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Abstract

This paper presents a novel approach to characterize de-
formable surface using intrinsic property dynamics. 3D dy-
namic surfaces representing humans in motion can be ob-
tained using multiple view stereo reconstruction methods or
depth cameras. Nowadays these technologies have become
capable to capture surface variations in real-time, and give
details such as clothing wrinkles and deformations. Assum-
ing repetitive patterns in the deformations, we propose to
model complex surface variations using sets of linear dy-
namical systems (LDS) where observations across time are
given by surface intrinsic properties such as local curva-
tures. We introduce an approach based on bags of dynam-
ical systems, where each surface feature to be represented
in the codebook is modeled by a set of LDS equipped with
timing structure. Experiments are performed on datasets of
real-world dynamical surfaces and show compelling results
for description, classification and segmentation.

1. Introduction
Since several decades computer vision technologies have

provided various solutions for scene understanding using

global shape and appearance of objects (e.g., face detection,

pose estimation, action recognition, etc.). Nowadays, ad-

vances in visual sensing systems (for color and depth) allow

us to capture smaller variations and details on object sur-

faces in real-time (i.e., high resolution at high frame rate).

For example, techniques such as performance capture or 3D

video [27, 17, 34, 11, 20] can return complete and accurate

3D dynamic surface models, reconstructed by multiview

stereo (MVS) methods or fusion of depth maps. Hence, it is

now possible to increase the understanding level by exploit-

ing local geometry information. Tackling this problem can

potentially help to overcome many issues caused by appear-

ance inconsistency that affect general computer vision and

pattern recognition algorithms. Here, we propose to char-

acterize, classify and segment dynamic deformable surfaces

using surface intrinsic property dynamics (see Fig. 1).

Dynamic surfaces representing real-world objects (e.g.,

Figure 1. Dynamic surface characterization from intrinsic property

extraction, tracking, and dynamics modeling across time. Here,

we show local curvatures estimated at each surface point, and cur-

vature maps obtained after mapping on square domain. Surface

regions (e.g., colored squares) can be classified using curvature

dynamics modeled by sets of dynamical systems {LDS}.

humans, soft tissue organs, fluids, etc.) can be assumed as

a stream of temporally continuous and indefinitely varying

3D geometrical data that possess certain temporal statistics.

For example, clothing made of soft fabrics worn by a human

in motion usually exhibit more surface variations that bare

skin. Unfortunately, to capture those complex variations

one cannot (only) rely on visual appearance-based methods

[13, 7, 30], as surface texture of complete 3D surface mod-

els can be poor (e.g., skin, solid color clothing, etc.) and is

usually subject to color inconsistencies due to the different

lighting conditions from multiple capture viewpoints. On

the other hand, geometry is subject to reconstruction arti-

facts (caused by occlusion, sensor noise, resolution, etc.)

and has therefore limited accuracy. However, actual sens-

ing devices and capture systems can already provide data

which are good enough for research and many applications,

and it is reasonable to assume that reconstruction accu-

racy and robustness will continue to improve very quickly.

Hence, we propose to characterize dynamic surfaces using a
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geometry-dynamics-based approach that relies on intrinsic

surface properties as follows: (1) surfaces are first aligned

in order to locate and track surface feature (e.g., local curva-

ture) variations over time, (2) temporal variations are then

modeled using several linear dynamical systems (LDS) per

feature to capture both spatiotemporal variations and state

changes, and (3) timing structure of LDS are introduced into

bags of dynamical systems (BoS) that are used for descrip-

tion and classification of surface regions (see Fig. 1).

The rest of the paper is organized as follows. The next

section discusses work related to the techniques presented

in this paper. Section 3 presents the extraction dynamic sur-

face intrinsic feature. Section 4 introduces the LDS and

timing structure models. Section 5 describes surface dy-

namics modeling using bags of dynamical systems. Sec-

tion 6 shows experimental results. Section 7 concludes with

a discussion on our contributions.

2. Related work
Complete reconstruction of dynamic surfaces is an active

research area due to the numerous potential applications:

medicine, sports, entertainment, digital archiving, etc. Dur-

ing the last decade, several multiview video systems and

applications have been developed [22, 27, 17, 10, 2, 34, 11,

18, 19, 20, 37]. They are able to capture real-world human

or animal performances, and produce free-viewpoint video

of the subjects in motion in a virtual world (see Fig. 2).

Usually, several sensing devices are spaced around a scene

(e.g., in a studio) and synchronously perform the capture .

The devices can either be a set of calibrated video cameras,

or even handheld depth cameras. Additionally, 3D laser

scanner can be used to leverage the reconstruction accu-

racy. With these techniques, subjects are captured without

wearing any special markers, as opposed to motion capture

methods (mocap). The resulting performance capture or 3D

video consists of a stream of textured surface mesh models

undergoing free-form deformation.

Traditionally every frame is reconstructed indepen-

dently, and consecutive meshes have inconsistent connec-

tivity (and topology). However, recent efforts have been

done to produce consistent sequences by 3D scene flow es-

timation, surface matching or tracking [39, 33, 12, 38, 41,

4, 28, 35, 16, 3]. Nevertheless, photometric feature match-

ing approaches require surface models with good texture

and color consistency between the multiple capture view-

points, and across time. Hence, most appearance-based

methods are not able to accurately track true deformations

of low-frequency surface details (e.g., wrinkles on solid

color clothing, etc.).

We propose to model complex surface variations using

linear dynamical systems (LDS). LDS are a generalization

of Hidden Markov Models (HMM) [29] where the underly-

ing state-space is continuous instead of discrete. In particu-

Figure 2. Dynamic surfaces reconstructed from multiview stereo

methods (MVS) [2]: surface and processed surface (curvatures).

lar, dynamical models have been applied in computer vision

for dynamic texture modeling [32, 13], recognition[32, 30],

and segmentation[14, 7, 40]. And as well for facial move-

ment synchronization [24], human action recognition [9],

etc. In [30], the authors propose to tackle challenging sce-

narios and model dynamic textures with a collection of

LDS, by following the bag of features (BoF) approach,

where a LDS is associated to a spatiotemporal volume ob-

tained by tracking a feature point. However, in the context

of dynamic surfaces from human performance, the nature

of deformations can be heterogeneous in time, and there-

fore requires several LDS for modeling. It is then necessary

to take into account the timing structure of LDS. Thus, dy-

namic surfaces can be segmented into patches that are clas-

sified into regions corresponding to each body parts (e.g.,

head, upper-body, arms, etc.). To the best of our knowl-

edge, no prior work has attempted to tackle this problem.

3. Dynamic surface feature extraction

This section presents surface intrinsic feature extraction

from surface points which are tracked across time. In par-

ticular, we estimate local curvatures as features using a con-

tinuous surface shape index.

3.1. Surface intrinsic characterization

To perform surface intrinsic characterization, we pro-

pose to represent local curvatures by computing the Koen-

derink shape index for each surface point, as it is known

to be more stable for natural scenes than a classification by

Gaussian and mean curvatures [25]. The shape index de-

scribes the local type of a shape as a continuous parameter.

The differential structure of a surface can be captured by

the local Hessian matrix H, which is computed using sur-

face normals:

H =

⎛
⎝ − (

∂n
∂x

)
x

− (
∂n
∂x

)
y

−
(

∂n
∂y

)
x
−

(
∂n
∂y

)
y

⎞
⎠ , (1)
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Figure 3. Local curvature variation across time: a) from surface alignment [4], b) from MVS ground truth [34] and c) from alignment and

correction. Although global geometry is well preserved by [4], local geometry information is lost across time (see boxes).

where n is a surface normal, and which eigenvalues are the

principal curvatures κ1 and κ2 (κ1 ≥ κ2). For all surface

point, the shape index σ describes local surface topology in

terms of the principal curvatures:

σ =
2

π
arctan

κ2 + κ1

κ2 − κ1
. (2)

The values of σ ∈ [−1, 1] encode the type of curvature such

as: cup, rut, saddle rut, saddle ridge, ridge, dome, cap, etc.

Local curvatures computed on different surface meshes are

shown in Fig. 1, 2 and 3. Cups are in blue and caps in red.

3.2. Intrinsic feature tracking

One challenge to overcome when characterizing surface

dynamics is surface alignment for surface point tracking.

As discussed in Sect. 2, methods involving color informa-

tion cannot be used for that purpose as surfaces from per-

formance capture (or 3D video data) usually suffer from

color inconsistency or poorly textured regions. As well,

methods which are too sensitive to surface deformation or

topology change can produce inaccurate results. Here, we

propose to use [4] to perform surface alignments indepen-

dently from color information and topology change. Nev-

ertheless, while the global surface geometry is correctly de-

formed and aligned across time, the patch-based approach

does not preserve intrinsic information such as local curva-

tures. Hence, we propose to register original surface meshes

(with computed local curvature information at full resolu-

tion) to sequences aligned as in [4], and correct local cur-

vature with exact values for each mesh vertex on the lat-

ter ones by assigning the nearest neighbor values. Actu-

ally, 3D video sequences obtained from MVS usually con-

tain surface noise. However, as the reconstruction is per-

formed frame-by-frame they can still be a good approxi-

mation of ground truth surface as no noise is propagated

through the sequence, as opposed to spatiotemporal recon-

struction. Figure 3 shows local curvatures computed on sur-

face mesh models across time. Curvature maps obtained af-

ter surface alignment and mapping on square parametriza-

tion domain [31] are given for visualization purpose. Note

that recently in [36], the authors have proposed an invariant

surface descriptor that could potentially be used for surface

alignment and surface point tracking.

4. Dynamic surface modeling using LDS
When representing dynamic surfaces as curvature

maps (see Fig. 1 and 3), analogy can be made with

dynamic textures [32]. However, surfaces from perfor-

mance capture can exhibit heterogeneous deformations

in time (see Sect. 2). Hence we model surface dynamics

using hybrid linear dynamical systems (hybrid LDS) that

can describe both continuous and discrete events. The

model consists of a two-layer architecture: (1) a set of N
LDS D = (D1 . . . DN ) to model complex continuously

changing events, and (2) a finite state machine (FSM) that

represents states and state transitions (i.e., duration and

temporal relationship).

4.1. Hybrid linear dynamical system

Assuming a temporal sequence of an observed signal

Y = {y(t)}t≥0, y(t) ∈ Rm, and its hidden states X =
{x(t)}t≥0, x(t) ∈ Rn belonging to a continuous state

space, a linear dynamical system Di can be defined as:{
x(t+ 1) = Aix(t) + gi + vi(t)
y(t) = Cx(t) + w(t),

(3)

where Ai ∈ Rn×n is the state transition matrix which mod-

els the dynamics of Di, gi is a bias vector and C ∈ Rm×n is

the observation matrix which maps the hidden states to the

output of the system by linear projection. vi(t) ∼ N (0, Qi)
and w(t) ∼ N (0, R) are process and measurement noises

modeled as Gaussian distributions with null averages and

Qi and R covariances respectively. Particularly (Ai, C) ∈
GL(n)×ST(m,n), where GL(n) is the group of invertible

matrices of size n, and ST(m,n) is the Stiefel manifold.

Eq. 3 is known for its ability to model complex spatiotem-

poral variations (e.g., for dynamic textures [13, 30], human

actions [9]). For heterogeneous scenes or patterns, mixture
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of LDS are used, and the number N of LDS and all the

LDS parameters can be estimated using training datasets

and optimized by Expectation-Maximization (e.g., for dy-

namic texture segmentation [7], and facial movement recog-

nition [24]).

In order to model the system state changes, the set of

LDS D is represented by a finite state machine (FSM). The

FSM consists of a discrete set of statesQ = {qi}Ni=1, where

each qi corresponds to a LDS Di. Hence, as {qi} (and there-

fore Di) is activated, a sequence of continuous states {x(t)}
is generated and mapped to the output observation space as

{y(t)}. {y(t)} can then be entirely modeled by a set of N
LDS, and the state timing structures given by the FSM layer.

4.2. Patch-based spatiotemporal description

As surfaces are represented by (polygonal) meshes, nu-

merical approximations have to be handled. Moreover, drift

effects inherent to [4] should to be compensated (especially

for long sequences). Hence, we propose to consider one

spatiotemporal descriptor per patch, where a patch consists

of a set of mesh vertices. In our implementation, patches

are as in [4] (e.g., the sequence Bouncing [11, 4] contains

450 patches having 4 to 13 vertices each), and we model

each patch using N LDS.

Figure 4 shows signals {y(t)} in the observation space,

representation of hybrid LDS model with N = 4 LDS using

intervals, and generated signals from the model. Here, each

interval is described by a state qi of the FSM (with a unique

color) and a duration τj ≥ 0.

Figure 4. Hybrid LDS modeling. a) Observed signals from surface

patch #274 in Bouncing sequence [4] (torso region). b) The inter-

vals represent the timing structure (i.e., state transitions and dura-

tions) given by hybrid LDS modeling. (Each LDS is represented

by a unique color.) c) Reconstructed signals from LDS sequence.

5. Dynamic surface characterization
Bag-of-features (BoF) have been successfully applied to

various visual classification tasks thanks to their ability to

capture invariance aspects of local features [26, 21, 30].

In [30], the authors introduce the bags of dynamical sys-

tems (BoS) for dynamic texture recognition and outper-

forms [32]. Here, we propose to apply the BoS framework

to characterize dynamic surfaces. Moreover, each surface

patch is modeled by a set of N LDS (as opposed to only

one per video feature in prior work). As well, we intro-

duce timing structure information given by the hybrid LDS

model in the codebook formation of BoS.

5.1. Codebook generation

As in the BoF framework, the codebook is generated

by clustering extracted features from a training dataset

to obtain the codewords that form a dictionary. Here,

our features are sets of LDS parameters (extracted from

surface patches) belonging to a non-Euclidean space:

(Ai, C) ∈ GL(n) × ST(m,n) (see Sect. 4). Hence,

clustering algorithms used in the Euclidean space (such as

k-means) cannot be applied directly, as discussed in prior

work [7, 5, 6, 1].

Distance between LDS. Several methods were proposed

in order to compare LDS, based on Kullback-Leibler diver-

gence or Martin distance (see [32, 13, 30, 24]). The Mar-

tin distance between two LDS parameters M1 = (A1, C1)
and M2 = (A2, C2) is based on the subspace angles be-

tween the two systems M1 and M2 belong to. The subspace

angles {θi}ni=1are defined as the principal angles between

observability subspaces [32], and can be obtained by solv-

ing the following Lyapunov equation for P:

A�PA = −C�C, where

P =

(
P11 P12

P21 P22

)
∈ R

2n×2n,A =

(
A1 0
0 A2

)
∈ R

2n×2n,

C =
(
C1 C2

) ∈ R
m×2n, (4)

and cos2 θi = i-th eigenvalue of (P−1
11 P12P

−1
22 P21). The

Martin distance dM between M1 and M2 is then given by

dM (M1,M2) = − ln
n∏

i=1

cos2θi. (5)

Clustering of LDS. As we are using the BoS framework,

we employ an approximate averaging method as in [30].

Let us denote D ∈ RT×T the pairwise dissimilarity matrix

between all features obtained using the Martin distance dM ,

where T = N ×#{features}. In [30], the authors propose

to embed all features in a lower dimension space where k-

means clustering can be applied using Euclidean distance

(Multi Dimensional Scaling is applied using D).

In our framework, as each surface region is represented

by a limited number of LDS features {(Ai, C)}, T remains

relatively small. Hence, to improve the robustness to noise

and outliers of the clustering (compared to k-means), we

propose to use the k-medoids algorithm [23] in the LDS

parameter space, where minimizations are computed from

sums of pairwise dissimilarities using the Martin distance
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(i.e., using D). By definition, a medoid is the feature of a

cluster, whose average dissimilarity to all the features in the

cluster is minimal. It is a most centrally located point in the

cluster. The clustering of T features {xj}Tj=1into a set of K

clusters S = {Sk}Kk=1 can be achieved by finding the set of

K medoids {m1, ...,mK} using the following steps:

1. Initialization (i=0): random selection of K medoids

{mi=0
k }Kk=1 among the T features {xj}Tj=1.

2. Associate each xj to the nearest cluster S
(i)
k : S

(i)
k =

{xj : dM (xj ,m
(i)
k ) ≤ dM (xj ,m

(i)
k′ ), ∀k′ = 1...K},

3. Select the new set of medoids that minimize the dis-

tances between features in each cluster:

ξ(xj , S
(i)
k ) =

∑
xk∈S(i)

k \{xj}
dM (xj , xk), (6)

m
(i+1)
k = argmin

xj∈S(i)
k

(
ξ(xj , S

(i)
k )

)
, (7)

where ξ(xj , S
(i)
k ) represents the cost of assigning xj

as a medoid of S
(i)
k .

4. Repeat 2 - 3 until convergence (i.e., m
(i+1)
k = m

(i)
k ).

To overcome the dependence to initialization, the clus-

tering is run several times and the configuration that returns

the minimal total cost over all clusters is selected:

{F1, ..., FK} = argmin
{{m1,...,mK}}

(
K∑

k=1

ξ(mk, Sk)

)
, (8)

where {F1, ..., FK} represents the set of K codewords that

forms the vocabulary of the codebook. This strategy, in-

stead of selecting the most frequent clusters, returns more

homogeneous clusters regarding size and spatial arrange-

ment [23].

5.2. Soft-weighting with term frequency

Let us consider all the features {xj} extracted from

a dynamic surface (i.e., all the sets of LDS from each

patch). In the BoF framework, each feature contributes

to a set of weights {w1, ..., wK} associated to codewords

{F1, ..., FK} that represents the object (e.g., for classifica-

tion). We propose to use soft-weighting as it is less sensitive

to noise [21, 30], and we introduce timing structure infor-

mation given by the hybrid LDS modeling into the weight-

ing scheme using the term frequency ρj :

wk =

N0∑
i=1

Mi∑
j=1

[
(α+ β ∗ ρj) 1

2i−1
sim(xj , Fk)

]
, (9)

where N0 = 4 is the number of top-nearest codewords to

be considered for each xj , Mi represents the number of fea-

tures whose i-th nearest neighbor is Fk, and

sim = 1− dM
max(D)

(10)

is a similarity measure between LDS, where max(D) is the

biggest element of D (see definition of D above). Finally,

the contribution of feature xj is weighted as well by

ρj =
Nj

Ntot
, (11)

where Nj is the total duration of the state (i.e., sum of in-

terval lengths) represented by xj with respect to the total

duration Ntot of a data sample, and α < 1 and β < 1 are

weighting factors (e.g., α = 0.7 and β = 0.3). If β = 0,

then we lose the timing structure characterizing the duration

of each state of the LDS in the model.

5.3. Classification

To compare and classify the codewords, we use Support

Vector Machines (SVM) with Radial Basis Function (RBF)

kernel

K(x, y) = exp−γd(x,y), (12)

where γ is a free parameter that can be learnt by cross-

validation, and d(W1,W2) is a distance on the histogram

space, such as the χ2:

dχ2(x, y) =
∑
i

(xi − yi)
2

xi + yi
. (13)

As well, we obtained good performance using distance RBF

kernels that are Laplacian and sub-linear:

d(xi, yi) =
∑
i

|xi − yi|b, with b < 2, (14)

which are popular in image retrieval and satisfy the Mer-

cer’s condition [15]. The SVM show more stability than

k−Nearest Neighbor (k−NN) in our experiments.

6. Experimental results
Discussion on real-world datasets. To evaluate the pro-

posed model, we use publicly available datasets of 3D video

sequences reconstructed from real human performances

from the University of Surrey [34], INRIA Grenoble [2],

and MIT CSAIL [11]. (Sequences from [37] were not used

in the current evaluation as the reconstruction accuracy was

not sufficient.) These sequences represent subjects wearing

loose clothing (e.g., T-shirt) while turning, dancing, and/or

jumping. Every mesh has reasonable resolution and quality

which allow us to capture local surface variations across
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Figure 5. Classification results for the different sequences using different approaches. Our method using BoS with SW and timing structure

and SVM returns the best performance compare to the state-of-the-art techniques used for dynamic texture recognition.

time. However, using intrinsic characterization, we could

observe that reconstructed surfaces from [34] (such as

Free) are still very noisy at small scale due to drawbacks

from MVS, despite being visually very compelling. On the

other hand, surfaces from [11] and [2] (such as Samba and

Bouncing respectively) contain drawbacks for spatiotem-

poral reconstruction, and therefore reconstructed surfaces

of clothing might eventually be more rigid and less prone

to wrinkle. However all of these dynamic surfaces could

exhibit temporal statistics in different regions or body

parts. In what follows, we particularly focus on rigid and

non-rigid regions as for the time being, it is still difficult

to characterize different surface materials based only on

surface dynamics. For example, in the Samba dataset, the

subject wears a dress that moves during the dance. How-

ever, the top of the dress is tight and its surface does not

exhibit that much variations. Conversely, in the Bouncing

sequence, the subject wears large T-shirt and pants that

exhibit lots of variations during the jumps. However, it is

challenging to distinguish the T-shirt from the pants using

surface dynamics as variations are similar (and may have

been kept rigid and smooth by the reconstruction process).

Baseline for comparison. As discussed in Sect. 4, dy-

namic surfaces can be treated as dynamic textures although

surface variations from performance capture can be unpre-

dictable or heterogeneous in time. As no prior work on

surface dynamics characterization as been proposed in the

computer vision literature, we propose to use state-of-the-

art approaches related to dynamic texture recognition as

baseline for comparison. In [8, 32], the authors use a single

LDS to model a video sequence (of dynamic textures),

the Martin distance is used to calculate distances between

LDS, and NN and SVM are used for classification. In [30],

the authors use BoS with one LDS per video feature, soft-

weighting (SW) and SVM for classification. We abbreviate

these approaches D+NN, D+SVM and SW+SVM{1LDS}
respectively. As well, our dynamic surface models are

abbreviated SW+5NN{NLDS}, SW+SVM{NLDS}, and

SWTF+SVM{NLDS} for classification using BoS with

SW and k−NN classifier (k = 5), using BoS with SW and

SVM, and using BoS with SW and timing structure and

SVM, respectively.

Dynamic surface classification. As we deal with dynamic

surfaces representing continuous human performances, we

expect to characterize repetitive patterns that can be found

in surface deformations. Challenges come from surface

noise and irregular (repetition of) patterns, as subjects re-

peat or perform various actions in a same sequence. We

could observe that even rigid surface regions such as bare

skin or faces exhibit some variations.

First, we propose to classify dynamic surface patches

from different sequences into rigid and non-rigid classes.

Patches are extracted from aligned surface sequences [4].

Furthermore, to obtain ground truth classification, we man-

ually labeled each patch and assigned them to a surface re-

gion (i.e., body part) that belongs to either the rigid class or

the non-rigid class. The labeling process is by far the most

time consuming (and tedious) step when preparing data for

learning. For example, Free has 514 patches divided into 20

subregions (such as right forearm, left forearm, head, front

torso, back torso, etc.), Samba has 361 patches divided into

9 subregions, and Bouncing has 450 patches divided into 9

subregions.

During our experiments, best results were obtained with

N = 4 LDS in the hybrid LDS modeling with LDS order

n = 6 and K = 8 codewords. Sequence Free contains 499

frames, and sequences Samba and Bouncing contain both

174 frames. For the Free sequence, frames #1:99 are used

for training, while frames #100:199, #200:299, #300:399

and #400:499 are used for testing. For Samba and Bounc-

ing sequences, frames #1:59 are used for training, while

frames #60:99, #100:139 and #140:174 are used for test-

ing. In figure 5, we present classification results for the

different sequences using the different methods described

above. In general, the classification tasks are more diffi-

cult for the approaches D+NN, D+SVM that use a single

LDS [8, 32]. Our method using BoS with SW and timing

structure and SVM returns the best performance, followed

by SW+SVM{1LDS} [30]. Particularly, the introduction

of timing structure in the BoS codebook generation allows

the model to overcome possible confusions when dealing

with N > 1 LDS. This can explain the better performances

against SW+5NN{NLDS} and SW+SVM{NLDS}. We

ran the tests several times and found the results consistent.
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Other breakdance sequences from [34] show similar perfor-

mance as Free. Although the performances are different, the

surface dynamics of rigid and non-rigid regions show same

characteristics.

As well, we computed the confusion matrices for

classes from different sequences. In Tables 1 and 2,

we show results for Free and Samba sequences using

SW+SVM{1LDS} [30] and SWTF+SVM{NLDS} as they

were the best performers in the previous experiments.

Here, all surface patches from all the test datasets from

the Free sequence were tested for classification using

patches from the Samba sequence as training data. Our

approach outperforms [30]. This is primarily because

dynamic surfaces for performance capture can exhibit

various behaviors in time that cannot be well modeled

using a single LDS per feature. Besides, confusions in

patch classification can be due to the bottom of the dress of

the Samba dancer, as the transitions between the tight and

loose parts and unclear, even for manual classification. On

the other hand, SWTF+SVM{NLDS} did no mistake when

classifying non-rigid region patches.

Table 1. Confusion matrix of SW+SVM{1LDS} [30].

Samba rigid Samba non-rigid

Free rigid 50% 50%

Free non-rigid 75% 25%

Table 2. Confusion matrix of SWTF+SVM{NLDS}[ours].

Samba rigid Samba non-rigid

Free rigid 87.5% 12.5%

Free non-rigid 0 100%

Dynamic surface segmentation. Surface region character-

ization allows body part segmentation, as skin and clothing

can potentially be identified using surface patch dynamics.

However this is a challenging task when no prior on the ob-

ject is given, and it is still an active research field [16].

7. Conclusion
As 3D reconstruction technologies have become capable

to capture surface deformations in real-time and details

such as clothing wrinkles, dynamic surfaces representing

human performance can now be characterized using local

geometry information. Moreover, assuming dynamic sur-

faces as streams of temporally continuous and indefinitely

varying data having certain temporal statistics, we can

draw an analogy with the dynamic textures. Hence in

this paper, we present the following contributions: 1) no

prior work has addressed dynamic surface characterization

using surface intrinsic properties (such as local curvatures),

2) we propose to model surface dynamics using hybrid

linear dynamical system models (i.e., with N LDS per

surface feature) within the bag of dynamical systems (BoS)

framework, and 3) we introduce LDS timing structure in

the codebook formation of the BoS. We show experimental

results on datasets of real-world dynamical surfaces for

description, classification and segmentation. As well, we

discuss the accuracy and quality at small scale of existing

datasets of dynamic surfaces. Other datasets to consider are

soft tissue organs (e.g., heart, lungs) for anomaly or disease

detection, and fluids. We believe our model has great

potential for future research and applications as 3D sensing

technologies are rapidly becoming even more accurate.
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Appendix: Surface patches
Figure 6 shows surface patches for the models from the se-

quences Free, Samba and Bouncing, computed as in [4]. We

show as well mapping of patches on square parametriza-

tion domain, obtained using the same transformations as in

Fig. 1 and Fig. 3, as it is a good representation to understand

the analogy with dynamic textures. However, we recall that

curvature maps are used only for visualization and assess-

ment of surface point tracking, and not for the tracking itself

(as surfaces are cut and geometry is distorted).

Figure 6. Surface patches for the models from the sequences Free,

Samba and Bouncing and projections on square domain given for

visualization and assessment of surface point tracking.
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