1 directly gives us a measurement of how a given

attribute might be the cause of abnormality. However there

are two possible reasons that can cause a given attribute to

be surprising: either the attribute is typical within the class

and is missing in the image, or the attribute is not typical

to the class and exist in the image. Both cases will results

in low attribute likelihood given the category and therefore,

high surprise value. However it is very useful to discrim-

inate between the two cases for abnormal attribute report-

ing. To achieve this we define a signed surprise function

signed surprise(Ai|Cj)
: [0, 1] → (−∞,∞) as

signed surprise(Ai|Cj)
(a) = surprise(Ai|Cj)

(a)∗(2∗a−1).
(2)

This function encodes absence of expected attributes and

presence of unexpected attributes by projecting scores to

the range −∞ to +∞ respectively . This score takes into

account the probability of being a normal attribute and at-

tribute classifier response.

Abnormality Detection helps Object Categorization:
Knowing that an object is abnormal along with the list of

attributes that cause the abnormality should help categoriz-

ing that object. The normal category models are trained

on the attributes of normal images. By discounting the ab-

normal attributes in category models, one can improve the

categorization of abnormal images. More specifically, as-

sume we train a linear classifier for each category of normal

objects in the attribute space. By controlling the influence

of the dimensions corresponding to problematic attributes

we can discount the effects of abnormalities. We do this by

replacing the current value of problematic attributes to the

per class average of those attributes.

5. Experiments and Results
5.1. Features and Attributes

We use 64 visual attributes of [7], which can be catego-

rized into shape, color, texture and part attributes. Our base

features are similar to [7, 6]; we use canny edge detector re-

sponses, quantized output of HoG, and Texton filter bank

responses, and ColorSIFT. Our features are 9855 dimen-

sional. We train each attribute using an SVM classifier on

top of selected dimensions of base feature vectors. To find

out which dimensions of base feature vectors are important

for a specific attributes, we fit a l1-regularized logistic re-

gression between objects coming from a specific class with

that attribute and without it.

5.2. Abnormality Prediction

Experimental Setup: The training set consists of images

from six classes: Aeroplane, Boat, Car, Chair, Motorbike

and Sofa in the PASCAL train set. Test set is a combination

of normal images and abnormal images. Abnormal images

come from our ”Abnormal image dataset” and Normal im-

ages are from PASCAL test set. For each class of objects

we used an equal number of normal and abnormal images.

The test set has 1228 images, on average 200 image per cat-

egory.

The task of abnormality prediction is to label images in

the test set as either normal or abnormal. Given an attribute

vector for each image, our approach will assign a proba-

bility of being normal. The complement of this probability

can be used as an abnormality score, denoted as ”Graph-
ical model”. We also use the surprise scores explained in

section 4 for the enhanced model, which we call ”Graphi-
cal Model with surprise score”. In that model the surprise
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Method AUC

One class SVM (learned on Normal) 0.5980

Two class SVM (leaned on Abnormal and Normal) 0.8657

Graphical Model for abnormality prediction 0.8703

Graphical Model with adjusted surprise scores 0.9105
Table 1. Evaluation of Abnormal Detection approaches (AUC)

score is used to compute a robust version of P (Ai|Cj , N),
taking the relevance and reliability of attribute into consid-

eration. We learn the models for P (Ai|Cj , N), relevance,

and reliability measures only from normal images.

We compare our abnormality prediction with that of one-

class SVM, which is widely used for abnormality predic-

tion [3]. We train a one-class SVM using attributes of

positive examples from each object classes (in the normal

image dataset). We used the confidence of these one-class

SVM as scores of normality and measured its accuracy for

abnormality prediction by AUC (normal vs abnormal clas-

sification).

The results for the Normality/Abnormality prediction in

images are shown in Table 1. We use AUC (Area Under the

Curve) to measure how well each method performs. Our

method outperforms the baseline(one-class SVM). Adding

the relevance term and attribute classifier reliability im-

proves our original model.

We also compared our method with an abnormality clas-

sifier trained on both normal and abnormal images. For this

classifier(second row in table 1), we learn a two class SVM

on top of visual attributes to learn a boundary between nor-

mal and abnormal images. Normal images are selected from

PASCAL train dataset and equal number of abnormal im-

ages have been chosen from abnormal dataset. Our model,

without observing any instance of abnormal images, out-

performs this baseline that is learned on both abnormal and

normal images.

Abnormal images are not equal in terms of how strange

they look like to human. This has been shown in the human

subject experiment when each image gets different votes for

being abnormal. Our abnormality score can also impose a

ranking on abnormal images. Figure 6 shows ranked ab-

normal images for cars and boats. From left to right the

abnormality of images increases.

5.3. Abnormal Attribute Reporting

After detecting an image as abnormal, we recognize its

abnormality causes in terms of visual attributes. Our pro-

posed graphical model assigns a surprise score for each at-

tribute in an abnormal image. We used the same training

and testing setting as above. In the first step, we predict

top categories for each abnormal image as its object class.

As we discussed in Section 4, assuming an image belongs

to a specific class, each attribute will have a surprise fac-

tor. Abnormal attributes have extreme values as their sur-

Method Aeroplane Boat Car Chair Motorbike Sofa average

Baseline-1 0.0796 0.0801 0.0775 0.1035 0.0944 0.064 0.0832

Baseline-2 0.0826 0.0768 0.0809 0.0956 0.0892 0.0565 0.0803

Our Model 0.0567 0.0369 0.0758 0.0631 0.0635 0.0695 0.0609

Table 2. Evaluation of abnormal attribute reporting - KL diver-

gence from ground truth

prise factor with a negative sign for missing attributes and

positive sign for unexpected ones. Figure 5 shows some ab-

normal images and their corresponding output of our model

for the task of abnormal attribute reporting. Here we report

first two candidates for object class and their corresponding

Missing attribute or Unexpected attribute.

We use ground truth rating from the MTurk responses

to quantitatively evaluate our abnormal attribute reporting.

As we explained in Section 3.1 each abnormal image in our

dataset, has a user score for four different causes of abnor-

mality (Shape, Color, Texture and Pose). Since our model

evaluates strangeness of attributes individually for an im-

age, we grouped the attributes together based on their re-

latedness to each of these four cases. With this grouping,

we can aggregate and normalize the scores for each abnor-

mality cause. These surprising scores for each category of

attributes can be compared to those we have in MTurk an-

notation. Table 2 reports Kullback-Leibler divergence be-

tween distribution of surprising scores for each abnormality

cause made by our approach and the ground truth MTurk

annotation. We compared our result with Farhadi et al. [7]

and reported their performance in first two rows in Table 2.

Farhadi et al. [7] finds an attribute abnormal, if its value

goes beyond a range around the mean of that attribute value.

In the first row of Table 2, an attribute is considered abnor-

mal if its value is more than one standard deviation away

from the mean. In the the second row, an attribute is con-

sidered abnormal if its response is two standard deviations

away from the mean.

5.4. Abnormal Image Categorization

Our task here is to evaluate how well different models

can categorize abnormal images when they have only been

trained on normal images. Just to provide a sense on how

difficult these tasks are we used deformable part-based de-

tectors of [10] as classifiers and check their performance on

our test set of abnormal images. This obtains an average

classification accuracy of 9%. We postulate that this is due

to huge change in shapes of objects. This is aligned with

our observation on MTurk that most of our abnormalities in

our dataset are due to shape.

Abnormal image categorization is a subjective task; there

might not be one correct answer. Therefore, we use the re-

sponses of MTurk users to generate distribution over cate-

gories for each images. Our model can also produce such

a distribution by assigning a class confidence out of 6-

790790790792792
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Figure 5. Abnormal image describing: Class prediction, Missing(M) and (U)Unexpected attribute reporting
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Figure 6. Abnormal image ranking. Abnormality score increases as we move to the right side

way SVM classifier to each image. We compare the KL-

divergence between our model and human generated distri-

bution as a way to measure the performance of our classifier.

The knowledge of abnormality prediction can enhance

the problem of object categorization for abnormal images.

As indicated in Section 4 after the first run of object clas-

sification on abnormal images and predicting how normal

sample of a specific class this image is. We detect ab-

normal attributes for the best possible class and adjust the

value of its abnormal attributes by their average value given.

For a given class of object, we get the mean response for

an attribute by averaging over normal samples in PASCAL

dataset. This way the abnormal attributes are discounted.

We re-run the same SVM classifier on abnormal images,

but this time the effect of abnormal attributes for classifica-

tion has been adjusted. Second row of Table 3 shows that by

this refinement the distribution over different object classes

for abnormal images gets more similar to what people have

guessed about it. This has been indicated by a lower KL

divergence number for the second row in Table 3 compar-

ing to its first row. Last row in Table 3 refers to the case

that each class has a surprising score given a set of attribute

responses in an image, inverse of these surprising factors

for each object category shows the class-membership confi-

dence.

SVM classification before abnormality detection 47.2502

SVM classification after abnormality detection 38.5203

Table 3. Evaluation of abnormal object categorization - KL diver-

gence from ground truth

6. Conclusions

In this paper we presented results of our investigation

on the subject of abnormality in images. We introduced

a dataset for abnormal images for quantitative evaluation

along with human subjects’ ground truth. We also intro-

duced a model to predict abnormality by reasonings in terms

of attributes. We show improvements over standard base-

lines on abnormality prediction. For each abnormality pre-

diction our model can also report its reasoning in terms of

abnormal attributes. Finally we show that abnormality pre-

diction helps recognition. We show that we can improve

abnormal image categorization by discounting for abnormal

attributes.
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