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Abstract

In this paper, we tackle the problem of performing in-
ference in graphical models whose energy is a polynomial
function of continuous variables. Our energy minimization
method follows a dual decomposition approach, where the
global problem is split into subproblems defined over the
graph cliques. The optimal solution to these subproblems
is obtained by making use of a polynomial system solver.
Our algorithm inherits the convergence guarantees of dual
decomposition. To speed up optimization, we also intro-
duce a variant of this algorithm based on the augmented
Lagrangian method. Our experiments illustrate the diver-
sity of computer vision problems that can be expressed with
polynomial energies, and demonstrate the benefits of our
approach over existing continuous inference methods.

1. Introduction
Many computer vision problems can be expressed as the

minimization of an energy that is a polynomial function of

the variables that define the problem. This, for instance, is

the case of non-rigid shape recovery [27], or shape-from-

shading [5]. With the availability of techniques such as ho-

motopy continuation [19, 11], or Groebner basis [4, 21, 10]

to solve systems of polynomial equations, one could think

of solving such minimization problems by finding the ze-

ros of the gradient of the energy. However, existing poly-

nomial system solvers can only cope with small numbers of

variables, which precludes following this approach for most

realistic computer vision problems.

A popular approach to tackling large computer vision

problems consists in exploiting the structure of the vari-

ables of interest, and, in particular, the fact that these vari-

ables form a graph with cliques of reasonably small sizes

(i.e., of size two in many cases). A solution to the task at

hand is then obtained by performing inference in the cor-

responding graphical model. For discrete variables, many

∗NICTA is funded by the Australian Government as represented by the

Department of Broadband, Communications and the Digital Economy and

the ARC through the ICT Centre of Excellence program.

inference methods have been proposed (e.g., [24, 14, 8]).

More recently, several inference techniques for continuous

variables have been introduced. However, these methods ei-

ther are restricted to modeling very specific energies (e.g.,

Gaussian belief propagation [2]), or do not offer conver-

gence guarantees for general graphs (e.g., nonparametric

belief propagation [22], particle belief propagation [7, 15],

fusion moves [12]).

In this paper, we introduce an approach to performing in-

ference in graphical models with continuous variables and

whose energies are polynomial functions. By exploiting the

structure of the graph, our method lets us cope with much

larger numbers of variables than polynomial system solvers.

Furthermore, it comes with convergence guarantees for gen-

eral graphs, while allowing us to handle more general ener-

gies than Gaussian belief propagation.

More specifically, we follow a dual decomposition ap-

proach [1, 9] and split the graph encoding the global prob-

lem into subsets of its variables. Since the global energy

is a polynomial function, so are the energies of the indi-

vidual subgraphs. However, these energies now depend on

much smaller numbers of variables. Therefore, we can ex-

ploit polynomial system solvers to find the minimum energy

configuration of each subgraph by computing the zeros of

its energy gradient. The standard iterative dual decompo-

sition procedure can be employed to encourage the solu-

tions of the subgraphs to agree on their shared variables.

This just introduces an additional linear term in the original

subgraph energies, which thus remain polynomial. Since

the optimal solution for each subgraph can be obtained, our

method inherits the convergence guarantees of dual decom-

position, even though the global energy is non-convex. Fur-

thermore, it can easily be parallelized and can inherently

handle graphs with cycles and with cliques of size larger

than two. Finally, we introduce a variant of our algorithm

that exploits the augmented Lagrangian method to speed up

the optimization process.

To illustrate the diversity of scenarios that our approach

can handle, we applied it to four problems: Non-rigid image

registration, deformable surface 3D reconstruction, shape-
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from-shading and optical flow estimation. Our experiments

demonstrate the effectiveness of our approach, as well as its

benefits over particle belief propagation and fusion moves.

2. Related Work
Polynomial functions arise in many computer vision

tasks. For instance, minimal problems [21, 10] are com-

monly formulated in terms of polynomial equations, and

addressed with Groebner basis solvers [4]. Similarly,

shape-from-shading has been expressed as the solution to

a polynomial system [5] obtained by homotopy continu-

ation [19, 11]. Nonetheless, polynomial solvers can only

handle small numbers of variables. As a consequence, ap-

proximate formulations have been designed [5].

Alternatively, inference methods in graphical models

have been widely used to minimize energy functions of

many variables by accounting for their graph structure.

While most of the literature assumes discrete variables

(e.g., [24, 14, 8]), several methods have been proposed to

address the continuous case. For instance, Gaussian be-

lief propagation [2] minimizes quadratic energies, which

form a special case of the ones handled by our approach.

Instead of quadratic energies, piecewise convex functions

were recently utilized [30]. Our approach can cope with

non-convex energies without requiring piecewise approxi-

mations. Kernel belief propagation [20] can make use of

general energies. However, it cannot exploit known po-

tentials, but instead requires training data to learn the po-

tentials. Nonparametric belief propagation [22] can also

exploit general energies, but approximates the messages

passed between the graph nodes as mixtures of Gaussians,

thus modifying the original problem.

Currently, to the best of our knowledge, the most suc-

cessful approaches to performing continuous inference in

graphical models are particle (convex) belief propagation

(PCBP) [7, 15] and Fusion Moves [12]. The former itera-

tively samples particles to form candidate variable assign-

ments and finds a MAP estimate of the resulting discrete

problem with (convex) belief propagation. The latter itera-

tively generates two candidate solutions and combines them

by solving a binary labeling problem. PCBP has recently

been applied to deformable surface 3D reconstruction [18]

and stereo matching [29]. Fusion Moves have been em-

ployed for optical flow estimation [12] and non-rigid shape

recovery [27]. While both approaches have shown good

performance, they lack convergence guarantees for general

graphs. Fusion Moves guarantee that the combined solu-

tion is at least as good as the two candidate ones. However,

generating good candidates remains an open problem.

In this paper, we tackle the problem of performing con-

tinuous inference in graphical models where the energy

function is polynomial. Since our method is based on dual

decomposition [1, 9], it inherits its convergence guarantees,

while still allowing us to model a large class of energies.

Note that other decomposition methods (e.g., [28, 17]) have

also been proposed to minimize different convex energies,

or non-convex ones by convex approximations [6].

3. Our Approach
In this section, we present our approach to performing

inference in graphical models with continuous variables and

polynomial energies. We first introduce our main algorithm

and then propose a variant to speed up minimization. Fi-

nally, we discuss some properties of our method.

3.1. Dual Decomposition with Polynomial Energies

Let x ∈ R
D be the vector containing the D continuous

random variables of the problem of interest. We consider

the case where these random variables form a graph. Thus

the energy of a specific realization of these variables can be

expressed as

E(x) =
∑

i
fi(xαi) , (1)

where αi represents either a group of variables, or a single

variable. The functions fi may encode any local energy,

such as arising from image observations, or regularizers.

However, we assume that they are polynomial in x.

Our goal is to find the configuration x∗ that corresponds

to the minimum energy E(x∗). To achieve this while ac-

counting for the graph structure, we make use of dual de-

composition [1, 9]. Dual decomposition proceeds by intro-

ducing auxiliary variables {xi
αi
} and formulating the mini-

mization of E(x) as

min
{xi

αi
},x

∑
i
fi(x

i
αi
) (2)

s. t. xi
αi

= xαi
, ∀i .

The Lagrange dual function of this problem can be written

as

g({λi}) = min
{xi

αi
},x

∑
i

(
fi(x

i
αi
) +

(
xi
αi
− xαi

)T
λi

)
, (3)

where λi is the vector of Lagrange multipliers for the con-

straints on the variables involved in fi. The original vari-

ables x can be eliminated from g({λi}) by explicitly per-

forming the minimization with respect to x. This yields the

constraints

{λi} ∈ Λ =

⎧⎨
⎩{λi}

∣∣ ∑
i|j∈αi

λi
j = 0 , ∀j ∈ [1, D]

⎫⎬
⎭ ,

where λi
j is the multiplier in λi that corresponds to the con-

straint on xj . This lets us write the Lagrange dual problem

max
{λi}∈Λ

∑
i
gi(λi) , (4)
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whose objective function has now decoupled into subprob-

lems, or slaves, of the form

gi(λi) = min
xi
αi

fi(x
i
αi
) +

(
xi
αi

)T
λi . (5)

Following standard practice, we use a projected sub-

gradient method to solve the problem in Eq. 4. It can

be shown [9] that the subgradient ∇gi(λi) = x̄i
αi
(λi),

where x̄i
αi
(λi) is the optimal solution to the ith slave.

This yields an iterative algorithm where, at each iteration

t, the optimal solution to each slave is computed given the

current values of {λi}, and each λi is updated as λi =[
λi + ηtx̄

i
αi
(λi)

]
Λ

, where ηt is the step size of the sub-

gradient ascent, and [·]Λ denotes the projection onto the set

Λ. This projection can be achieved by subtracting from

each variable in x̄i
αi
(λi) its mean value over all slaves that

contain this variable. Similarly, the primal solution can

be obtained by averaging over the variables shared across

multiple slaves. Under some conditions discussed below,

dual decomposition with subgradient ascent is guaranteed

to converge to the global optimum of Eq. 4. Note, however,

that this translates into global convergence of the original

problem only when the variables shared by the subproblems

agree and when the duality gap is zero. We observed that,

in practice, this occurred very often.

Convergence of dual decomposition is conditioned on

the ability to compute the optimal solution to each slave in

Eq. 5. To this end, we search for a solution such that the

gradient of the energy vanishes. For each slave, this yields

the system

⎧⎪⎨
⎪⎩

∂fi/∂x
i
αi,1 + λi

1 = 0
...

∂fi/∂x
i
αi,|αi| + λi

|αi| = 0

, (6)

where xi
αi,j

is the jth variable of slave i, and |αi| denotes

the number of variables in this slave.

Since each function fi is polynomial, so is its gradient,

and thus Eq. 6 is a polynomial system. As long as each

slave depends on a reasonable number of variables, this sys-

tem can be solved using standard techniques. In particular,

we make use of homotopy continuation methods [19, 11].

Homotopy continuation methods proceed by first replacing

the original polynomial system P(x) = 0 with a simpler

one P0(x) = 0 that has the same degree and the same

number of roots. P0(x) is then gradually transformed into

P(x) by homotopy, while the solutions are traced from

those of P0(x) to those of P(x) by a numerical contin-

uation method. Although relying on numerical methods,

homotopy continuation guarantees to find all the complex

roots of a polynomial system with probability 1. More de-

tails can be found in [19]. In our experiments, we employed

the solver HOM4PS-2.0 [11]. While HOM4PS-2.0 is the

fastest solver available, it still requires 9 hours to solve a

system of 20 quadratic equations in 20 variables. There-

fore, for many computer vision problems, it would not be

directly applicable to the original task.

In general, the system of Eq. 6 has multiple roots. Many

of these roots can be discarded based on the fact that we are

not interested in complex values. The variable assignment

corresponding to the global minimum can then be obtained

by comparing the energy value of the remaining roots.

Convergence of dual decomposition also depends on the

properties of the sequence of subgradient step sizes ηt [1,

9]. In our experiments, we considered two such sequences:

The adaptive rule introduced in [9], and a non-summable

diminishing step length rule [1]. The adaptive rule can be

expressed as

ηt =
g∗t + δt − gt

‖∇gt‖2
, with δt+1=

{
τ0δt if gt improved by δt
max(τ1δt, δ) otherwise

,

(7)

where gt and ∇gt denote the dual function value and sub-

gradient at iteration t, respectively, and g∗t is the best dual

value obtained so far. In our experiments, τ0 = 1.5,

τ1 = 0.75, and δ = 0.01δ0. The initial value δ0 is prob-

lem dependent. As non-summable diminishing step length

rule, we used

ηt =
η0

(1 + t/t0) ‖∇gt‖
, (8)

where η0 is problem dependent, and t0 = 50 in practice.

3.2. Augmented Lagrangian Formulation

While dual decomposition with subgradient ascent guar-

antees convergence to the global optimum of Eq. 4, many it-

erations often are required to reach this optimum. To speed

up the process, we follow an approach based on the Alter-

nating Direction Method of Multipliers (ADMM), which

exploits the augmented Lagrangian of the original prob-

lem [13]. This boils down to introducing a quadratic penalty

in the Lagrange dual function, which yields

g̃({λi})= min
{xi

αi
},x

∑
i
fi(x

i
αi
)+

(
xi
αi

)T
λi+

ρt
2

∥∥xi
αi
− xαi

∥∥2
,

where we implicitly accounted for the constraint {λi} ∈ Λ,

and where ρt is a time-varying weight. With this new term

that involves the original variables x, the objective of the

corresponding dual problem does not decouple anymore.

Therefore, minimization with respect to {xi
αi
} and x is per-

formed in an alternating manner. Given a fixed x, the dual

problem decomposes into slaves of the form

g̃i(λi) = min
xi
αi

fi(x
i
αi
) +

(
xi
αi

)T
λi +

ρt
2

∥∥xi
αi
− xαi

∥∥2
.

Since the additional penalty term is quadratic, the slave en-

ergies remain polynomial. Their global minimum can be
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Algorithm 1 DD-Poly / ADMM-Poly
Initialize λi = 0 , ∀i
Initialize δ0, or η0
Initialize ρ0 and ρ1 (ADMM-Poly only)

for t = 1 to #iters do
Compute ρt from Eq. 10 (ADMM-Poly only)

for i = 1 to #slaves do
Find the roots of the system in Eq. 6, or Eq. 9

Find the lowest energy root x̄i
αi

among the roots

end for
Compute ηt from Eq. 7, or Eq. 8

λi =
[
λi + ηtx̄

i
αi
(λi)

]
Λ

, ∀i
Compute x by averaging the shared variables in {x̄i

αi
}

end for

obtained by solving polynomial equations of the form

∂fi/∂x
i
αi,j + λi

j + ρt(x
i
αi,j − xαi,j) = 0 , (9)

where xαi,j is fixed, and finding the solution with the lowest

energy among the roots. With fixed {xi
αi
}, the augmented

Lagrangian has a closed-form solution for x, which cor-

responds to the primal value of the original problem, and

can thus be obtained by averaging over the variables shared

across multiple slaves.

While, for some values of ρt and ηt, and for convex en-

ergies, ADMM has convergence guarantees, they do not

apply to general polynomial energies. In practice, we ob-

served good convergence of the algorithm, especially when

the augmented Lagrangian penalty was activated only after

several iterations of the algorithm. This inspired us the rule

ρt = ρ0 +
ρ1 − ρ0

1 + exp(−γ(t− t0))
, (10)

with γ = 1/4, t0 = 50 and ρ0 = 0 (or a small value) in our

experiments. Note that we found this strategy to be more

effective than a warm start approach that would begin with

a large ρ and progressively decrease it until it reaches 0. We

also found that the ADMM approach was more stable with

ηt following the rule in Eq. 8 rather than the rule in Eq. 7.

The methods of Sections 3.1 (DD-Poly) and 3.2 (ADMM-

Poly) are described in Algorithm 1.

3.3. Properties and Extension

We now discuss some properties of our approach, as well

as its extension to non-polynomial functions.

Graphs with cycles: As opposed to most existing ap-

proaches, the convergence guarantees of DD-Poly remain

unchanged by the presence of cycles in the graph.

Higher order cliques: The cliques in the graph may be

of order higher than two without affecting the convergence

guarantees of DD-Poly. The bottleneck comes from the

speed of the polynomial system solver, which depends on

the number of variables and on the degree of the polynomi-

als. In practice, we used cliques of size 18, 5 and 4.

Parallel computation: Dual decomposition naturally

supports parallel computation. The slave problems can be

solved in parallel on individual cores. Only {λi} and x
must be computed at a global level.

Non-polynomial energies: A straightforward extension

of our method to non-polynomial energies can be achieved

by approximating such functions with polynomials. The

most common polynomial function approximation methods

are the Taylor and Chebyshev expansions. Instead of such

global approximations, better accuracy may be achieved by

approximating the slave energies with piecewise polyno-

mial functions. To illustrate this, let us consider the case of

a single variable x split into 3 intervals. Following a first-

order Taylor expansion, a non-polynomial function f(x)
can be approximated as

f(x) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(x1) +
df
dx

∣∣∣
x1

(x− x1) if x < lx

f(x2) +
df
dx

∣∣∣
x2

(x− x2) if lx ≤ x ≥ ux

f(x3) +
df
dx

∣∣∣
x3

(x− x3) if x > ux

,

where x1, x2 and x3 are three values at which the function

was evaluated, and lx and ux define the intervals. The re-

sulting three polynomials can be solved independently, and

solutions outside the domain of each polynomial discarded.

The final x can then be obtained by comparing the remain-

ing solutions. In general, when each slave depends on mul-

tiple variables, the solution space must be divided into hy-

percubes inside which the polynomial approximations are

computed. Note that the global optimum for a hypercube

may not be a local optimum of the approximate energy, but

a local optimum on a boundary of the hypercube, or the ap-

proximate energy value at a corner of the hypercube. Solu-

tions on the boundaries can be computed by fixing a subset

of the variables to the bound of their interval and finding

the local optima of the resulting polynomial function. So-

lutions at corners are simply obtained by evaluating the ap-

proximate energy with all variables set to interval bounds.

4. Experimental Evaluation
In this section, we demonstrate the effectiveness and

generality of our method on 4 computer vision problems

that exhibit different properties of our algorithms.

4.1. Non-rigid Image Registration

Non-rigid image registration consists in finding the

warping that transforms a reference image to an input im-

age depicting, for instance, the same object undergoing de-

formations. Here, we consider the case where the observed
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Figure 1. Non-rigid registration. Recovered 2D mesh overlaid on

the original images. All images were treated independently.

object is a non-rigid surface, which we model as a triangu-

lated mesh, as suggested in [16]. Given the 2D locations of

the mesh vertices in the reference image, the goal is to find

these locations in the input image. To this end, similarly

as [16, 25], we assume that we are given correspondences

between keypoints in the reference and input images.

More specifically, let x ∈ R
2N be the vector containing

the 2D coordinates of the N mesh vertices. We encode a
keypoint in terms of the barycentric coordinates with re-
spect to the mesh facet inside which it lies, and assume
that these barycentric coordinates remain constant. We then
search for the vertex locations that best satisfy the corre-
spondences, while yielding a smooth surface. Assuming
that the mesh forms a regular grid, smoothness can be en-
couraged by penalizing the curvature of triplets of aligned
vertices [16]. Registration can then be expressed as

min
x

∑
i

∥∥∥∥ci1x1
ji + ci2x

2
ji + ci3x

3
ji −

(
ui

vi

)∥∥∥∥
2

+ ws

∑
(i,j,k)∈T

‖xi − 2xj + xk‖2,

where cik is the kth barycentric coordinate of keypoint i,
xk
ji

is the kth vertex of facet ji, which contains keypoint i,
(ui, vi) are the coordinates of keypoint i in the input image,

and T is the set of triplets of aligned vertices.

To demonstrate the effectiveness of our DD-Poly algo-

rithm at solving this problem, we employed the paper se-

quence of [26]1. Since our approach does not require any

initialization, each frame was treated independently. To re-

move the outliers in the provided SIFT correspondences,

we followed the technique of [25] that observed that in-

liers form a 2D subspace from which outliers are distant.

Since the energy function is quadratic, the polynomial sys-

tem for each slave can be solved quickly. This let us use

large cliques of 9 vertices arranged in a 3×3 grid. In Fig. 1,

we show our registration results for some frames of the se-

quence. Note that the estimated mesh fits the surface well.

More interestingly, Fig. 2 depicts typical evolutions of the

primal and dual energies. The zero primal-dual gap guar-

antees global convergence of our DD-Poly algorithm. Note

that this quadratic formulation makes convergence fast even

without the augmented Lagrangian term. Such a quadratic

energy could be handled by Gaussian BP, which shows that

the problems addressed by Gaussian BP form a subset of

those we can tackle.

Figure 2. Energy evolution during registration. Primal and dual

energies as a function of the iteration of DD-Poly. These plots

correspond to the 1st and 2nd images in Fig. 1.

4.2. Deformable Surface 3D Reconstruction

We now tackle the problem of reconstructing a de-

formable surface in 3D from a monocular image. Simi-

larly as [26, 27], we assume that distances between neigh-

boring points on the surface remain constant as the surface

deforms. We follow the template-based formulation of [27],

where a reference surface is given, and where the shape is

parametrized in terms of the depth of image points.

More specifically, let x ∈ R
N be the vector containing

the depths of N image points representing the surface. Fur-

thermore, let qi = A−1(ui, vi, 1)
T be the line-of-sight of

point i at image coordinates (ui, vi), with A the matrix of

known internal camera parameters. Assuming isometric de-

formations, 3D reconstruction can be expressed as

min
x

∑
(i,j)∈N

(
‖xiqi − xjqj‖2 − d2i,j

)2
, (11)

where xi is the unknown depth of point i, N is the set of

neighboring points whose distance must remain constant,

and di,j is the known distance between point i and point j.

As a first experiment, we made use of synthetic data con-

sisting of a 3 × 3 mesh deformed isometrically by rotating

neighboring facets around their common edge. We gener-

ated 100 different random deformations, and projected the

mesh vertices to 2D using a known camera. We then added

zero-mean Gaussian noise with a standard deviation of 2

pixels to these projections. The advantage of using such a

small number of points is that the true global minimum of

the energy can be obtained by homotopy continuation with

all the variables. As a consequence, we report the difference

between this ground-truth energy and the energies obtained

with our algorithms and with baseline methods. For our al-

gorithms, we used cliques of 4 points forming a square in

the 3 × 3 grid. Fig. 3 depicts the histograms of relative en-

ergies for our algorithms (DD-Poly and ADMM-Poly), as

well as for PCBP and Fusion Moves2. ADMM-Poly yields

energies that are always very close to the best ones. The en-

ergies of DD-Poly are higher due to its slower convergence

and to the use of a fixed maximum number of iterations.

Note that, with DD-Poly, the adaptive step size rule yields

slightly lower energies. Fusion Moves and PCBP yield,
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Figure 3. Deformable 3D reconstruction from noisy data. Histograms of relative energies w.r.t. the optimal energy found by homotopy

continuation. We compare the results of PCBP, Fusion Moves, our DD-Poly algorithm (with non-summable step length and adaptive step

size rules), and our ADMM-Poly algorithm. Note that ADMM-Poly yields significantly lower energies, as best seen from the mean.

Figure 4. Typical energy evolution during 3D reconstruction.
Primal and dual energies for ADMM-Poly on (left) a synthetic

image, and (right) the first image of Fig. 5.

on average, higher energies than our algorithms. While

PCBP gives low energies for most cases, the sampling pro-

cedure sometimes misses the optimal region of the space

and thus yields high energy configurations. The average

runtimes of the methods are 0.12s for Fusion Moves, 56.6s

for PCBP, 117.8s for DD-Poly and 77.9s for ADMM-Poly.

Note that, while slower than Fusion Moves, ADMM-Poly

has a runtime comparable to PCBP for lower relative en-

ergy. Fig. 4(left) depicts typical energy curves for ADMM-

Poly. Note that the duality gap went down to zero.

As a second 3D reconstruction experiment, we employed

the same data as for non-rigid 2D registration. More pre-

cisely, we used our registration results as image locations of

the mesh vertices, and estimated the depth of these points

by solving the problem in Eq. 11. Our reconstruction re-

sults are shown in Fig. 5 and energy evolution curves in

Fig. 4(right). Ground-truth 3D for this data is provided

as Kinect depth measurements. Following [26], we com-

puted reconstruction errors as the mean distance between

the Kinect 3D points corresponding to the inlier SIFT fea-

tures and our reconstruction of the same points estimated

using barycentric coordinates. We obtained an average re-

construction error of 5.57mm, which compares favorably to

the 7.23mm of [26].

4.3. Shape-from-Shading
We now demonstrate the use of our approach on shape-

from-shading. Following [5], we parametrize the problem
in terms of the unknown depth xi,j of each image pixel
(ui,j , vi,j), where i and j account for the image row and
column, respectively. Assuming an orthographic camera
model, a 3D point is expressed as vi,j = (ui,j , vi,j , xi,j)

T .
The image is decomposed into groups of five pixels of the

Figure 5. 3D reconstruction from real images. Side view of our

reconstructed meshes for the same images as in Fig. 1.

form Gij = {(i, j), (i, j−1), (i, j+1), (i−1, j), (i+1, j)}.
The normal to a triangle k composed of points vi,j , vi,j+1

and vi+1,j can be expressed as nk = (pk, qk, 1)
T , with

pk =
(vi,j+1 − vi,j)(xi+1,j − xi,j)− (vi+1,j − vi,j)(xi,j+1 − xi,j)

(ui,j+1 − ui,j)(vi+1,j − vi,j)− (ui+1,j − ui,j)(vi,j+1 − vi,j)
,

and similarly for qk from the cross production equation.

Following the Lambertian model, the intensity of a facet can

be written as Ik = (l1pk+ l2qk+ l3)/
√
p2k + q2k + 1, where

l = (l1, l2, l3)
T is the known, normalized light direction.

By summing over all the triangles in all the groups, shape

from shading can be expressed as

min
x

∑
Gij ,k

(
(p2k + q2k + 1)I2k − (l1pk + l2qk + l3)

2
)2

, (12)

where x is the vector of all unknown depths, and where the

intensity equation has been squared to make it a polynomial.

In [5], the shading equation was solved independently

for each group by homotopy continuation, and a globally

coherent solution found by solving a constraint satisfac-

tion problem. As acknowledged in [5], this approach can-

not handle noise due to the constraint satisfaction problem.

In our dual decomposition formalism, however, the pixels

shared by multiple groups are iteratively enforced to agree

on their depth, which lets us handle noise. To overcome the

global depth ambiguity, we added an L2 regularizer with

very low weight (i.e., 10−8) that encourages the depth of

the center of each group to be close to zero. Furthermore,

to choose amongst the multiple discrete solutions of each

group, we followed a greedy procedure that covers the im-

age row by row. For stability, we used a low ρ0 in ADMM-

Poly. Note that, here, cliques must be of size at least 3,

which makes methods such as PCBP less practical.

We performed experiments on the well-known vase im-

age. To evaluate the effectiveness of our method at find-

ing the global minimum of the energy, we first used a very

coarse 4 × 4 version of this image, which let us compute
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Noise Energy Rel. err GT err
Time[s]

(1 core)

Time[s]

(2 cores)

HC
0%

0 0 0 2502 N/A

Ours 0 0 0 7.5 4.6

HC
1%

0.00034 0 0.56 2740 N/A

Ours 0.00043 0.0095 0.56 959 643

HC
10%

0.0143 0 0.49 2734 N/A

Ours 0.0183 0.0172 0.48 954 651

Table 1. Shape from shading: Energies, errors and runtimes.
Comparison of energies, depth errors and runtimes between ho-

motopy continuation (HC) and ADMM-Poly (Ours) on a 4 × 4
version of the vase image for noise with std of 0%, 1% and 10%.

Errors are given relative to the homotopy continuation reconstruc-

tions (Rel. err) and with respect to ground-truth (GT err).

the true optimal solution by homotopy continuation. We

added zero-mean Gaussian noise with standard deviations

of 0%, 1% and 10% to the image intensities. In Table 1,

we report the energy and depth error with respect to the ho-

motopy continuation solution and with respect to ground-

truth. The depth error is computed as the mean absolute

difference between the recovered depths and the ground-

truth ones divided by the maximum depth. Since a global

depth ambiguity still remains, we centered all the shapes at

zero depth. Similarly, to handle the global concave-convex

ambiguity, we report the lowest error for these two discrete

cases. Note that the shapes obtained with ADMM-Poly are

very close to the best possible shapes obtained by homo-

topy continuation. Note also that even with a single core,

our approach is faster than homotopy continuation on the

full image. We noticed that, in shape-from-shading, the re-

sults are more sensitive to the values of ρ0, ρ1 and η0 than

in our other experiments for which finding the right order

of magnitude was sufficient. This seems to be due to the

presence of multiple discrete solutions. Fortunately, the

primal-dual gap indicates convergence, which makes pa-

rameter tuning possible without using ground-truth. This

sensitivity to the parameters can be mitigated by introduc-

ing a smoothness prior similar to the one used for non-rigid

registration. Fig. 6 depicts our results on finer-scale sur-

faces, with energy curves shown in Fig. 7. Note that, with

10% noise, the duality gap did not go down to zero.

4.4. Optical Flow Estimation

Finally, we applied our approach to the problem of opti-

cal flow estimation from a pair of images It, It+1. Note that

the real purpose of this experiment is not to address optical

flow, but rather to illustrate the use of our method with non-

polynomial energies. Following the brightness constancy

assumption [3], we search for a displacement (xu
i , x

v
i ) at

each pixel (ui, vi), such that It+1(ui + xu
i , vi + xv

i ) =
It(ui, vi). While the image is, of course, not a poly-

nomial function, it is common to linearize it and write

It+1(ui + xu
i , vi + xv

i ) = It(ui, vi) + Itu(ui, vi)x
u
i +

Itv(ui, vi)x
v
i + Itt (ui, vi), where Iu, Iv and It are the u,

Figure 6. Shape from shading. Side view of our reconstructed

vase surfaces for noise standard deviations of 0%, 1% and 10%.

Depth errors are 0.0036, 0.112 and 0.133, respectively.

Figure 7. Energy evolution in shape-from-shading. Primal and

dual energies for ADMM-Poly with 1% and 10% noise.

v and temporal image derivatives, respectively. By drop-

ping the dependence on (ui, vi) for notational convenience,

optical flow estimation can be expressed as

min
x

∑
i

(
Itux

u
i + Itvx

v
i + Itt

)2
+

∑
(i,j)∈N

wr

(
φ(xu

i , x
u
j ) + φ(xv

i , x
v
j )
)
,

(13)

where x is the flow vector of all pixels, and φ(·, ·) is a regu-

larizer on the flow of neighboring pixels. Here, we employ

the regularizer φ(xu
i , x

u
j ) = ln(1+(xu

i −xu
j )

2/(2σ2)) based

on the Lorentzian robust estimator [3].

Due to the regularizer, the energy is not a polynomial

function. However, for a clique of two neighboring pixels,

its gradient yields constraints of the form

2(Itux
u
i + Itvx

v
i + Itt )I

t
u + 2wr

xu
i − xu

j

2σ2 + (xu
i − xu

j )
2
= 0 .

Multiplying this equation by (2σ2 + (xu
i − xu

j )
2) gives a

degree 3 polynomial, which therefore makes our method

applicable. This shows that, strictly speaking, our method

does not only apply to polynomial energies, but rather to

polynomial gradients. The image term illustrates the use of

a polynomial approximation to a non-polynomial function.

We performed experiments on the Rubber Whale image

of the Middlebury benchmark. All image operations were

performed using the code of [23]. We used two image pyra-

mid levels, and at each one, kept the first order Taylor im-

age approximation fixed, but updated it for the next level.

We also employed an additional quadratic regularizer to en-

courage the flow at each pixel to remain small. Although

not strictly necessary, we noticed that this regularizer sped

up convergence. For computational reasons, we only com-

puted the flow at a maximum resolution of a quarter of the

original resolution. Higher resolutions could be handled by

making use of more CPUs. To compare our results against
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Figure 8. Optical flow estimation. Low-resolution ground-truth

and ADMM-Poly flow estimate for the Rubber Whale image.

ground-truth, we resampled our flow to the full resolution.

Our ADMM-Poly algorithm achieved an average end-point

error of 0.716. To give an intuition of this number, running

the code of [23] with the energy in Eq. 13 and at the same

pyramid levels as us yields an average end-point-error of

0.721. In Fig. 8, we show the low-resolution ground-truth

flow and the flow recovered with ADMM-Poly, as well as

the energy curves at the highest pyramid level. Note that the

different regions of the image are correctly identified.

5. Conclusion
In this paper, we have introduced an approach to per-

forming continuous inference in graphical models with

polynomial energies. To this end, we have followed a

dual decomposition strategy, where each slave problem can

be solved exactly using homotopy continuation. We have

shown that our approach can be applied to a wide variety of

computer vision problems. In the future, we plan to study

how problems where the slaves have multiple discrete solu-

tions can be better handled, for instance by keeping track of

all these solutions. We also intend to study in more details

the use of polynomial function approximations.
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