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Abstract

We propose a principled probabilistic formulation of ob-
ject saliency as a sampling problem. This novel formula-
tion allows us to learn, from a large corpus of unlabelled
images, which patches of an image are of the greatest in-
terest and most likely to correspond to an object. We then
sample the object saliency map to propose object locations.
We show that using only a single object location proposal
per image, we are able to correctly select an object in over
42% of the images in the PASCAL VOC 2007 dataset, sub-
stantially outperforming existing approaches. Furthermore,
we show that our object proposal can be used as a simple
unsupervised approach to the weakly supervised annotation
problem. Our simple unsupervised approach to annotating
objects of interest in images achieves a higher annotation
accuracy than most weakly supervised approaches.

1. Introduction

With the prevalence of media sharing websites such as
Flicker, researchers have easy access to terabytes of liber-
ally licensed images. The primary bottleneck that prohibits
the use of this data lies in the difficulty of annotating it.
In this paper we show how such images can be automat-
ically annotated. Our primary focus lies on two types of
annotation: Given an image, (i) find a bounding box tightly
containing one object of interest (this unsupervised annota-
tion is comparable to the weakly supervised multi-instance
learning [8, 28, 29] approaches), and (ii) produce a binary
mask highlighting regions of interest. Unlike other anno-
tations (e.g. find 1000 boxes covering every object in the
image [3, 25]) annotation (i) can be easily validated with a
simple “Yes/No” from a human, and can be directly used to
learn an object detector (see section 5.3).

As the word “saliency” is widespread in the literature
and used to refer to whatever a researcher currently consid-
ers interesting, it is important to distinguish between dif-
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ferent usages of the word. We will use “human saliency”
to refer to methods that predict where a human looks, or
what they will label as interesting in an image, and “object
saliency” to refer to methods that annotate the location of a
predefined set of object types. As humans look at objects
and find them interesting, there is substantial overlap be-
tween the two problems, and methods for one problem may
be applied to the other.

Human saliency was first formulated as a predictor of
human fixation in images [16]. Recent applications in
computer vision have led to an increased interest in ob-
ject saliency formulations [3, 6, 13, 15, 31] that propose
salient bounding boxes in images as potential object loca-
tions. These boxes can be used to speed up object detection
[3, 31] or weakly supervised object annotation for training
a detector [8, 29].

Most existing approaches for object saliency can be char-
acterised as extensions of expert-driven human saliency
methods or supervised learning methods. Object saliency
methods that build on expert-driven human saliency ap-
proaches [6, 13, 15] tend to use cognitive psychologi-
cal knowledge of the human visual system and finds im-
age patches on edges and junctions as salient using lo-
cal contrast or global unique frequencies. Recently, ob-
ject saliency approaches based on supervised learning have
emerged [3, 20, 25]. In these approaches, data from manual
annotation of images are used to mark patches of interest.
These annotations can then be used to train a saliency model
(based on global and local image features) to predict patches
of interest in unseen images.

We propose an unsupervised approach to object saliency
(fig.1) that does not rely on any information outside of a
large corpus of unlabelled images. As it is not possible to
predict what a person will find salient, without either ask-
ing or observing them, our research attempts to answer the
related question “What should a person be interested in?”
We show that an answer lies in the most surprising patches
of an image, or those that have the least probability of being
sampled from a corpus of similar images.

To understand the relationship between our approach and
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Figure 1.

Our approach to object saliency and object location proposal in comparison with some existing techniques. Other methods

include: context aware [13], spectral residual [15], frequency tuned [1], MSR [12], Alexe NMS [3], and Rahtu [25].

expert driven approaches, consider two broad scenarios:

Things and Stuff Addleson [2] observed that image
patches can be loosely categorised as belonging to one
of two types of objects, Things and Stuff. Things be-
ing individual objects such as a person or a car, and
stuff being amorphous object-classes such as road or
grass that can be recognised as reoccurring stochastic
patterns. The majority of the natural world is “stuff”,
and as such, if we use descriptors of the world that are
robust to the small amount of stochastic variation that
“stuff” classes exhibit, we will invariably find “things”
or foreground objects as being more salient. This ten-
dency to find “things” as being salient is intensified by
sampling from similar images. With the majority of
an image being “stuff”’, images sharing the same dom-
inant patterns typically contain similar “stuff” rather
than similar “things”.

Edges and Junctions The two most important types of fil-
ters in expert-based filter banks are those that detect
edges and junctions, as these filters are highly useful in
selecting foreground objects. To understand why our
saliency measure exhibits the same bias towards edges
and junctions, consider an image composed of a sin-
gle, approximately homogeneous object with a smooth
boundary, and a homogeneous background. We al-
low the resolution of the image to vary as n? dots per
square inch. The number of pixels lying in the inte-
rior of the object, or the background, will be O(n?),
while the number of the pixels adjacent to an object
edge will be O(n) and the number of pixels adjacent
to a junction (corresponding to an edge intersection)
will be O(1). Consequently, for most choices of n, it
is much less likely that either an edge or a junction will
be sampled from an image and thus our approach will
consider them to be more salient.

The combination of these attributes leads to an object
saliency map with highly desirable properties: Our saliency
map exhibits a bias towards selecting junctions or the inter-
section of objects as salient regions, and a secondary bias
towards the objects themselves because they occur infre-
quently in the set of similar images. However, it remains

robust to the presence of junctions in reoccurring “stuff”,
such as brick work or tree branches, that frequently confuse
filter-bank driven approaches.
Sampling Bounding Boxes It remains an open problem
as to how bounding boxes (boxes that propose the loca-
tion of objects) should be sampled from a per pixel object
saliency map. Each sequentially selected box should tightly
fit around one object, and never around an object that has
been sampled before. However, the presence of an object
in one box can cause neighbouring boxes to appear salient,
leading to the selection of boxes which highly overlap each
other and only partially overlap the actual object.
Suppression based sampling techniques, such as non-
maximum suppression, are commonly used to avoid such
oversampling. Under such formulations [3, 7] the selec-
tion of a box will act as a hard [3] or soft [7] constraint
that blocks heavily overlapping boxes from being simul-
taneously selected. However, non-maximum suppression
carries its share of disadvantages [12]. In particular, if a se-
lected box narrowly misses an object it may block the future
selection of a box that overlaps this object. To avoid these
near misses, we propose a novel sampling method which
encourages the selection of a box that “explains away” pos-
sible bounding boxes in the area blocked by non-maximum
suppression.
Pipeline: Figure 1 illustrates our approach to object
saliency. Our probabilistic patch based approach allows us
to leverage the use of a corpus of unlabelled images. Fur-
thermore, our object proposals, based on sampling our ob-
ject saliency map, correctly locate objects in many images
on the first proposal. This is an ideal behaviour for using our
object proposal as an unsupervised approach to annotating
objects of interest in weakly labelled data.

2. Prior work

Early works on human saliency were developed from bi-
ological models of the human visual system, and estimated
fixation points where a human viewer would initially focus.
These methods made use of the feature-integration theory
of attention [30] to predict human fixation points in images
and such are ill-suited for finding regions of interest. Our
interest, motivated by applications in object detection, lies
in object saliency approaches that can detect salient regions
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as potential object locations.

Object saliency methods have made use of global
frequency-based features [1, 15], which finds regions char-
acterised by rare frequencies in the Fourier domain as
salient. However, due to their global nature, they have
difficulty in finding the full extent of objects [13]. More
recently, global and local features have been combined to
identify regions of interest in images [3, 6, 12, 13]. In
[6, 13] local patches or segments are compared against all
other patches or segments in the image, using colour dis-
tances. Saliency is then defined as the uniqueness of local
patches or segments compared to the rest of the image. Un-
like our approach, these methods are evaluated on simple
datasets (e.g. MSRA [1]) with a single salient object per
image, they do not provide means of proposing multiple ob-
ject locations in an image, and they do not consider the use
of other similar images.

Recently three approaches [3, 12, 25] have provided ob-
ject location proposals on the challenging PASCAL VOC
dataset [9]. [12] develops an unsupervised approach that in-
tegrates both saliency computation and object location pro-
posal. Object locations are proposed as rectangular regions
which contain pixels that can not be reconstructed using
the pixels outside the region (based on colour). [3] starts
by sampling rectangular regions based on the global fre-
quency saliency map of [15] then adds additional cues such
as colour contrast and super-pixel straddling. Parameters
and weights for the different cues are learned on a fully an-
notated auxiliary dataset. Similar to [3], [25] also proposes
a bounding box selection method based on supervised learn-
ing. We evaluate directly against these three methods on the
PAscAL VOC dataset [9]. However, unlike these existing
approaches to saliency, our method builds knowledge about
the current image from similar unlabelled images. In partic-
ular we define a patch as salient if it is uncommon not only
in the current image, but also in other similar images drawn
from a large corpus of unlabelled images.

Other methods have made use of multiple images for
saliency. In [20] patches are classified as unique based
on a support vector machine (SVM) learned from similar
manually annotated images. In contrast, our method is un-
supervised and does not need manually annotated images.
In [32] the current image is registered to similar images and
the difference between the registered image and the simi-
lar images are used as the saliency map. This requires the
use of a very large auxiliary dataset which needs to contain
similar images with the same background but without the
salient object. Our patch based approach does not require
near identical similar images.

Most object location proposal methods [3, 12, 25, 31]
which report on the challenging PASCAL VOC dataset at-
tempt to achieve a high recall rate given a large number of
object location proposals. In this paper we are interested

in the weakly supervised object annotation task [32], which
requires high precision of a few object proposals.

In weakly supervised object annotation, an algorithm at-
tempts to place a tight bounding box around objects of inter-
est, after taking as input two sets of images: one of images
not containing the objects, and the other set of images con-
taining them. Most existing methods [8, 22, 28, 29] formu-
late this as a multiple instance learning problem. However,
the simplest method to annotate the object of interest in an
image is to assume that the most object like region in the
image is the object of interest, i.e. to take the first location
proposed as a potential object. This simple approach com-
pletely ignores the available weak labels (indicating which
images contains the object of interest). Surprisingly, as Siva
etal. [28]' showed a relatively high accuracy for the weakly
supervised annotation task can be achieved by this simple
approach. In this paper we show that our saliency based
object location proposal achieves higher weakly supervised
annotation accuracy than other methods that propose object
locations, or even those weakly supervised learning meth-
ods that make additional use of annotated weak labels.

Outside of saliency, object detection, and weakly super-
vised learning, there are several other related works. CMU
has done exciting work on image in-painting [14] that moti-
vated our decision to sample from related images and their
more recent work [27] may provide a better method of find-
ing related images; their work [17] finds related images and
uses these images for object pop-up via background sub-
traction. Unlike our work, they used image warps to match
patches taken from different views of the same scene. Also
related, is the concept of abnormality detection in video
and in images [4, 5, 33], as we consider abnormal data-
points with low a priori probability to be salient. We differ
from [5, 33] in that we are interested in detecting abnormal
patches rather than scenes and we make no use of video
based cues, and from [4] in that we do not model the re-
lationship between patches and we make use of a marginal
density estimator rather than the MAP, giving us greater ro-
bustness, and allowing us to potentially detect salient re-
gions using only a single image (see fig. 7).

3. Sampling-based Saliency

Given an image I and a large corpus of unlabelled im-
ages D, we wish to find a saliency map S; for image 1. We
define salient patches, as those belonging to image I, that
have the least probability of being sampled from a set of
images Dy similar to I. Here Dy includes the current image
I and other images obtained from the corpus of unlabelled
images D and patches are n x n regions around each image
pixel. We must now compute p,, a number proportional to
the probability of sampling patch x from Dj.

! The main method of [28] used the weak annotation but they show
results for annotating object location using the most object like instance
proposed by [3].
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We make the assumption that the probability of sampling
a patch = from an image J € D; can be formulated by
uniformly selecting a patch y in .J, and then perturbing it by
some noise in an informative feature space. This gives us:

Pz x Pr(X = x|Dy) (1)
:/ Pr(X =z|J)d 2)
Dr
— [ [px sl Pl anas o
D)
oc/ /Pr(X =zly)dydJ 4
D;JJ

Assuming the noise is uniform and Gaussian?

of image patches, we have:
)
dydJ

P ox /D/p(

and we replace the proportionality sign in (5) with equality
and take this as our definition of p,. Here d(z,y) is the
Euclidean distance between the feature representations of
patches = and y.

For efficient computation, it is important to note that the
Gaussian distribution is short-tailed, and for our purposes

P can be approximated as:
2= exp( > ( )) 6)
Y

YENm (z,Dr\{1})

where N,,(z,D; \ {I}) are the m approximate nearest
neighbours (ANNs) of patch x taken from all images us-
ing distance measure d in D; except I and computed
using Fast Library for Approximate Nearest Neighbours
(FLANN) [21]. Note that that image set Dy includes the im-
age I, and when selecting a patch from it some care must be
taken not to sample from adjacent patches that always have
similar appearance. Instead we want to find other patches
y spatially far from the patch x as these matches will cor-
respond to repeating patterns i.e. stuff. Following [13], a
spatial distance bias is introduced to discourage matching
spatially close patches in the same image, and we use

di(.y) = (Hc.%?) 1) >

where ¢ is a constant, /() is the location of patches in nor-
malised image coordinates, and ¢ = 3 per [13].

We now have p, the probability of a patch with the same
feature response as x being sampled from D;. A high value

over the space

®)

ZGX

eNm(i {I})

)

2This assumption is robust to choice of distribution. After normalisa-
tion of the distances, we get good performance using a standard deviation
o of 1; We tried also exponential and Cauchy distributions, empirically it
made little difference.
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Figure 2. Saliency (S, ) is first computed based on the probability
of sampling image patches from the current image or other simi-
lar images. Then each pixel is weighted by their distance to high
salient pixels (S.). Finally, the saliency map is smoothed based on
image segmentation (St ).

of p, indicates that the patch x is common in the image
corpus, and the saliency of patch x is obtained as:
where p,, over all patches x in the image I, was normalised
to the range [0, 1]. To account for scale changes in salient
objects, we compute saliency S, (8) at four different im-
age scales [1,.8,.5,.3] and average the result over the four
scales S, as the patch saliency.
Post-Processing Two post-processing steps are applied to
S,. First, as in [13], immediate context information is in-
cluded by weighting the saliency value of each pixel by
their distance from the high salient pixel locations. Second,
a segmentation based smoothing is applied to the saliency
map to recover image boundary information.

To encode immediate context information, high salient
pixel locations 7 = S, > T are found and the saliency
value at all pixel location ¢ is weighted by their distance to

F.
exp (— ) ©))
)

where Ng4(i, F) are the 64 nearest neighbours of ¢ in F,
1() is the normalised image coordinate of pixels. As shown
in fig. 2, the resulting saliency map S, is blurred due to
the use of overlapping patches and image boundaries (edges
between objects and background) are not preserved. To re-
cover some of the image boundary information, we segment
image I using the segmentation technique of [11]. For each
segment region, the average saliency from S, is obtained
and used as the final saliency value for that segment, pro-
ducing our saliency map S7.

Similar Images In (6), a set of similar images Dj to the
current image /I must be obtained from a corpus of unla-
belled images D. We follow the approach of [14] and se-
lect 20 similar images from D, using Euclidean distance on
GIST [23] descriptors and a 30 x 20 thumbnail image in
Lab colour space.

Patch Features d(z,y) is the Euclidean distance between
the feature representation of patches x and y. We represent
each n x n patch using the concatenation of two features.
First, the n x n patch is represented as a vector of length 3n2

(1) = 1y))*

gy

Se(i) = Sa (i)

>

yENea(i,F
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Figure 3. An illustration of sampling. Sampling from the saliency
map without non-maximum suppression (NMS) results in an over
sampling of high saliency regions. While this allows exact align-
ment to the true object to be found in the first 3 salient boxes,
objects in a lower salient region are missed. Sampling with NMS
means that the lower saliency region will still be sampled from.
However, the selection of a box that narrowly misses the object
may cause the later rejection of the most salient box containing
the object. Our coherent sampling recovers from many of these
cases. Best viewed in colour.

Our Coherent Sampling

in Lab colour space. The Lab colour vector is concatenated
to the 128 bin SIFT [18] descriptor of the n x n patch. The
resulting vector of length 3n? + 128 is used as the feature
descriptor of the patch.

4. Bounding Box Sampling

Bounding boxes that should contain an object can be se-
lected by sampling from a per-pixel saliency map. In the
past several options have been explored [19], such as thresh-
olding the saliency map followed by connected region de-
tection [15] or selecting a bounding box containing 95%
of the image saliency [19]. Such approaches typically as-
sume one object per image and select a single salient re-
gion. For proposing multiple bounding boxes per image
the saliency map may be randomly sampled from [3], or
sampled from the highest score to the lowest score with
non-maximum suppression (NMS) [12]. Random sampling
based on saliency map density results in over-sampling re-
gions of high saliency. This may be desirable if it is difficult
to find the exact object location. However, in this case, low
saliency regions containing objects will be missed. While
non-maximum suppression ensures that even low salient re-
gions are sampled from, it does not allow for the repeated
sampling of high salient regions. This can cause true ob-
ject locations to be narrowly missed even if the object has
been successfully detected. A comparison between the two
approaches can be seen in fig. 3.

We propose coherent sampling, as a variant of non-
maximum suppression designed to avoid narrowly missing
a detected object (see fig. 3). Consider an image in which
we have already selected a set T" of object locations, and we
wish to add one more location to it. As with NMS, we se-
lect the box with the highest saliency score (by) that is not
near the other 7" locations. Unlike standard NMS sampling
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we do not automatically add by (the box with the highest
saliency score) to the top 1" proposed boxes. Instead we
consider B, the set of all boxes that would be blocked by by,
including itself, and seek b, € B, the box that best explains
the saliency of all bounding boxes in .

To find such a box, we describe the region from which
the boxes in 5 are drawn using a saliency weighted average
BoW SIFT histogram:

N
1
SIFT — difSIFT(bi) (10)
Zilio d; ;

where f$'7(b;) is the dense SIFT BoW histogram represen-
tation of b; and d; is the saliency score of box b;. Then to
maximise the overlap with the salient boxes in 55 that will
be suppressed, b, is chosen as the box with the closest his-
togram to p5T.

bx = argmin || f*(b;) — " |2 (11)
The saliency score d; for box b; is defined as:
1 1
di = e ZS(p)— Jug|” ZSOD) (12)

pEb; PEU;

| - | refers to the size of the box in pixels, u; is a buffer
around the box b; that ensures we select local maxima. It is
chosen to be a maximum of 10 pixels wide, and r is a soft
bias on the box size. When r = 0 the highest density box
fills the image and if » = 1 the highest density box is typi-
cally only a single pixel wide. To sample boxes at different
scales, instead of alternating between 4 explicit choices of
scale [3], we alternate between sampling with a soft bias to-
wards large scales with » = 0.5 and a bias towards smaller
patches with r» = 0.75.

5. Experiments

All results are reported on the PASCAL VOC 2007 [9]
Train and Validation set, the standard dataset used for the
weakly supervised annotation task [8, 24, 28, 29]. Our
corpus of unlabelled images D consists of 98, 000 images
obtained from LABELME [26], PAscAL VOC 2007, and
2012 [9] datasets.

For all experiments we fixed o = 1 for (6), o; = 0.2 for
(9), and at each pixel location a patch of size 7 x 7 pixels
was used as the Lab colour representation and a 4 x 4 cell
SIFT descriptor with each cell being 4 pixel was used.

5.1. Object Proposals

Performance Metric: The precision recall curve (PRC) is
used to evaluate the performance of the object location pro-
posals as it captures the behaviour of both precision and
recall as the number of proposed boxes increases. Alterna-
tively, the recall rate as a function of the number of object



location proposals is used by [3]. Note that recall rate vs ob-
ject proposals is good for comparing the recall rate at high
number of proposed locations but not for evaluating the pre-
cision when only one object location is proposed. For com-
pleteness, we report both PRC and the recall rate vs object
proposals.

We report the precision and recall as function of the num-
ber of objects proposed per image following the PASCAL
challenge [9]. This differs from [12], in that it treats multi-
ple detections of the same object as false positives. Correct
detection is also per PASCAL challenge [9] and is defined as
the area of intersection of the two boxes divided by the area
of union is greater than 0.5.

We are also interested in detecting only one object from
each image because this is important for the weakly super-
vised annotation task (see section 5.2). As a result, we also
report recall and precision based on detecting one object per
image. Let D; ; € {0,1} be a vector indicating if the j'"
box proposed by the saliency algorithm correctly detects an
object in the i image, then:

N

N max(Di1,....Di;

Rone(j) Zz:] aX( N,l ,]) (13)
> N max(D; 1,...,D; ;)

Pone(j) i=1 s L ’ 5J (14)

JN
where NV is the number of images in the dataset, j is the
number of boxes proposed per image, R°" and P°"¢ are the
recall and precision assuming one object per image.

We compare coherent sampling (Our) to:

Alexe NMS Objectness method of [3]® using NMS sam-
pling. This is a supervised approach that uses 50 man-
ually annotated images.

Alexe MN The same supervised method of [3] using multi-
nomial sampling.

MSR The unsupervised method of [12]. Boxes were ob-
tained from the authors and has less than 100 boxes
per image (hence the flat line for MSR in fig. 4(c)).

Rahtu The supervised approach of [25]* in which a struc-
tured support vector machine (SVM) is used to gener-
ate a ranked list of rectangular regions.

Comparison with Competitors: The PRC curves for the
first 1000 proposed boxes are shown in fig. 4 and a visuali-
sation of the proposed bounding boxes is provided in fig. 5.
Based on the average precision our proposed object loca-
tions substantially out-perform our competitors. Particu-
larly, our first object proposal per image correctly locates
an object in 42% of the images nearly 10% higher than our
closest competitor (see table 1). However, as seen from the
recall vs number of proposed windows, table 2, while our

3http: //www.vision.ee.ethz.ch/~calvin/objectness/
4http: //www.cse.oulu.fi/CMV/Downloads/ObjectDetection
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" Alexe NMS

TUMSR
Figure 5. Best bounding boxes taken from the top 10 proposed ob-
Jject locations by our coherent sampling method (Our), MSR [12],
Alexe et al. NMS [3], and Rahtu et al. [25]. Blue is ground truth.

Our [Alexe MN [3]|Alexe NMS [3]|MSR [12]|Rahtu [25]
VOC07 42.3 20.4 30.8 32.6 32.5
VOCO07-6x2|42.8 19.6 27.6 27.7 29.6

Table 1. Percent of images in which an object is correctly located
by the first object proposal.

# Prop|| Our | Alexe MN [3]|Alexe NMS [3]|MSR [12]|Rahtu [25]
1 0.17 0.08 0.12 0.13 0.13
2 0.21 0.14 0.19 0.20 0.16
10 0.34 0.32 0.39 0.35 0.26
100 0.57 0.50 0.66 0.42 0.51
1000 ||0.79 0.64 0.86 0.42 0.75

Table 2. Recall vs # of object location proposed on the PASCAL
2007 TrainVal dataset (excludes objects annotated as difficult).

Our [Alexe MN [3]|Alexe NMS [3]|MSR [12]|Rahtu [25]
VOC07 31.1 25.8 234 24.0 23.6
VOCO07-6x2|42.4 33.8 28.8 29.6 29.0

Table 3. Comparison of different object proposal based on the an-
notation of weakly labelled data.

method has a higher recall than [3] at the first box, the recall
at 1000 boxes is lower than that of [3]. The choice of [3] vs
our proposed method or a hybrid approach would depend
on the application, and whether high recall or precision is
more important. We show in section 5.2 that our object pro-
posals are particularly suitable for the task of annotating of
weakly labelled data which requires maximal precision at
the first proposed object location.

NMS Sampling vs Coherent Sampling: NMS sampling
obtains an average precision of 0.117 vs the coherent sam-
pling of 0.120. Overall the contribution of coherent sam-
pling is small compared to NMS sampling. However, for
the initial object proposal there is a 3% boost in precision
which is beneficial for the weakly supervised annotation
task (see section 5.2).

5.2. Weakly Supervised Object Annotation

In weakly supervised object annotation, a set of images
with the object of interest and a set of images without the
object of interest is given and the goal is to locate the ob-
ject of interest in all images that contain it. As discussed
in section 2, we select the first object location proposal in
each image as the annotation of the object of interest. We
test the weakly supervised annotation accuracy on the 20
classes of PAscAL VOC 2007 (VOCO07) as defined in [29]
and 6 classes (aeroplane, bicycle, boat, bus, horse, and mo-
torbike) with Left and Right pose separately (VOC07-6x2)
as defined in [8].
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Figure 4. Precision recall curve and recall vs number of object location proposal on the PASCAL 2007 TrainVal dataset. (d) is a zoomed in

view of (c). Best viewed in colour.

VOC07 [[VOC07-6x2]

[ Init [Final| Init | Final |
Nguyen [22]7 - [224]] - | 25
Siva and Xiang [29]((28.9] 30.4 [|39.6] 49
Siva et al. [28] 29.01 - |[|37.1| 47
PandeyNoCrop [24]|| - — [[36.7] 59T
PandeyCrop [24] — | = [[43.7] 617
Deselaers1Feat [8] - — [[35.0] 40
Deselaers4Feat [8] — — [[39.0] 50

[Our [[31.1]32.0]]424] 55 |
*As reported in [29]. T Requires aspect ratio to be set for initialisation.

Table 4. Average annotation results for PASCAL datasets using
different weakly supervised learning methods.

Comparison with Other Saliency Methods: We compare
our object proposal based annotation (Our) results against
other object proposal methods in table 3. For all meth-
ods, except Alexe MN, we select the first object location
proposal per image as the object of interest (annotation
for weakly labelled data). For Alexe MN, we select the
top 100 proposed bounding boxes and from these we se-
lect the bounding box with the highest objectness score,
with objectness scores taken from [3]. Our object proposal
has a relative improvement from all other object proposal
methods of at least 21% on PASCALO7 and 25% on the
PASCALQ7-6x2 datasets.

Comparison with Weakly Supervised Methods: As seen
in [24, 28, 29], the initial annotation of the object of inter-
est can be iteratively refined by training a deformable part-
based model (DPM) detector [10] and applying the trained
detector to the weakly annotated images known to contain
the object of interest. We iteratively train the DPM using
our object location proposals as the initial annotation, fol-
lowing [29]. Note for the iterative refinement we make use
of weak annotation, while the initialisation is unsupervised,
the final iterative annotation result is weakly supervised. A
numeric evaluation of all methods can be found in table 4.

Overall our object proposal based annotation obtains
high initial annotation accuracy and high iteratively refined
annotation accuracy; outperforming almost all existing ap-
proaches using a much simpler approach. However, on the
more restrictive single pose subset (VOC07-6x2) our anno-
tation accuracy is lower than that of Pandey and Lazeb-
nik [24] who make use of prior knowledge regarding the
aspect ratio of bounding boxes.

1 —Our (AP=0.532)

FT (AP=0.603)
08 —CA (AP=0.506) 1 —HC (AP=0.715)
—SR (AP=0.479) 08 RC (AP=0.794)
806 ! _ FT(AP=0.420) | N\
Z 506 \
£04 2o4
—Our (AP=0.728)
0.2 0.2/ —CA (AP=0.565)
i | | —SR (AP=0.355)
g 05 1 %% 05 1

Recall

(a) VOCO7 (b) MSRA
Figure 6. Per-pixel accuracy vs CA [13], SR [15], FT [1], HC [6],
RC [6].
0.75
—Our A+W (AP=0.532)

—Our A (AP=0.521)
—Our W (AP=0.522)

Figure 7. Variations of our
method: Our A - using similar
images without current image
Di \ {I}, Our W - using only
the current image I, and Our
A+W - using similar images
with current image Dy.

Precision

0.2

0.4
Recall

0.6

5.3. Evaluation of Saliency Maps

As in [13] we evaluate the saliency map’s ability to
predict foreground pixels by reporting the precision recall
curve (PRC) and average precision (AP) as a function of
the saliency map threshold. We use the PASCAL 2007 seg-
mentation data (422 images in the train and validation set),
where all object segments are used as foreground pixels. We
evaluate on the PASCAL dataset as it is a more challenging
dataset and the common dataset used for the task of annotat-
ing weakly labelled object data. For completeness we also
report PRCs for the MSRA saliency dataset [1].

Figure 6 shows the PRCs of our method and some other
existing saliency approaches; some examples can be seen
in fig. 8. Our approach perform better than many exist-
ing methods; particularly note the better performance over
the spectral residual (SR) method [15], used in the object
proposals of [3], and the context aware (CA) method [13],
which is closest to our formulation.

On the more restrictive MSRA dataset (fig. 6b), texture
based models are unneeded and better results can be achived
using coarsely quantized color models such as histogram
contrast (HC) or region contrast (RC) [6]. Of the two meth-
ods, HC has similar performance to our approach while RC
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Saliency (Our)

Context
Aware (CA)

Spectral
Residual (SR)

Frequency
Tuned (FT)

Flgure 8. Our image saliency in comparison to CA [13], SR [15],
and FT [1] methods.
has better performance. RC [6] explicitly targets segmen-
tation regions of unique colour. In MSRA, unique colors
often indicate salient objects but on VOC, unique color is
often indicative of a small patch of sky (see fig. 8 bott. left).
In section 2, we defined as salient patches with a low
probability being sampled from a set of similar images Dj.
In fig. 7, we analyse the contribution of using the current
image I in addition to other similar images when comput-
ing the saliency map. We plot the precision-recall curve
of the saliency map computed using similar images with-
out current image Dy \ {I} (across image saliency A), us-
ing just the current image / (within image saliency W),
and both combined D; (our combined A+W). Note that
although across-image saliency and within-image saliency
have similar performance, combining them provides a boost
in performance, particularly in the region of high-precision
we are most concerned with.

6. Conclusion

We have presented a novel unsupervised approach to the
problems of saliency and bounding box annotation®, and
shown how it substantially outperforms all other saliency
based approaches to bounding box annotation on real world
data. In comparison to existing approaches tailored for the
problem of detection from weak annotation, we outperform
all existing methods on the full vocC dataset. The power and
conceptual simplicity of our approach makes it an attractive
candidate to be combined with supervised approaches and
to be applied to a wide variety of problems.
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