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Abstract

We propose an approach to improve the detection per-
formance of a generic detector when it is applied to a par-
ticular video. The performance of offline-trained objects
detectors are usually degraded in unconstrained video en-
vironments due to variant illuminations, backgrounds and
camera viewpoints. Moreover, most object detectors are
trained using Haar-like features or gradient features but ig-
nore video specific features like consistent color patterns. In
our approach, we apply a Superpixel-based Bag-of-Words
(BoW) model to iteratively refine the output of a generic de-
tector. Compared to other related work, our method builds a
video-specific detector using superpixels, hence it can han-
dle the problem of appearance variation. Most importantly,
using Conditional Random Field (CRF) along with our su-
per pixel-based BoW model, we develop and algorithm to
segment the object from the background . Therefore our
method generates an output of the exact object regions in-
stead of the bounding boxes generated by most detectors.
In general, our method takes detection bounding boxes of a
generic detector as input and generates the detection output
with higher average precision and precise object regions.
The experiments on four recent datasets demonstrate the ef-
fectiveness of our approach and significantly improves the
state-of-art detector by 5-16% in average precision.

1. Introduction
With the prevalence of video recording devices nowa-

days, the demand of automatically detecting objects in

videos has significantly increased. The state-of-art object

detectors [5, 17, 7] have achieved satisfying performance

when detecting objects on static images, however, their

performance on a particular video is limited for two rea-

sons: first, most detectors are trained off-line using a fixed

set of training examples, which cannot cover all the un-

constrained video environments with variant illuminations,

backgrounds and camera viewpoints. And it is very expen-

sive to manually label examples and re-train the detector for

each new video. Second, most detectors are designed for a
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Figure 1. This figure shows how our approach improves the de-

tection results of DPM detector. The left image is the input video

frame. In the upper right image, the red bounding boxes show the

detection results of the DPM and the yellow bounding boxes show

the miss detections. The lower right image shows the results after

refinement using our approach, in that all the objects are correctly

detected and the object regions are extracted.

generic object class using Histograms of Gradient (HOG)

[5] or Haar-like features [13] . When applied on a partic-

ular video, they are not able to fully leverage the informa-

tion presented in different frames of the video such as the

consistent color pattern of objects and background. In this

paper we aim to improve the object detector’s performance

in these two aspects.

There has been a substantial amount of work that ad-

dresses the problem of learning from unlabeled data in a

semi-supervised fashion [10, 11, 12, 4, 17, 19, 14]. A

common technique of these approaches is to apply a coarse

detector to the video and get initial detections, which are

then added into the training set to improve the coarse de-

tector. While these approaches have proven effective, they

can only adapt their appearance models based on the coarse

detections and so are not truly adaptive. On the other hand,

detection-by-tracking approaches[18, 15, 3, 9] use trackers

to improve the detection results for a particular video. How-

ever, they may introduce more noise to the detection results

if the tracker is not reliable for the video.

To address the above mentioned problems, we propose

the use of a online-learned appearance model to iteratively

refine a generic detector. The intuition is that in a typi-
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Figure 2. The framework of our approach.

cal surveillance video, each individual usually moves from

one side of the scene to the other side, therefore typically

many instances in the spatial-temporal domain are captured.

These instances have variant poses but consistent color fea-

tures. Based on this assumption, we transfer the knowledge

from the generic detector to a more video-specific detector

by using the superpixel-based appearance model.

The overview of our approach is illustrated in Figure 2.

First we apply the original detector with a low detection

threshold on every frame of a video and obtain a substan-

tial amount of detection examples. Those examples are ini-

tially labeled as positive or hard by their confidences. Nega-

tive examples are collected automatically from background.

Second, we extract superpixel features from all examples

and make a Bag-of-Word representation for each example.

In the last step, we train a SVM model with positive and

negative examples and label the hard examples iteratively.

Each time a small number of hard examples are conserva-

tively added into the training set until the iterations con-

verge.

Superpixels have been successfully applied in image seg-

mentation [1], object localization [8] and tracking [16].

As the middle-level feature, Superpixels enable us to mea-

sure the feature statistics on a semantically meaningful sub-

region rather than individual pixels which can be brittle. On

the other hand, the superpixels have great flexibility which

avoids the mis-alignment of the HOG and Haar-like features

on variant poses of objects.

Using the mentioned advantages of superpixels along

with the proposed algorithm, we also extract the regions of

objects, as shown in Figure 1. A confidence map which

shows the likelihood of each pixel belonging to the target

is made using a background generic model. Later CRF is

employed to obtain a smooth object boundaries. Different

from any background subtraction method, our method re-

quires no background modeling, hence it is not sensitive to

camera motion and will still work with a moving camera. In

general, our algorithm can extract the object regions with-

out prior knowledge of the object’s shape, and the output

could serve a more precise initialization for other applica-

tions such as tracking and recognition.

In this paper we take pedestrian detection as an example

to illustrate our approach. The rest of the paper is organized

as follows. In section 2, we introduce the related work. The

details of our approach is presented in section 3. Section

4, shows experimental results on four challenging datasets.

Finally section 6 concludes the paper.

2. Related Work
A substantial amount of work has been reported for

building online learning approaches for object detection.

Levin et.al [10] built a semi-supervised learning system us-

ing co-training, in which two different classifiers are used

to train each other to improve the detection performance. In

[12] a co-training based approach is proposed to continu-

ously label incoming data and use it for online updates of

the boosted classifier. However, both approaches require a

number of manually labeled examples as the initial training

examples. [11] presented a framework that can automati-

cally label data and learns the classifier for detecting mov-

ing objects from video. Celik et.al [4] proposed an approach

to automatically detect dominant objects for visual surveil-

lance. However, in [11] and [4] the initial coarse detec-

tors are based on background subtraction, hence they don’t

fit into the scenarios with complex background or moving

camera.

Wang et.al [17] proposed a non-parametric transfer

learning approach, in which they use a vocabulary tree to

encode each example into binary codes. Wang et.al [17]

only learns objects having the similar appearance to the ini-

tial examples. These approaches are likely to miss some

hard examples with large appearance variations. On the

other hand, the detection-by-tracking approaches improve

the detections by using trackers [18, 15, 3, 9]. In these

methods, object hypothesis are detected in all frames and

then associated by trackers. By using the structural informa-
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tion of the scenario, the tracker may find even the occluded

objects. However, tracking itself is a challenging problem.

If the tracker is not suitable to the scenario, it may lower the

performance of the original detector.

Our solution lies between of the semi-supervised

learning and detection-by-tracking. Compared to semi-

supervised learning methods that learn a generic detector,

Our method learns a video-specific detector that leverages

the consistent color patterns in frames of a video; though

it is more conservative than detection-by-tracking methods

and will not introduce additional problems caused by the

tracker itself. Moreover, our method obtains regions of ob-

jects, hence it provides more improved performance.

3. Our Approach
3.1. Initial Detection

We employ the deformable part-based model detector

(DPM) [7] as the initial detector in our approach since it

has shown excellent performance in static images. The de-

tector is given a lower detection threshold td so we can ob-

tain almost all true detections and a large amount of false

alarms. According to the detector’s confidence scores, we

initially split all detections into two groups: the ones with

confidence scores above a threshold are labeled as the posi-

tive examples; the rest are labeled as hard examples. In ad-

dition, a large number of negative examples are randomly

collected in a way that they do not overlap with any posi-

tive or hard examples. All the examples are then resized to

128× 64.

3.2. Superpixels and Appearance Model

Most object detectors use HOG or Haar-like features

which can represent a generic object class well. However,

they are not robust to different poses of an individual. As

shown in Figure 3, an individual can have variant poses that

renders a mis-alignment for HOG, Haar-like features or any

other pixel-level features. To handle this problem, we need

to transfer the knowledge from a generic detector to a video-

specific detector. Therefore we build a statistics appearance

model with the superpixels as units.

Figure 3. Variant poses in different frames.

We segment each detection output into Nsp superpixels

by using the SLIC Superpixels segmentation algorithm in

[1]. We choose an appropriate number N so that one su-

perpixel is roughly uniform in color and naturally preserves

the boundaries of objects. In order to encode both color

and spatial information into superpixels, we describe each

superpixel Sp(i) by a 5-dimensional feature vector f =
(L, a, b, x, y), in which (L, a, b) is the average CIELAB
colorspace value of all pixels and (x, y) is the average loca-

tion of all pixels.

An M -word vocabulary is assembled by clustering all

the superpixels using the K-means algorithm. Then the su-

perpixels are aggregated into an M -bin L2-normalized his-

togram for each example and later each example is repre-

sented in a BoW fashion.

3.3. Classification

We train a support vector machine (SVM) to classify the

hard examples. Due to the limitation of the initial training

samples, it is not easy to obtain a good decision boundary.

Therefore we use an iterative way to gradually update the

SVM model. After each iteration we obtain SVM scores for

the hard examples, and we split the hard examples into three

groups again. We move the examples with high scores into

positive set and the examples with low scores into negative

set, then re-train the SVM model. In this way, the decision

boundary is gradually refined for each iteration. We will re-

peat this process until all the example labels are unchanged.

In our experiments, it usually takes 5 to 7 iterations. After

all the hard examples are labeled, we can project the pos-

itive examples back into the image sequence and generate

the detection output.

3.4. Region Extraction

The superpixel-based appearance model enables us not

only to improve the detector, but also to precisely extract

the regions of objects. Since the superpixels can naturally

preserve the boundary of objects, we develop an algorithm

that takes the detection bounding box as input and calcu-

late a confidence map indicating how likely each superpixel

belongs to the target.

First, we cluster all superpixels of the negative samples

into Mn clusters by CIELAB color features. Each cluster

clst(j) is represented by the its center. Then we calculate

the similarities between all superpixels from positive exam-

ples and all the clusters. The similarity is measured by the

Equation

Sp(i, j) = exp(‖Sp(i)− clst(j)‖ × prior(j)), (1)

in which Sp(i) is the i-th superpixel from positive ex-

amples and clst(j) is the j-th cluster center. They are all

represented by color values. prior(j) is the prior probabil-

ity that j-th cluster belongs to the background; this is de-

fined by the number of superpixels in the j-th cluster. The

prior(j) is used here as a regularizing term which discour-

ages the small cluster of background. After obtaining the
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similarity matrix W (i, j), we can calculate the confidence

of a superpixel belonging to the target by the equation

Q(i) = 1−max
j

W (i, j). (2)

Therefore we can obtain a confidence map Q for each

positive example, as shown in the second row of Figure 4.
In order to extract a precise region in the confidence map,

a conditional random field (CRF) model [2] is utilized to
learn the conditional distribution over the class labeling.
CRF allows us to incorporate constraints in the pairwise
edge potentials and hence improve the classification accu-
racy around the boundary. Let Pr(c|G;ω) be the condi-
tional probability of the class label assignments c given the
graph G(Sp,Edge) and a weight ω, We need to minimize
the energy equation

−log(Pr(c|G;ω)) =
∑

si∈Sp

Ψ(ci|si)+ω
∑

si,sj∈Edge

Φ(ci, cj |si, sj),

(3)

where Ψ is the unary potentials defined by the probability

provided by the confidence map Q:

Ψ(ci|si) = − log(Pr(ci|si)), (4)

and Φ is the pairwise edge potentials defined by

Φ(ci, cj |si, sj) =
(

1

1 + ‖Sp(i)− Sp(j)‖

)
[c(i) �= c(j)],

(5)

where [.] is the one-zero indicator function and ‖Sp(i)−
Sp(j)‖ is the L2-norm of color difference between super-

pixels. After the CRF segmentation we will obtain a binary

map on which the target and background is distinctly sepa-

rated. Note that in some positive examples, there are usually

some superpixels which belong to other near targets labeled

as target. We show some segmentation results in Figure 4.

more examples are shown in Figure 8(b).

4. Experiments
We extensively experimented on the proposed method

using four dataset: Pets2009, Oxford Town Center [3],

PNNL-Parking Lot [15] and our own Skateborading se-

quences. The experimental datasets provide a wide range

of significant challenges including occlusion, camera mo-

tion, crowded scenes and cluttered background. In all the

sequences, we only use the visual information and do not

use any scene knowledge such as the camera calibration or

the static obstacles.

We compare our method with the original DPM detector.

We also compare the superpixel-based appearance model

(SP) with HOG within our online-learning framework. In

the HOG implementation, each detection window is repre-

sented by a standard 3780-dimensional feature vector as in

[5]; the other steps are identical to our proposed approach.

Obtaining 
Confidence Map 

CRF – Region 
Extraction 

(a) 

(b) 

(c) 

Figure 4. Examples of CRF segmentation. The first row shows

some pedestrian examples, the second row shows the correspond-

ing confidence maps and the last row shows the corresponding

CRF segmentations.

We use the criterion of the PASCAL VOC challenge [6]

for evaluations in our experiments. In that, a detection that

has more than 0.5 overlap with the groundtruth is deter-

mined as true positive. We analyze the detector perfor-

mance by computing Precision-Recall curves for all four

datasets, as shown in Figure 6.

In our implementation, we use the pre-trained pedestrian

model from [7]. We set a detection threshold td = −2 to

achieve a high recall. For the superpixel segmentation, we

set the number of superpixels for each examples toNsp =
100. In the K-mean clustering we set the number of clusters

M = 400. In the region extraction we set the number of

negative clusters to be Mn = 200.

Our approach has achieved better performance in all four

datasets. We also calculate the average precision for quanti-

tative comparison which is used in [6]. The AP summarizes

the characteristics of the Precision-Recall curve in one num-

ber and is defined as the mean precision at a set of equally

spaced recall levels. We chose the levels to be the same as

[6] to represent the overall performance on each video, as

shown in Table 1.

In addition, the computational cost of our approach is

relatively low. While the initial detector takes around 15

second for each frame, our additional steps takes only 3 sec-

onds on average for each frame with a 3GHz CPU.

Finally, we show some qualitative results of our experi-

ments. Figure 5 and 7 show the detection results; figure 8(a)

shows the region extraction results. We analyze the results

on the four datasets in the following.
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Figure 5. Detection results of the Skateboarding dataset. The green

bounding boxes are the output by DPM detector; the red bounding

boxes are the output by our approach. It is clear that our approach

has fewer false positives as well as false negatives.

Skateborading Dataset (SB): This dataset consist of

two video sequences captured by a hand-held camera. This

is a very challenging dataset due to the camera motion and

severe pose changes. Table 1 and Figure5 show our ap-

proach performs significantly better than the original DPM

detector.

PNNL Parking lot Dataset (PL): This dataset consists

of two video sequences collected in a parking lot using a

static camera. Parking lot 1 is a moderately crowded scene

including groups of pedestrians walking in queues with par-

allel motion and similar appearance. Parking lot 2 is a more

challenging sequence due to the large amounts of pose vari-

ations and occlusions, hence the results on this dataset are

lower than other datasets. However, our approach still per-

forms significantly better than the DPM detector and HOG

feature.

Town Center Dataset (TC): This is a semi-crowded

sequence with rare long-term occlusions. The motion of

pedestrians is often linear and predictable. However, it is

still quite challenging because of the inter-object occlusions

and the difficulty of detecting pedestrians on a bike or with

a stroller. Table 1 and 2 show that we outperform the DPM

detector both in precision and average precision by signifi-

cant margin.

Pets2009 Dataset (PT): This is a relatively sparse scene

including a few people walking in random directions. We

upsampled the resolution of this video by 2 because the

original low resolution is not suitable for the DPM detec-

tor. The original detector has already achieved satisfying

results but our approach performs even better.

Table 1. Average Precision on our testing datasets. Second row

shows the results of our method using HOG as descriptors and

the third row shows the proposed method using bog of words of

superpixels.

Dataset PL1 PL2 TC PT SB1 SB2

Orig 86.4 55.1 86.9 93.7 59.9 70.6
Ours-HOG 91.6 66.1 93.6 97.9 73.8 83.3

Ours-SP 93.0 67.6 94.7 98.0 75.8 85.6

Table 2. The Precision = Recall points for our experiments on four

different datasets.

Dataset PL1 PL2 TC PT SB1 SB2

Orig 87.0 56.0 83.6 92.9 60.4 69.6
Ours-HOG 88.7 62.0 84.7 94.5 67.9 78.3

Ours-SP 90.6 64.2 91.7 96.1 69.4 82.9

5. Conclusion

We proposed an effective method to improve generic de-

tectors and extract object regions using a superpixels-based

Bag-of-Words model. Our method captures rich informa-

tion about individuals by superpixels; hence it is highly dis-

criminative and robust against appearance changes. We em-

ploy a part-based human detector to obtain initial labels and

gradually refine the detections in a iterative way. We also

present a region extraction algorithm that extracts the re-

gions of objects. We demonstrated by experiments that our

method effectively improves the performance of object de-

tectors in four recent datasets.
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Figure 6. Performance comparison on four datasets. We compared our method against the original detector once by choosing HOG and

once using bag-of-word of superpixels as the feature.

Figure 7. Detection results on videos. The datasets from the first row to the last row are: PNNL Parking Lot 1, Pets2009 Town Center and

PNNL Parking Lot 2. The green bounding boxes are the output by DPM detector; the red bounding boxes are the output by our approach.

It is clear that our approach has fewer false positives as well as false negatives.

372437243726



(a) 
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Figure 8. (a) Region extraction results on datasets Parking Lot 1, Pets2009 and Parking Lot 2. We blended the extracted object region in red

on the original image. (b) Individual examples. The rst row shows the original detection window; the second row shows our segmentation

results using CRF.
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