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Abstract

This paper presents a method of learning reconfigurable
And-Or Tree (AOT) models discriminatively from weakly
annotated data for object detection. To explore the appear-
ance and geometry space of latent structures effectively, we
first quantize the image lattice using an overcomplete set
of shape primitives, and then organize them into a directed
acyclic And-Or Graph (AOG) by exploiting their compo-
sitional relations. We allow overlaps between child nodes
when combining them into a parent node, which is equiv-
alent to introducing an appearance Or-node implicitly for
the overlapped portion. The learning of an AOT model con-
sists of three components: (i) Unsupervised sub-category
learning (i.e., branches of an object Or-node) with the la-
tent structures in AOG being integrated out. (ii) Weakly-
supervised part configuration learning (i.e., seeking the
globally optimal parse trees in AOG for each sub-category).
To search the globally optimal parse tree in AOG efficiently,
we propose a dynamic programming (DP) algorithm. (iii)
Joint appearance and structural parameters training un-
der latent structural SVM framework. In experiments, our
method is tested on PASCAL VOC 2007 and 2010 detection
benchmarks of 20 object classes and outperforms compara-
ble state-of-the-art methods.

1. Introduction
1.1. Motivations, objectives and overview

In recent literature of object detection, compositional

hierarchy and deformable templates are widely used and

have shown improved performance. Most state-of-the-art

methods focus on weakly-supervised latent structure learn-

ing such as the deformable part-based model (DPM) [10]

and the stochastic And-Or templates [18]. By weakly-

supervised learning or learning from weakly annotated data,

it means that only the bounding boxes for whole objects and

no parts are available in training, e.g., in the PASCAL VOC

object detection benchmark [7]. As is emphasized in [10],
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Figure 1. Illustration of three methods for weakly-supervised

latent structure learning (top) and corresponding examples of
learned car models from PASCAL VOC2007 dataset [7] (bottom).
(a) shows the greedy pursuit method used by the deformable part-
based model [10,12], (b) the 3-layer quad-tree like decomposition
method used in [27], and (c) the proposed method in this paper.
The detection average precision (AP) are 54.2% for (a), 51.3%
for (b) and 57.1% for (c) respectively. See text for details.

incorporating deformable parts is the major factor improv-

ing accuracy performance, however, how to find good part

configurations (i.e., part shapes, sizes and locations which

are latent variables given weakly annotated data) has not

been addressed well in the literature. In existing work, there

are two types of methods specifying latent part configura-

tions: (i) The greedy pursuit method used by the DPM [10]

where, as illustrated in Fig.1 (a), only a single part type

(square with predefined size, e.g., 6 × 6) is adopted and
the part configuration consists of a fixed number (often 8)

of part instances placed by heuristic search [9, 12]. (ii) The
quad-tree like decomposition adopted in [27] where the part
configuration is predefined and the part types are fixed ac-

cordingly (see Fig.1 (b)).

Beside part configurations, another issue is how to learn

sub-categories in an unsupervised manner to account for

intra-class variations. Most existing work adopt k-mean
clustering method based on aspect ratios of labeled object

bounding boxes with k predefined (often k = 3) [10,12,27].

In this paper, we address the learning of sub-categories

and part configurations from weakly annotated data in a
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Figure 2. High-level illustration of the proposed And-Or Tree

(AOT) model of an object category. See text for details.

principled way by learning reconfigurable And-Or Tree

(AOT) models discriminatively.

Method overview. Fig.2 gives a high-level illustration
of our AOT models. An object category (e.g., car) is rep-

resented by an Or-node (green circle) and it consists of an

unknown number of alternative sub-categories (e.g., differ-

ent viewpoints) which will be learned unsupervisedly. We

unfold the space of all latent part configurations using a di-

rected acyclic AOG (the solid gray triangle), and then seek

the globally optimal parse tree in AOG using a DP algo-

rithm. The globally optimal part configuration for a sub-

category is obtained by collapsing the corresponding glob-

ally optimal parse trees onto image lattice (see the rightmost

one). So, in the final model, each subcategory is represented

by a root terminal node (red rectangle), and a collection of

part terminal nodes (collapsed from the parse tree). Fig.1

(c) shows the learned part configuration for a sub-category

of cars (side-view). In terms of the form of the final model,

our AOT can be treated as a generalized representation for

a mixture of DPMs [10].

Fig.4 shows an example of our directed acyclic AOG.

We first quantize the image lattice using an overcomplete

set of shape primitives (e.g., all rectangles with different

sizes and aspect ratios enumerated in a given image lattice,

see Fig.3 (a) and (b)), and then organize them into a di-

rected acyclic AOG by exploiting their compositional rela-

tions (see Fig.3 (c)) [28]. We allow overlaps between child

nodes when combining them into a parent node, which is

equivalent to introducing an appearance Or-node implicitly

for the overlapped portion (since there will be two differ-

ent sets of appearance parameters in the final model) to ac-

count for the appearance variations. The constructed AOG

can generate all possible part configurations. For example,

without considering overlaps, the number of part configura-

tions is listed in Table.1. The number will further increase

geometrically if overlaps are considered.

Then, the learning of an AOT model consists of three

components as follows.

(i) Unsupervised sub-category learning. We first com-
pute the n × n similarity matrix of n training positive ex-

amples, and then utilize the affinity propagation clustering

method [11] to learn the sub-categories automatically. We

propose a method of measuring the similarity between any

two positive examples by integrating out all the latent struc-

tures in AOG.

(ii) Weakly-supervised part configuration learning. For
each sub-category, we create the AOG for the specified

model grid. We first search the globally optimal parse tree

by a DP algorithm, and then obtain the part configuration by

collapsing the terminal nodes in the parse tree onto image

lattice. The proposed DP algorithm consists of two phases:

(1) The bottom-up phase factorizes the scoring function

based on the depth-first search (DFS) of AOG. Appear-

ance templates are discriminatively trained for terminal-

nodes and their error rates on validation dataset are calcu-

lated. Then, each encountered Or-node selects the child

node with the minimal error rate, and encountered And-

nodes are treated as local deformable part-based models to

calculate their error rates. (2) In the top-down phase, we

retrieve the globally optimal parse tree using the error rates

of nodes in AOG to guide the breadth-first search (BFS).

(iii) Joint appearance and structural parameters learn-
ing. Given the discovered sub-categories and their corre-
sponding part configurations (i.e., an AOT), we train the

parameters jointly using latent structural SVM [10,24].

In experiments, we tested our method on PASCAL

VOC2007 [7] and VOC2010 [8] detection benchmark of

20 object categories, and obtained better performance than

state-of-the-art baseline methods [3, 9, 10, 12, 27] .

1.2. Related work and our contributions
In the literature of part-based object detection, there are

four main directions on which researchers are working to

improve performance.

(i) Enriching the appearance features. Many work ex-
tended the DPM [10] by incorporating other types of fea-

tures complementary to HOG, such as local binary pattern

(LBP) features [21,25], irregular-shaped image patches [15]

and color attributes [14], which often increase the model

complexity significantly. On the other hand, to make the

model less complex, there are some representative work, in-

cluding the steerable part models [17] which factorize the

appearance parameters and share the linear subspace be-

tween parts, the sparselets [19] which build the sparse cod-

ing for the learned appearance parameters, and the hybrid

image templates (HIT) [18] which integrate different com-

plementary information (sketch, texture, flat and color) us-

ing the information projection principle, etc..

(ii)Combining with contextual information or non-linear
kernels. Different types of contextual information are ex-
plored, such as the multi-category object layout context

[6, 10, 15] and the image classification context [5, 21]. On

the other hand, instead of only using linear SVM, nonlinear

kernels are used to do object detection with cascade [22].
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(iii) Incorporating strong supervision. Since introduc-
ing deformable parts is the major factor improving perfor-

mance, there are some work extending DPM by providing

strong supervision for parts, instead of treating them as la-

tent variables. 2D semantic part annotations for animals

are used in [2], keypoint annotations are used by the pose-

lets [3], and 3D CAD car models are adopted by [16]. An-

other interesting work trains DPMs interactively [4].

(iv) Exploring latent part configurations. Beside the two
methods listed above, the geometric And-Or quantization

method was proposed for scene modeling recently in [23,

26], where non-overlapped shape primitives and generative

learning are used. [20] adopted the idea in object detection.

In this paper, we follow the similar idea of And-Or quan-

tization of image grid, but incorporate overlapping to ac-

count for the appearance “Or” implicitly, and adopt discrim-

inative learning method.

Our contributions. This paper makes four main con-
tributions to the weakly-supervised latent structure learning

for object detection.

(i) It presents a directed acyclic AOG for exploring the

space of latent structures effectively.

(ii) It presents an unsupervised method of learning sub-

categories of an object class.

(iii) It presents a DP algorithm to learn the reconfigurable

part configuration efficiently.

(iv) It obtains better performance than comparable state-

of-the-art methods on the detection benchmark of 20 object

classes in PASCAL VOC2007 and VOC2010.

2. Unfolding the space of latent structures
In this section, we present how to construct the directed

acyclic AOG to explore the space of latent structures.

Let Λ be the image grid withW ×H cells, and assume

rectangular shapes are used for parts. To decompose Λ,
we need to specify (i) what the part types are (i.e. sizes

and aspect ratios), (ii) where to place them, and (iii) how

many instances each part type should have. Without posing

some structural constrains, it is a combinatorial problem.

As stated above, this is simplified by either adopting the

greedy pursuit method with a single part type or using some

predefined and fixed structure in existing work. We address

this issue as follows.

Part types. A part type t is defined by its width and
height (wt, ht). Starting from some minimal size (such as

2 × 2 cells), we enumerate all possible part types which
fit the grid Λ, i.e., 2 ≤ wt ≤ W and 2 ≤ ht ≤ H (see

A,B,C,D in Fig.3 (a) where A is of 2× 2 cells).
Part instances. An instance of a part type t, denoted by

ti, is obtained by placing t at a position (xti , yti) ∈ Λ. So,
it is defined by a bounding box in Λ, (xti , yti , wt, ht). The
set of all valid instances of a part type t is then defined by
{(xti , yti , wt, ht)|(xti , yti) ∈ Λ, (xti +wt, yti +ht) ∈ Λ}.

A B C D …

...

. . .

…

…

…

...

...

...

(a) Dictionary of Part Types
D1

(c) Decomposition

D A A

D48

B B

width

height
B

(c.2) w/o overlap (c.3) with overlap

(b) Part Instances

(c.1) terminate

overlap

B

A: 2×2
B: 2×3...

(2, 3, 5, 2)

Figure 3. Illustration of (a) the dictionary of part types (i.e., all

rectangles with different sizes and aspect ratios enumerated in a

given image grid), and (b) part instances generated by placing a

part type in image grid. Given the part instances, (c) shows how a

sub-grid can be decomposed in different ways. We allow overlap

between child nodes (see (3) in (c)). See text for details.

Fig.3 (b) shows the example of placing part type D (2 × 5
cells) in a 9× 10 image grid.

The AOG organization. For any sub-grid (x, y, w, h) ⊆
Λ (e.g., (2, 3, 5, 2) in the right-top of Fig.3 (c)), we can ei-
ther terminate it directly to the corresponding part instance

(see Fig.3 (c.1)), or decompose it into two smaller sub-

grids using either horizontal or vertical cut. Depending on

the side length of (w, h), we may have multiple valid cuts
along both directions (see Fig.3 (c.2)). When cutting ei-

ther side we allow overlaps between the two sub-grids up

to some ratio (see Fig.3 (c.3)). Then, we represent the sub-

grid as an Or-node, which has a set of child nodes including

a terminal-node (i.e. the part instance directly terminated

from it), and a number of And-nodes (each of which rep-

resents a valid decomposition). This procedure is done re-

cursively for the obtained two smaller sub-grids. By start-

ing from the whole grid Λ and using BFS, we construct the
AOG. Denote by G =< V,E > an AOG where the node set
V = VT ∪VOr∪VAnd consists of the terminal-node set VT ,

the Or-node set VOr and the And-node set VAnd, and E is

the edge set. We summarize the algorithm for creating the

AOG in Alg.1 (which takes less than 1 second for typical

grids, e.g. 20× 18). See Fig.4 for an example.

The number of part configurations. Given an AOG,
to count the number of all possible part configurations, we

traverse through it using DFS: (i) For each encountered ter-

minal node, the number of configuration is one, (ii) For

each And-node, the number of configurations is the sum of
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Or-node
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Terminal-node

Figure 4. Illustration of the directed acyclic And-Or Graph (AOG) proposed to explore the space of latent structures of objects in this paper.

For clarity, we show the AOG structure constructed for unfolding part configurations in a 3 × 3 grid. The AOG can generate all possible
part configurations (the number is often huge for typical grid sizes, see Tabel.1), while allowing efficient exploration with a DP algorithm

due to the property of being directed acyclic. See text for details. (Best viewed in color and magnification)

Input: Image grid Λ withW ×H cells; Minimal size

of a part type (w0, h0); Maximal overlap ratio
r between two sub-grids.

Output: The And-Or graph G =< V,E > (see Fig.4)

Initialization: Create an Or-node OΛ for the grid Λ,
V = {OΛ}, E = ∅, BFSqueue= {OΛ};
while BFSqueue is not empty do

Pop a node v from the BFSqueue;
if v is an Or-node then

i) Add a terminal-node t (i.e. the part instance)
V = V ∪ {t}, E = E ∪ {< v, t >};
ii) Create And-nodes Ai for all valid cuts;

E = E ∪ {< v,Ai >};
if Ai /∈ V then

V = V ∪ {Ai};
Push Ai to the back of BFSqueue;

end
else if v is an And-node then

Create two Or-nodes Oi for the two sub-grids;

E = E ∪ {< v,Oi >};
if Oi /∈ V then

V = V ∪ {Oi};
Push Oi to the back of BFSqueue;

end
end

end
Algorithm 1: Building the And-Or Graph using BFS

that of its two child nodes, and (iii) For each Or-node, the

number of configurations is the product of that of its child

nodes with the double-counting between the child nodes

subtracted. Table.1 lists some cases from which we can see

that our AOG can cover a large number of part configura-

tions using a relatively small set of part instances.

Grid min. part #Config. #Term. #And
3× 3 1× 1 319 35 48

5× 5 1× 1 76,879,359 224 600

10× 12 2× 2 3.8936e+009 1409 5209

Table 1. The number of part configurations generated from our

AOG without considering the overlapped compositions.

3. Learning an AOT Model
In this section, we present the method of learning an

AOT model from weakly annotated data.

The weakly annotated data. Denote by D+ =
{(I1, B1), · · · , (In, Bn)} the set of n positive training im-
ages for a given object category where Bi represents the la-

beled bounding box of an object instance in Ii (without loss
of generality we assume each image Ii contains only one
object instance). Denote by D− a set ofm negative images

(i.e., images in which no object instances of the given object

class appear). Appearance feature. In this paper, we use
the modified HOG appearance feature [10] only for better

understanding the performance improvement by exploring

the latent structures using our AOG.

Three steps in learning. Since only the object bounding
boxes Bi’s are given in positive images, to learn the AOT

model, we utilize three steps as follows:

(i) To account for the intra-category variations (e.g.,

viewpoints and poses which are not labeled), we initialize

the latent sub-category label for each positive example by

clustering. We first measure the similarity between any two

positive examples by integrating out all the latent structures

in AOG, and then do clustering based on the affinity propa-

gation algorithm [11].

(ii) For each sub-category And-node, we select the

model grid Λ and construct its AOG to unfold the latent

structures, and then search the globally optimal part config-

uration in the AOG by proposing a DP algorithm.
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(iii) Jointly training the whole AOT model on D+ and

D− under the latent structural SVM framework [10, 24].

3.1. Learning sub-categories
In existing work, a predefined number of sub-categories

is used, and the assignment of sub-category label for each

positive example Ii is initialized based on the aspect ratio
of bounding box Bi [10, 12, 27]. The limitations of using

aspect ratios only are pointed out in several work [1, 2, 13]

recently. We address this problem by our AOG.

Measuring similarity by integrating out all the latent
structures. We first select a prototype size which is smaller
than at least 90% bounding boxes in D+, and then normal-

ize all the positive examples to that size with their own as-

pect ratios unchanged. For simplicity of notation, we still

use Bi’s to denote the normalized bounding boxes.

For any two positive examples (Ii, Bi) and (Ij , Bj) (1 ≤
i < j ≤ n), we obtain all the boxes of interest (BOI), de-
noted by ΩBOI, which can overlap more than 70% with both

Bi and Bj . This amounts to explore the unknown align-

ment. The similarity, Sim(Bi, Bj), is defined by

Sim(Bi, Bj) = max
Λ∈ΩBOI

Sim(Λ|Ii, Ij), (1)

where by definition Sim(Bi, Bj) = 0 if ΩBOI is empty, and
Sim(Λ|Ii, Ij) is computed by integrating out the AOG con-
structed for decomposing Λ. We have,

(i) For each terminal-node t ∈ VT , denote by Λt =
(xt, yt, wt, ht) ∈ Λ the sub-grid occupied by it. Let

Fi(Λt) and Fj(Λt) the HOG feature vectors extracted
for Λt in image Ii and Ij respectively. Then, we obtain

Sim(Λt|Ii, Ij) = |Λt|
d(Fi, Fj)

, (2)

where d(·, ·) is the Euclidean distance.
(ii) For each Or-node O ∈ VOr, we compute

Sim(ΛO|Ii, Ij) = mean(Sim(Λv|Ii, Ij)), averaging
over its child nodes v ∈ ch(O) ⊂ (VT ∪ VAnd) (i.e.

integrating out all the latent structures).

(iii) For each And-node A ∈ VAnd, we compute

Sim(ΛA|Ii, Ij) =
∑

v∈ch(A) Sim(Λv|Ii, Ij).
Then, we follow DFS order of nodes in the AOG to do

the calculations above, and obtain Sim(Λ|Ii, Ij) from the

root Or-node. Note that aspect ratios of Bi’s are also taken

into account implicitly due to the construction of ΩBOI.
Clustering by affinity propagation. Denote by S the

symmetric similarity matrix for positive examples in D+

where S(i, j) = S(j, i) = Sim(Bi, Bj) (see an example in
the top-left of Fig.5 computed for the horse class in PAS-

CAL VOC2007). Given S, we use the affinity propagation
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Figure 5. Illustration of learning sub-categories by clustering

(horses in PASCAL VOC2007). Top: The similarity matrix and
the plot of net similarity improvements using the affinity propa-

gation clustering (based on which we choose 3 clusters). Bottom:
We show the average images of the three sub-categories.

clustering method [11] to initialize the assignment of sub-

category label for each positive example. We search the

number of clusters over k = 2 : 12 in our experiments when
using the affinity propagation, and choose the best number

of clusters K which gives the largest improvement of the

net similarity (which is returned from affinity propagation

clustering) relative to its previous one (see the plot in the

top-right of Fig.5).

Now, for each positive example (Ii, Bi) ∈ D+, we

have assigned to it the initial sub-category label �i ∈
{1, · · · ,K}, and we have the initial data set D+

k =
{(Ii, Bi, �i)|�i = k} for each sub-category And-node.

The initial AOT consists of an Or-node for the object

class, and K root terminal-nodes. Based on the initial sub-

category assignment, we use the most frequent aspect ratio

in D+
k as the model aspect ratio, and then choose model

size such that it can recover more than 80% examples in

D+
k when the model is placed in the HOG feature pyramid,

similar to [10, 12]. Denote by Λk the model grid for the

sub-category And-node k. We use latent SVM [10] to train

the initial appearance parameters for the K root terminal-

nodes, θapp
Λk , and we obtain the updatedD

+
k ’s where the sub-

category And-node assignment for each positive example is

based on the trained initial AOT.

3.2. Learning the full AOT
3.2.1 Learning part configurations by DP
For each Λk, we double its size to find part configurations

to account for finer appearance information, and create the

AOG Gk for Λk using the method presented in Sec.2. To

learn the part configuration for a sub-category And-node k,
we need to specify (i) how to evaluate the goodness of con-

figurations generated from AOG, and (ii) how to seek the

globally optimal parse tree in AOG. In this paper, we evalu-
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ate a part configuration in terms of its discriminative power

(i.e., the error rate calculated using D+
k and D

−), and pro-
pose a DP algorithm to find the globally optimal parse tree.

The scoring function of an AOG.We first augment our
AOG by introducing appearance and deformation parame-

ters for terminal-nodes t ∈ VT and we have

G =< V,E,Θapp,Θdef >, (3)

where each terminal node t has its own appearance param-
eter θappt ∈ Θapp and deformation parameter θdeft ∈ Θdef .

Appearance features and parameters. We use HOG fea-
tures. Given D+

k and D−, we can train a linear SVM us-

ing the HOG feature for each terminal-node individually to

obtain θappt . In practice, for simplicity, we initialize them

based on the learned θapp
Λk above.

Deformation features. The anchor position of terminal
node t is (xt, yt) ∈ Λ. Denote by δ = (dx, dy) the dis-
placement in Λ. The deformation features are defined by a
quadratic function Φ(δ) = (dx2, dx, dy2, dy) which is also
used in DPM and its variants [10, 27].

We use linear functions to evaluate both the appearance

scores and the deformation scores. Given the appearance

and deformation parameters and an input image IΛ, we can
compute the scores for nodes in Gk (as illustrated in Fig.6),

(i) For a terminal-node t ∈ VT , we have

Score(t|IΛ) = max
δ

[θappt · F (IΛt⊕δ)− θdeft · Φ(δ)], (4)

where Λt ⊕ δ means the anchor box is displaced by δ.

(ii) The score of an Or-node O ∈ VOr is defined by

Score(O|IΛ) = max
v∈ch(O)

Score(v|IΛ). (5)

(iii) The score of an And-node A ∈ VAnd is defined by

Score(A|IΛ) =
∑

v∈ch(A)

Score(v|IΛ). (6)

Deformation parameters. Above, we initialize θdeft = �0
and set δ to the half size of model grid to obtain the local
maximal appearance scores and corresponding deformed

positions for terminal-nodes on D+
k and D

−. Then, we es-
timate θdeft ’s using linear discriminant analysis (LDA), and

recompute the scores of terminal-nodes.

The DP algorithm. Denote by C(Λk) a configuration
generated from AOG Gk which consists of a set of selected

terminal-nodes (i.e. part instances). We define the globally

optimal part configuration in AOG by,

C∗(Λk) = arg min
C∈Gk

Err(C(Λk)) (7)

D +
D

A
A

BB

Anchor position Deformed position

MAX

D A B B A

Figure 6. Illustration of computing scores for nodes in an AOG

where A, B andD represent different part types.

where Err(·) is the error rate of a configuration computed
using D+

k and D
−.

The DP algorithm has two phases: (i) With Eqn.4 and

Eqn.6, we can calculate the error rates for each terminal-

node and And-node. The Or-nodes take the minimal error

rate of its child nodes. (ii) In the top-down pass, based on

BFS, we start from the root Or-node to retrieve the globally

optimal parse tree, and then obtain the part configuration.

3.2.2 Jointly training the parameters of full AOT

After the part configurations are initialized, we adopt the la-

tent structural SVM [10, 24] to retrain the full AOT jointly

similar to [10, 27]. More details of training by latent struc-

tural SVM are referred to [10, 24].

4. Experiments
We evaluate our method on the detection benchmark of

20 object categories in both PASCAL VOC2007 [7] and

VOC2010 [8], and follow their experimental protocols in

training and testing. Overall, we obtain better performance

than the baseline methods.

Baseline methods. We compare with 4 baseline meth-
ods, the original DPM work [10], the latest two versions of

the DPM (i.e. voc-release4 [9] and voc-release5 [12]), and

the 3-layer DPM work [27]. The comparison are fair since

all the methods use the same appearance features with the

objective to learn better part configuration.

Parameter setting. In creating AOG, the two parame-
ters are the minimal part size and the allowed overlapping

ratio, which are set to 3×3 and 0.5 respectively in our exper-
iments. In training the parameters by latent structural SVM,

we use the same settings as in [10, 27] for fair comparison.

Detection results We summarize the detection results
and performance comparison in Table.2 for PASCAL

VOC2007 and Table.3 for PASCAL VOC2010.

In PASCAL VOC2007, we obtain the best performance

for 17 out of 20 object categories, and for some object

classes we made significant improvement relative to the
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Table 2. Performance comparison using Average Precision (AP) for the 20 object categories in PASCAL VOC2007 dataset (using the

protocol, competition ”comp3” trained on VOC2007). All the 5 models use the HOG feature only, and the performance are obtained

without post-processing such as bounding box prediction or layout context rescoring. We obtain better performance for 17 object classes.

aero bike boat bttle bus car mbik train bird cat cow dog hrse sheep pers plant chair tble sofa tv avg.

DPM [10] 29 54.6 13.4 26.2 39.4 46.4 37.8 34 0.6 16.1 16.5 5 43.6 17.3 35 8.8 16.3 24.5 21.6 39 26.3

voc-r4 [9] 29.6 57.3 17.1 25.2 47.8 55 46.5 44.5 10.1 18.4 24.7 11.2 57.6 18.6 42.1 12.2 21.6 23.3 31.9 40.9 31.8

voc-r5 [12] 32.4 57.7 15.7 25.3 51.3 54.2 47.5 44.2 10.7 17.9 24 11.6 55.6 22.6 43.5 14.5 21 25.7 34.2 41.3 32.5

3-layer [27] 29.4 55.8 14.3 28.6 44 51.3 38.4 36.8 9.4 21.3 19.3 12.5 50.4 19.7 36.6 15.1 20 25.2 25.1 39.3 29.6

Ours 35.3 60.2 16.6 29.5 53 57.1 49.9 48.5 11 23 27.7 13.1 58.9 22.4 41.4 16 22.9 28.6 37.2 42.4 34.7

Table 3. Performance comparison using Average Precision (AP) for the 20 object categories in PASCAL VOC2010 dataset (using the

protocol, competition ”comp3” trained on VOC2010). All the performance are obtained without post-processing such as bounding box

prediction or layout context rescoring for the first two methods. We also compare with the poselet [3] in the third row since the objective

of poselet is aslo to find better parts (but their results are obtained by following a different protocol, competition ”comp4”, trained on own

data, with additional keypoint annotations used).

aero bike boat bttle bus car mbik train bird cat cow dog hrse sheep pers plant chair tble sofa tv avg

voc-r5 [12] 42.9 47.2 11.1 26.3 48.4 40.2 44 39 10.3 22.9 22.9 19.9 41.5 28.3 41 7.6 17 10.2 18.2 32.9 28.6

Ours 44.6 48.5 12.9 26.3 47.5 41.6 45.3 39 10.8 21.6 23.6 22.9 40.9 30.4 37.9 9.6 17.3 11.5 25.3 31.2 29.4

poselet [3] 33.2 51.9 8.5 8.2 34.8 39 48.8 22.2 - 20.6 - 18.5 48.2 44.1 48.5 9.1 28 13 22.5 33

runner-up (2.5% for bike, 2.1% for car, 4% for train, and

2.9% for dining table).

In PASCAL VOC2010, we obtain better performance

than voc-release5 [12] for 13 out of 20 classes. We also

compare with the poselet work [3] since the objective of

poselet is also to find better parts (note that the detection

results of poselet are obtained by following different proto-

col, i.e. trained on their own data with additional keypoint

annotations used). We obtain better performance for 10 out

of 18 object categories on which poselet tested.

Fig.7 shows some examples of detection results for the

20 object categories in PASCAL VOC2007.

5. Conclusion
This paper presents a method of learning AOT models

discriminatively from weakly annotated data for object de-

tection, with two main issues being addressed: (i) A di-

rected acyclic AOG is proposed to explore the space of la-

tent structures effectively, and (ii) A DP algorithm is used to

search the huge space of latent structures efficiently to find

the globally optimal AOT. The proposed method was evalu-

ated on the detection benchmark of 20 object classes in both

PASCAL VOC2007 and VOC2010 and obtained better per-

formance than state-of-the-art baseline methods.

In our on-going work, we are studying (i) how to incor-

porate the appearance Or-node for different types of fea-

tures complementary to HOG (such as LBP and color) into

our AOG explicitly, and (ii) how to share both part appear-

ance and part configuration in learning with AOG among

different sub-categories with-in the same object class, and

between different object classes.
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