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Abstract

Spatial-temporal relations among facial muscles carry
crucial information about facial expressions yet have not
been thoroughly exploited. One contributing factor for this
is the limited ability of the current dynamic models in cap-
turing complex spatial and temporal relations. Existing dy-
namic models can only capture simple local temporal rela-
tions among sequential events, or lack the ability for incor-
porating uncertainties. To overcome these limitations and
take full advantage of the spatio-temporal information, we
propose to model the facial expression as a complex activity
that consists of temporally overlapping or sequential primi-
tive facial events. We further propose the Interval Temporal
Bayesian Network to capture these complex temporal re-
lations among primitive facial events for facial expression
modeling and recognition. Experimental results on bench-
mark databases demonstrate the feasibility of the proposed
approach in recognizing facial expressions based purely on
spatio-temporal relations among facial muscles, as well as
its advantage over the existing methods.

1. Introduction

Facial expressions are the outcome of a set of muscle

motions over a time interval. These movements interact in

different patterns and convey different expressions. Under-

standing such complex facial activity not only requires us

to study each individual facial muscle motion, but also how

they interact with each other in both the space and time

domain. Spatially, facial muscle motions can co-occur or

can be mutually exclusive at each time slice. Temporally,

the movement of one facial muscle can activate, overlap

or follow another muscle. These spatio-temporal relations

capture significant information about facial expressions yet

have not been thoroughly studied, partially due to the lim-

itations of the current models. Unlike most of the exist-

ing works that perform facial expression recognition on the

manually labeled peak frame, we model a facial expression

as a complex activity that spans over a time interval and

consists of a group of primitive facial events happening se-

quentially or in parallel. More importantly, modeling fa-

cial expression as such a complex activity allows us to fur-

ther study and capture a larger variety of complex spatial

and temporal interactions among the primitive events. In

this work, we aim to overcome the limitations of current

models and thoroughly explore and exploit more complex

spatio-temporal relations in the facial activities for expres-

sion recognition.

Understanding a complex activity and capturing the un-

derlying temporal relations is challenging and most of the

existing methods do not handle this adroitly. Modeling and

recognizing a complex activity is naturally solved by build-

ing a structure that is able to semantically capture the spatio-

temporal relationships among primitive events. Among

various visual recognition methodologies, such as graphi-

cal, syntactic and description-based approaches, time-sliced

graphical models, i.e. hidden Markov models (HMMs) and

dynamic Bayesian networks (DBNs), have become the most

popular tool for modeling and understanding complex ac-

tivities [2, 11, 13, 5]. Syntactic and description-based ap-

proaches have also gained attention and used mainly for ac-

tion units detection in recent years [10]. While these ap-

proaches have been applied to capture the dynamics of fa-

cial expressions, they face one or more of the following is-

sues when modeling and understanding complex visual ac-

tivities that involve interactions between different entities

over durations of time.

First, time-sliced (based on time points) graphical mod-

els (e.g. HMM, DBN, or their variants) typically repre-

sent an activity as a sequence of instantaneously occurring

events, which is generally unrealistic for facial expression.

For example, the eye movement and nose movement may

both last for a period of time and they may overlap. More-
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over, time-sliced dynamic models can only offer three time-

point relations (precedes, follows, equals), and so they are

not expressive enough to capture many of the temporal re-

lations between events that happen over the duration of an

activity. Secondly, time-sliced graphical models typically

assume first order Markov property and stationary transi-

tion. Hence, they can only capture local stationary dynam-

ics and cannot represent global temporal relations. Finally,

syntactic and description-based models lack the expressive

power to capture and propagate the uncertainties associated

with event detection and with their temporal dependencies

in a principled manner.

To address these issues and comprehensively model fa-

cial expression, we propose a unified probabilistic frame-

work that combines the probabilistic semantics of Bayesian

networks (BNs) with the temporal semantics of interval

algebra (IA). Termed an interval temporal Bayesian net-

work (ITBN), this framework employs the BN’s proba-

bilistic basis and the IA’s temporal relational basis in a

principled manner that allows us to represent not only the

spatial dependences among the primitive facial events but

also a larger variety of time-constrained relations, while re-

maining fully probabilistic and expressive of uncertainty.

In particular, ITBN is time-interval based in contrast to

time-sliced models, which allows us to model the relations

among both sequential and overlapping temporal events. In

this paper we take a holistic approach to modeling the fa-

cial activities. We will first identify all of the related prim-

itive facial events, which provide us the basis to define a

larger variety of temporal relations. We then apply ITBN

to capture their spatio-temporal interactions for expression

recognition.

The remainder of this paper is organized as follows. Sec-

tion 2 presents an overview of the related works. Section 3

introduces the definition and implementation of ITBN. We

discuss how we identify the primitive facial events and how

we model the facial expressions with ITBN in Section 4.

Experiments and the discussions will be illustrated in Sec-

tion 5. The paper is concluded in Section 6.

2. Related Works
Recognizing facial expressions generally involves

bottom-level feature extraction and top-level classifier de-

sign. Features for expression classification can be grouped

into appearance features such as Gabor [8] and LBP [9],

and geometric features that are extracted from the location

of the salient facial points. While appearance features cap-

ture the local or global appearance information of the fa-

cial components, studying the movement of the facial fea-

ture points provides us a more explicit manner to analyze

the dynamics. Classifiers for facial expression recognition

include static models and dynamic models. Static models

recognize facial expressions based on the apex frame of an

image sequence and have achieved successful performance.

However, peak frames usually require manual labeling and

the static approach completely disregards the dynamic inter-

actions among the facial muscles that are very important for

discriminating facial activates. In contrast dynamic models

rely on the whole image sequence and study their tempo-

ral dynamics for facial expression recognition. In this paper

we focus on expression recognition works that are based on

the facial feature points and image sequences. A more com-

prehensive literature review of facial expression recognition

ban be found in [14].

Dynamic models that have been widely applied for facial

expression recognition include the hidden Markov model

(HMM) and its variants [2, 11, 13], the dynamic Bayesian

network (DBN) [5], and latent conditional random fields

(LCRF) [4]. HMM captures local state transitions that are

assumed to be stationary. In [2] a multilevel HMM is intro-

duced to automatically segment and recognize human facial

expressions from image sequences based on the local de-

formations of the facial feature points tracked with a piece-

wise Bezier volume deformation tracker. In [11], a non-

parametric discriminant HMM is applied to recognize the

expression and the facial features are tracked with Active

Shape Model. A different approach is used in [13], where

an HMM was used together with support vector machines

and AdaBoost to simultaneously recognize action units and

facial expressions by modeling the dynamics among the ac-

tion units. Similarly, DBN also captures local temporal

interactions and an example can be found in [5]. Besides

these generative models, discriminative approaches such as

LCRF have also been applied for expression analysis. For

instance, in [4], features from 68 landmark points of video

sequences were fed into an LCRF to perform expression

recognition. However, all of these models are time-slice

based and as a result can only capture a small portion of the

temporal relations. Moreover, these relations are assumed

to be stationary and time-independent. Therefore the cap-

tured dynamics remain local. To overcome these restric-

tions our proposed method models a complex activity as

sequential or overlapping primitive events, and each event

spans over a time interval. This allows us to capture a wider

variety of complex temporal relations which can further en-

hance the performance of facial activity recognition.

3. Interval Algebra Bayesian Network
Different spatial and temporal configurations of primi-

tive facial events lead to different expressions. Unlike the

related works, ITBN looks at facial activity from a global

view and is able to model a larger variety of spatio-temporal

relations. To formally introduce the definition of ITBN, we

will first define the primitive events that constitute a com-

plex activity and several related concepts. A primitive event

is also called a temporal entity and we do not differentiate
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between these two terms in the remainder of this paper. We

then introduce how we model the temporal relations among

primitive events. Finally, we will formally introduce ITBN

and its implementation.

Definition 1 (Temporal Entity) A temporal entity is char-
acterized by a pair 〈Σ,Ω〉 in which Σ is a set of all possible
states for the temporal entity, and Ω = {[a, b] ⊂ R : a < b}
is a period of time spanned by the temporal entity, where a
and b denote the start time and the end time, respectively.

Temporal entities form the primitive events of a complex

activity. Spatio-temporal relations act as the joints connect-

ing the temporal entities to form different patterns.

Definition 2 (Temporal Reference) If a temporal entity X
is used as a time reference for specifying temporal relations
to another temporal entity Y , then X is the temporal refer-
ence of Y .

Definition 3 (Temporal Dependency) A temporal depen-
dency (TD) denoted as IX,Y describes a temporal rela-
tion between two temporal entities X = 〈ΣX ,ΩX〉 and
Y = 〈ΣY ,ΩY 〉, where X is the temporal reference of Y .

Relation� Symbol� Inverse� Illustration�

Y before X� b� bi�

Y meets X� m� mi�

Y overlaps X� o� oi�

Y starts X� d� si�

Y during X� f� di�

Y finishes X� g� fi�

Y equals X� eq� eq�
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Figure 1: Temporal Relations

Following Allen’s Interval Algebra [1], there are a to-
tal of 13 temporal relationships between two temporal en-
tities as illustrated in Figure 1. The thirteen possible re-
lations I = {b, bi, m, mi, o, oi, s, si, d, di, f, fi, eq} respec-
tively represent before, meets, overlaps, starts, during, fin-
ishes, equals and their inverses. The horizontal bars repre-
sent the time interval of the corresponding temporal entity.
Given X and Y with X serving as the temporal reference,
the dependency or temporal relation can be uniquely ascer-
tained by the interval distance between two temporal enti-
ties as defined in Equation 1, where txs and txe (tys and
tye) represent the start and end time of X (Y ). Table 1
shows how we map the temporal distance to the temporal
relationship.

d(X,Y ) = [txs − tys, txs − tye, txe − tys, txe − tye] (1)

The temporal dependency IXY is graphically repre-
sented as a directed link leading from the node X to the
node Y labeled with IXY ∈ I, as shown in Figure 2a. The

Table 1: Interval relation determined by interval distance

No. r txs − tys txe − tye txs − tye txe − tys

1 b < 0 < 0 < 0 < 0
2 bi > 0 > 0 > 0 > 0
3 d > 0 < 0 < 0 > 0
4 di < 0 > 0 < 0 > 0
5 o < 0 < 0 < 0 > 0
6 oi > 0 > 0 < 0 > 0
7 m < 0 < 0 < 0 = 0
8 mi > 0 > 0 = 0 > 0
9 s = 0 < 0 < 0 > 0
10 si = 0 > 0 < 0 > 0
11 f > 0 = 0 < 0 > 0
12 fi < 0 = 0 < 0 > 0
13 eq = 0 = 0 - -

strength of the temporal dependency can be quantified by a
conditional probability as follows:

P (IXY = i|X = x, Y = y), (2)

where x ∈ ΣX and y ∈ ΣY are the states of the tempo-

ral entities and i ∈ I denotes an interval temporal relation.

Here, we only consider pairwise temporal dependencies.

Given the above concepts, we can formally introduce the

ITBN as follows.

Definition 4 (Interval Temporal Bayesian Network) An
interval temporal Bayesian network (ITBN) is a directed
graph (DAG) G(V,E), where V is a set of nodes represent-
ing temporal entities and E is a set of links representing
both the spatial and temporal dependencies among the
temporal entities in V .

A link in an ITBN is a carrier of the interval temporal re-

lationship, and the link direction leading from X to Y indi-

cates Y is temporally dependent on X and X is the temporal

reference of Y. Once the temporal reference is established,

the direction of the arc cannot be changed. It can only point

from the temporal reference to the other temporal entity,

thereby avoiding temporal relationship ambiguity. An ex-

ample of ITBN can be seen in Figure 2b, which contains

three temporal entities: A, B and C.

X 

 � 

��� 

(a)

 �  � 
��	 

 
 

���  �	�  

(b)
Figure 2: (a) Graphical notation of the temporal dependency be-

tween primitive events X and Y . (b) An example of ITBN.

We propose to implement ITBNs with a corresponding
Bayesian network (BN) to exploit the well-developed BN
mathematical machinery. Figure 3 is the corresponding BN
graphical representation for the ITBN shown in Figure 2b,
where another set of nodes (the square nodes) are intro-
duced to represent the temporal relations. Specifically, an
ITBN implemented as a BN, includes two types of nodes:
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temporal entity nodes (circular) and temporal relation nodes
(square). There are also two types of links, spatial links
(solid lines) and temporal links (dotted lines). The spatial
links connect temporal entity nodes and capture the spatial
dependencies among the temporal entities. The temporal
links connect the temporal relation nodes with the corre-
sponding temporal entities and characterize the temporal
relationships between the two connected temporal entities.
Given this representation, the joint probability of the tempo-
ral entities as well as their spatial and temporal information
can be calculated with Equation 3:

P (Y, I) =
n∏

j

P (Yj |π(Yj))

K∏

k

P (Ik|π(Ik)) (3)

where Y = {Yj}nj=1 and I = {Ik}Kk=1 represent all tempo-

ral entity nodes and all temporal relation nodes respectively

in an ITBN. π(Yj) is the set of parental nodes of Yj ; Ik rep-

resents the kth interval temporal relation node and π(Ik)
are the two temporal entity nodes that produce Ik.

B A 

C 

IAC 
IBC 

IAB 

Figure 3: BN Implementation of ITBN

4. Facial Expression Recognition with ITBN
ITBN provides a powerful tool to model complex activi-

ties such as facial expression that consists of interval-based

primitive temporal entities or events and captures a wider

variety of spatial and temporal relations among them. In

this section we will introduce the definitions of the primi-

tive events that constitute a facial activity and how we cap-

ture their spatial and temporal relations with ITBN.

4.1. Facial Expression Modeling

To comprehensively incorporate different levels of infor-

mation from facial expression, the first step is to identify all

of the related primitive facial events that constitute a facial

activity. Primitive events for facial expressions are defined

as the local facial muscle movements. Due to the difficulty

of measuring facial muscle motions, we propose to approx-

imate them using the movements of facial feature points.

Facial feature points near different facial components are

tracked and their movements are the result of different fa-

cial muscles (see Figure 6 for the facial feature points in our

experiments). Therefore, each primitive facial event is de-

fined as the movement of one facial feature point. Figure

4a shows two primitive facial events. Facial feature point

P1 corresponds to event E1 and represents the movement

of one of the left eye muscles. Point P2 corresponds to

event E2 and captures the movement of one of the mouth

muscles. A primitive facial event includes its temporal du-

ration and state. In our case, the duration of the primitive

event Ei starts when point Pi leaves its neutral position and

ends at the time when it finally comes back. Basically, it

is the time interval that point i stays away from its neu-

tral position as shown in Figure 4b in which T1 and T2 are

the corresponding duration for E1 and E2. For simplicity,

only the trace along the vertical direction is shown in Fig-

ure 4. Each event has m possible states, which represent the

m movement patterns of point Pi over the time interval as

shown in Figure 4c. The first state represents the point stay-

ing still throughout the process. The other states represent

m− 1 movement patterns. For example, state S3 represents

that the point moves down and then comes back. State Sm

shows a relatively more complex pattern in which the point

moves down in the beginning and moves up later. These m
states are mutually exclusive and encode the motion and di-

rection information of each facial feature point. Movement

features in the interval are collected and a k-means clus-

tering is performed to determine the state of each primitive

event. In conclusion, each facial feature point generates one

primitive event. This event has m possible states and its du-

ration is the time interval when the corresponding point is

away from its neutral position.

The defined primitive facial events cover all of the local

motions of the key facial components and provide us the

basis to further study the spatio-temporal relations among

them. They are explicitly obtained based on the tracking of

the facial feature points and hence are easy to get without

human labeling, training or prediction which could be time-

consuming. Meanwhile, they also provide the time-interval

information of the events and therefore allow us to study the

relations of not only sequential but also overlapping events.

Given the time intervals of a pair of primitive facial

events, we can then measure their temporal relation by cal-

culating their temporal interval distance according to Equa-

tion 1 and Table 1. For instance, in Figure 4b the temporal

relation is that E2 overlaps E1, with E1 as the temporal ref-

erence. Figure 4d depicts the time intervals of a total of

26 facial feature points estimated from an image sequence

in our experiment in which the expression is fear. From it

we can clearly see the various temporal relations among the

primitive facial events. The temporal relations will be eval-

uated for all the possible pairs of primitive facial events, but

only those that exhibit high variance across different expres-

sions will be maintained for expression recognition. This

step is called temporal relation node selection and will be

discussed in details in section 4.3.1.

4.2. Facial Expression Recognition

To recognize N facial expressions, we will build N
ITBN’s, with each corresponding to one expression. For
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Figure 4: (a) Facial muscle movement as captured by the movement of facial points. (b) Duration for event E1 and E2 and their temporal

relation. (c) Typical movement patterns of a primitive facial event. (d) Time intervals for the primitive facial events.

each ITBN, the entity node represents the primitive event
and the temporal relation node has K possible values, each
of which corresponds to one temporal relation. Given a
query sample x, its expression will be determined accord-
ing to Equation 4, where My stands for the ITBN model
of expression y. Since different ITBN models may have
different spatial structures, the model likelihood P (x|My)
will be divided by the model complexity for balance. We
use the total number of the links as the model complexity.
The ITBN model that produces the highest likelihood will
be selected.

y∗ = argmax
My

logP (x|My)

Complexity(My)
(4)

4.3. Learning ITBN for Facial Expression

Learning the ITBN model for facial expression consists

of three parts: temporal nodes selection, structure learning,

and parameter estimation.

4.3.1 Temporal Relation Nodes Selection

While ITBN can capture the complex relations among the
temporal entities, it is not necessary to consider the relation
among all the possible pairs of events for facial expression
recognition. A selection routine is hence performed to re-
move the pairs that may not contribute or may even do harm
to expression recognition. With the goal of discriminating
expressions, the relation between two temporal entities is
expected to be strong and can maximally differentiate be-
tween different expressions. To meet this requirement, we
define a KL divergence-based score to evaluate the relation
node between each pair of events, and only retain those that
have a relatively high score. The score of relation RAB be-
tween event A and event B is defined in Equation 5, where
Pi (Pj) is the conditional probability of RAB for the ith

(jth) expression with i (j) ranging over all the possible ex-
pressions. DKL stands for the KL divergence. All the entity
pairs are ranked according to their score. The top M pairs
are selected and their temporal relations will be instantiated
in the ITBN model.

SAB =
∑

i>j

(DKL(Pi||Pj) +DKL(Pj ||Pi)) (5)

4.3.2 Structure Learning

The next step is to learn the spatial and temporal links

(i.e. the solid and dotted links in Figure 3) among the en-

tity nodes and selected relation nodes. The temporal re-

lation nodes can be directly linked to their corresponding

events. Here we mainly focus on learning the spatial struc-

ture. Learning the ITBN structure means finding a network

G that best matches the training dataset D. We use Bayesian

information criterion (BIC) to evaluate each ITBN:

max
G

S(G : D) = max
Θ

(logP (D|G,Θ)− |Θ| logN
2

) (6)

where S denotes the BIC score, Θ the vector of the esti-

mated parameters, logP (D|G,Θ) the log-likelihood func-

tion, and |Θ| the number of free parameters. The struc-

ture learning method proposed in [3] is employed to find

the structure that has the highest BIC score.

4.3.3 Parameter Estimation

Parameters for ITBN involve the conditional probability

distribution (CPD) for each node given its parents. Specif-

ically, the conditional probability of each temporal relation

node may have a large number of parameters since we have

a large number of temporal relations and often don’t have

enough training data. To reduce the number of parameters

to estimate, we employ a tree-structured CPD for each tem-

poral node. An example is shown in Figure 5, which il-

lustrates how we use a tree-structure CPD to parameterize

the conditional probability of relation node IAB given the

event pair A and B. When A or B equals zero, meaning

that they do not move, no information can be obtained about

their temporal relation. Therefore the conditional probabil-

ity is set to be uniform. When both of them move, the tem-

poral relation probability holds regardless of their moving

patterns. This parameterization method is specifically de-

signed for insufficient training data, and does not limit us to

use more complex CPD’s if we have enough training sam-

ples.

Given a training dataset D which contains the properly

estimated state of each primitive event and their temporal

relations, the goal of parameter estimation is to find the

maximum likelihood estimate (MLE) of the parameters Θ,

which is shown in Equation 7. Θ denotes the parameter set

and D represents the data.

Θ∗ = argmax
Θ

logP (D|Θ) (7)
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Figure 5: Tree Structured CPD for the Relation Node

5. Experiments
To evaluate ITBN, we study its performance on two

widely used benchmark datasets, namely the extended

Cohan-Kanade dataset [7, 6] and MMI dataset [12]. The

goal is to evaluate if ITBN can improve performance by in-

corporating complex spatio-temporal relations, and to com-

pare ITBN with the existing works.

5.1. Data

The extended Cohn-Kanade dataset (CK+) contains fa-

cial expression videos from 210 adults in which 69% are

female, 81% are Euro-American, 13% are Afro-American

and 6% are from other groups. Participants are 18 to 50

years of age. A total of 7 expressions are labeled in the

dataset, including anger, contempt, disgust, fear, happy,

sadness and surprise.

The MMI dataset includes more than 30 subjects in

which 44% are female. The subjects age from 19 to 62

and are either European, Asian or South American. In this

dataset, 213 sequences have been labeled with facial ex-

pressions, out of which 205 are with frontal face. Unlike

other works that manually selected a subset of 96 image

sequences for expression recognition, we use all 205 im-

age sequences of 6 expressions from the MMI dataset in

our experiment and perform recognition based on the im-

age sequence without knowing the ground truth of the apex

frames. Table 2 illustrates the number of samples for each

expression in the two datasets.

Table 2: Number of Samples

Expression CK+ MMI

Anger (An) 45 32

Contempt (Co) 18

Disgust (Di) 59 31

Fear (Fe) 25 28

Happy (Ha) 69 42

Sadness (Sa) 28 32

Surprise (Su) 83 40

The two datasets present different challenges for facial

expression recognition. All of the image sequences in CK+

start from the neutral face and end at the peak frame. There-

fore, they only cover the first half of the expressions, which

means for each event, we have its starting time and but not

the end time. This effectively limits the temporal relation-

ships to three relations which are A starts before B, A starts

after B, and A starts at the same time as B. Image sequences

in MMI cover the whole expression process from the onset

to the offset. However, some subjects wear glasses, acces-

sories or have mustaches, and there are greater intra-subject

variations and head motions when performing expressions

in MMI. These make it very difficult to analyze expressions.

The facial feature points that are used in our experiments

are shown in Figure 6. For CK+, the facial feature points

are provided by the database. For the MMI dataset, the fa-

cial feature points are obtained using an ASM model based

method. The tracking results are normalized such that the

eye centers fall on the given positions for all the frames

based on affine transformation. To measure the duration of

each event and deal with tracking noise, the point is said to

move only when its relative distance from the neutral posi-

tion exceeds 2 pixels.

Figure 6: Facial Feature Points. Left: CK+; right: MMI.

Determining the moving pattern for each event requires

collecting features during the motion interval. Since CK+

only covers half the process of the expression, we collect the

moving directions during the motion interval and quantize

them into four moving patterns. For MMI, moving features

are collected as follows. We take the discrete Fourier trans-

form of the moving trace of a point along both the horizontal

and vertical direction and use the first 5 FFT coefficients as

the feature. The direction of this point relative to its neu-

tral position is collected for each frame and quantized into

4 orientations. A histogram of directions can be computed

given the directions of all the frames during the event. All of

these features are used to determine the state of the event by

performing k-means clustering and a total of 9 patterns are

used in MMI, including the stationary pattern. Experiments

are performed based on 15-fold cross subject validation in

CK+ and 20-fold cross subject validation in MMI.

5.2. Performance Vs Number of Relation Nodes

The first experiment is to evaluate if incorporating tem-

poral relations could enhance the performance of facial ex-

pression recognition. Since not the relation of all the event

pairs will be helpful for expression recognition, we per-

formed a selection subroutine and picked those that have

relatively high scores. In this section we evaluate the per-

formance with respect to the number of temporal relation

nodes we selected. Figure 7 illustrate the performance of

ITBN in CK+ and MMI when we gradually increase the

number of relation nodes. The x axis represents the num-
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Figure 7: Performance of ITBN with respect to the num of event

pairs in CK+ dataset (left) and MMI dataset (right).

ber of temporal relation nodes we selected. The average

recognition rate is calculated by averaging the classification

accuracy for each expression and corresponds to the y axis.

The starting point of each curve is the performance of the

model when no temporal relation is incorporated. From the

results we can see that by incorporating the temporal rela-

tion information, the recognition rates of both models are

significantly improved. The performance reaches its peak

when approximately the 50 events pairs for CK+ and 35

pairs for MMI are selected. In CK+ the recognition im-

provement is about 4% and in MMI the improvement is

about 6%. This demonstrates the benefits of temporal infor-

mation for expression recognition and the ability of ITBN to

capture such knowledge. As more and more relation nodes

are added to ITBN, the performance will eventually decline.

This is partially because the contributions of the low-score

relation nodes to classification could be less than the noise

they bring. Table 3 and Table 4 show the confusion matrices

of ITBN in two datasets when 50 event pairs for CK+ and

35 pairs for MMI were selected. The corresponding aver-

age recognition rates of these two matrices are 86.3% and

59.7%.

Table 3: Confusion Matrix of ITBN in CK+

An Di Fe Ha Sa Su Co

An 91.1 0.0 0.0 4.4 0.0 2.2 2.0

Di 1.2 94.0 1.2 0.0 1.2 2.4 0.0

Fe 5.6 0.0 83.3 0.0 0.0 0.0 11.1

Ha 3.4 0.0 0.0 89.8 1.7 3.4 1.7

Sa 0.0 20.0 0.0 0.0 76.0 4.0 0.0

Su 0.0 5.8 1.5 0.0 0.0 91.3 1.5

Co 7.1 0.0 3.6 0.0 10.7 0.0 78.6

Table 4: Confusion Matrix of ITBN in MMI

An Di Fe Ha Sa Su

An 46.9 18.8 0.0 3.1 31.2 0.0

Di 16.1 54.8 9.7 6.5 6.5 6.5

Fe 7.1 10.7 57.1 10.7 3.6 10.7

Ha 0.0 7.1 19.1 71.4 2.4 0.0

Sa 9.4 3.1 18.8 3.1 65.6 0.0

Su 0.0 2.5 32.5 2.5 0.0 62.5

Figure 8a illustrates the learned ITBN model in MMI

dataset, where each node represents an event corresponding

to a facial feature point, and each link denotes a pair-wise

temporal dependency. To gain some insight of the tempo-

ral interactions of the facial muscles, Figure 8b graphically

depicts all of the 35 selected temporal relation nodes in the

MMI dataset. If the relation node RAB is selected, then a

line is connected between event pair A and B. In particu-

lar, the frequencies of all the thirteen relations between fea-

ture point 1 and 11 are shown in Figure 9. We can see that

selected interactions provide discriminative information to

recognize expressions and they involve all components of

the face.
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Figure 8: (a) The learned ITBN model in MMI dataset. (b) Graph-

ical depiction of the selected event pairs in MMI.
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Figure 9: Frequencies of thirteen relations among a pair of events

with respect to different expressions in MMI. X-axis represents the

index of relationships.

5.3. Comparison with Related Works

From the previous experiment we can see that ITBN can

successfully capture and exploit the spatio-temporal infor-

mation to enhance expression recognition. In this section

we compare the performance of ITBN with related works.

We also evaluate ITBN against other time-sliced dynamic

models. Specifically a hidden Markov model (HMM) which

is based on the locations of facial feature points is imple-

mented, and we expect similar results for the DBN model.

Our experiment faces more challenges than those repre-

sented in many other works. First, we perform recognition

on a given sequence without knowing the ground truth of

the peak frame. Secondly, our model only uses the tracking

results without any texture features such as LBP or Gabor.

This makes it more difficult for us to recognize expressions.

Furthermore, in the MMI dataset, we use all of the 205 im-

age sequences instead of manually selecting 96 sequences

for recognition.

Table 5 compares the result of ITBN with that in

[7] where they use the similarity normalized shape fea-
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tures (SPTS) and canonical normalized appearance features

(CAPP) that are computed based on the tracking results of

68 facial feature points. We can see that ITBN outperforms

[7] by about 3%.

Few works can be found that use tracking results for ex-

pression recognition in MMI dataset. Among all the works

we can find, [15] is the most similar to ours in that they

also use all of the 205 sequences. Their method is based on

the LBP features and they propose to learn the common and

specific patches for classification. Table 6 shows both our

and their results, in which CPL stands for their method that

only uses common patches, CSPL is their method that uses

common and specific patches and ADL is the patches that

are selected by AdaBoost. We can see that our results are

much better than CPL and ADL. Although CSPL outper-

forms our result, their experiment is based on appearance

features and requires the peak frames while we only use

the features from the tracking results and do not have the

ground truth of peak frame.

On both datasets, the results of HMM are also illustrated

in the above two tables. During the experiment, we chose 4

and 10 latent states for HMM in CK+ and MMI respectively

such that the recognition rate of HMM is maximized. ITBN

outperforms HMM in both cases.

Table 5: Comparison in CK+

Method ITBN HMM Lucey et al. [7]

AR % 86.3 83.5 83.3

Table 6: Comparison in MMI

Method CPL CSPL ADL ITBN HMM

AR % 49.4 73.5 47.8 59.7 51.5

Overall we can see that ITBN can successfully cap-

ture the complex temporal relations and translate them into

the significant improvement of facial expression recogni-

tion. ITBN outperforms the time-sliced dynamic models

and other works that also use tracking-based features and

can achieve comparable and even better results than those

appearance-based approaches.

6. Conclusions
In this paper we model a facial expression as a complex

activity that consists of temporally overlapping or sequen-

tial primitive facial events. More importantly, we have pro-

posed a probabilistic approach that integrates Allen’s tem-

poral Interval Algebra with Bayesian Network to fully ex-

ploit the spatial and temporal interactions among the primi-

tive facial events for expression recognition. Experiments

on the benchmark datasets demonstrate the power of the

proposed method in exploiting complex relations compared

to the existing dynamic models as well as its advantages

over the existing methods, even though it is purely based

on facial feature movements without using any appearance

information. Moreover, ITBN is not limited to model rela-

tions among the primitive facial events and could be widely

applicable for analyzing other complex activities.
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