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Abstract

How many labeled examples are needed to estimate a
classifier’s performance on a new dataset? We study the
case where data is plentiful, but labels are expensive. We
show that by making a few reasonable assumptions on the
structure of the data, it is possible to estimate performance
curves, with confidence bounds, using a small number of
ground truth labels. Our approach, which we call Semisu-
pervised Performance Evaluation (SPE), is based on a gen-
erative model for the classifier’s confidence scores. In ad-
dition to estimating the performance of classifiers on new
datasets, SPE can be used to recalibrate a classifier by re-
estimating the class-conditional confidence distributions.

1. Introduction

Training and testing on one image set is no guarantee

of good performance on another [7, 13]. Consider an ur-

ban planner who downloads software for detecting pedes-

trians with the goal of counting pedestrians in the city cen-

ter. The pedestrian detector was laboriously trained by a

research group who labeled thousands of training and val-

idation examples and publishes good experimental results

(see e.g. [5]). Should the urban planner trust the published

performance figures and assume that the detector will per-

form equally well on her images? Her images are mostly

taken in an urban environment, while the authors of the de-

tector used vacation photographs for training their system.

Perhaps the detector is useless on images of urban scenes

(Figure 1).

In order to be sure, the planner needs to compute pre-

cision and recall on her dataset. This requires labeling by

hand a large number of her images, i.e. doing the detec-

tor’s work by hand. What was then the point of obtaining

a trained detector in the first place? What are the planner’s

options? Is it possible at all to obtain reliable bounds on the

performance of a detector / classifier without relabeling a

new dataset?

Figure 1. A pedestrian detector trained on vacation images (the

INRIA dataset [5]) performs well on images taken in natural en-

vironments (top), and fails miserably on images taken in an urban

environment (bottom). Can we estimate the performance of a pre-

trained classifier / detector on a novel data set? Can we do so

without expensive detailed labeling of a new ground truth dataset?

Can we get reliable error bars on those estimates?
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Figure 2. Estimating detector performance with 10 labels known. A: Histogram of classifier scores si obtained by running the “ChnFtrs”

detector [7] on the INRIA dataset [5]. The red and green curves show the Gamma-Normal mixture model fitting the histogrammed scores

with highest likelihood. The scores are all unlabeled, apart from 10, selected at random, which have labels. The shaded bands indicate

the 90% probability bands around the model. The red and green bars show the labels of the 10 randomly sampled labels (by chance, the

scores for some of the samples are close to each other, thus only 6 bars are shown; the height of the bars has no meaning). B: Precision

and recall curves computed from the mixture model in A. C: In black, precision-recall curve computed after all items have been labeled. In

red, precision-recall curve estimated using SPE from only 10 labeled examples (with 90% confidence interval shown as the magenta band).

See Section 2 for a discussion.

We propose a method for achieving minimally super-

vised evaluation of classifiers, requiring as few as 10 labels

to accurately estimate classifier performance. Our method

is based on a generative Bayesian model for the confidence

scores produced by the classifier, borrowing from the litera-

ture on semisupervised learning [16, 20, 21]. We show how

to use the model to re-calibrate classifiers to new datasets by

choosing thresholds to satisfy performance constraints with

high likelihood. An additional contribution is a fast approx-

imate inference method for doing inference in our model.

2. Modeling the classifier score
Let us start with a set of N data items, (xi, yi) ∈ RD ×

{0, 1}, drawn from some unknown distribution p(x, y) and

indexed by i ∈ {1, . . . , N}. Suppose that a classifier,

h̄(xi; τ) = [h(xi) > τ ], where τ is some scalar threshold,

has been used to classify all data items into two classes, ŷi ∈
{0, 1}. While the “ground truth” labels yi are assumed to

be unknown, initially, we do have access to all the “scores,”

si = h(xi), computed by the classifier. From this point on-

wards, we forget about the data vectors xi and concentrate

solely on the scores and labels, (si, yi) ∈ R× {0, 1}.
The key assumption in this paper is that the list of

scores S = (s1, . . . , sN ) and the unknown labels Y =
(y1, . . . , yN ) can be modeled by a two-component mixture

model p(S, Y | θ), parameterized by θ, where the class-

conditionals are standard parametric distributions. We show

in Section 4.2 that this is a reasonable assumption for many

datasets.

Suppose that we can ask an expert (the “oracle”) to pro-

vide the true label yi for any data item. This is an expensive

operation and our goal is to ask the oracle for as few labels

as possible. The set of items that have been labeled by the

oracle at time t is denoted by Lt and its complement, the

set of items for which the ground truth is unknown, is de-

noted Ut. This setting is similar to semisupervised learning

[20, 21]. By estimating p(S, Y | θ), we will improve our

estimate of the performance of h̄ when |Lt| � N .

Consider first the fully supervised case, i.e. where all

labels yi are known. Let the scores si be i.i.d. according to

the two mixture models. If the all labels are known, and we

assume independent observations, the likelihood of the data

is given by,

p(S, Y | θ) =
∏

i:yi=0

(1− π)p0(si | θ0)
∏

i:yi=1

πp1(si | θ1),

(1)
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Figure 3. Applying SPE to different datasets. A: Estimation error, as measured by the area between the true and predicted precision-recall

curves, versus the number of labels sampled, for the ChnFtrs detector on the CPD dataset. The red curve is SPE and the green curve shows

the median error of the naive method (RND). The green band show the 90% quantiles of the naive method. B: The performance curve

estimated using SPE (red) with 90% confidence intervals (magenta) with 20 known labels. The ground truth performance with all label

known is shown as a black curve (GT), and the performance curve computed on 20 labels using the naive method from 5 random samples

is shown in green (RND). Notice that the curves (in green) obtained from different samples vary a lot (although most predict perfect

performance). C–D: same as A–B, but for the logres8 classifier on the DGT dataset (hand-picked as an example where SPE does not work

well). E: Comparison of estimation error (area between curves) of SPE and naive method for 20 known labels and different datasets. The

appearance of the markers denote the dataset (each dataset has multiple classifiers), and the lines indicate the standard error averaged over

10 trials. SPE almost always perform significantly better than the naive method.

where θ = {π, θ0, θ1}, and π ∈ [0, 1] is the mixture weight,

i.e. p(yi = 1) = π. The component densities p0 and p1
could be modeled parametrically by Normal distributions,

Gamma distributions, or some other probability distribu-

tions appropriate for the given classifier (see Section 4.2

for a discussion about which class conditional distributions

to choose). This approach of applying a generative model

to score distributions, when all labels are known, has been

used in the past to obtain error estimates on classifier perfor-

mance [12, 9, 11], and for classifier calibration [1]. How-

ever, previous approaches require that the all items used to

estimate the performance have been labeled.

We suggest that it may be possible to estimate classifier

performance even when only a fraction of the ground truth

labels are known. In this case, the labels for the unlabeled

items i ∈ Ut can be marginalized out,

p(S, Yt | θ) =
∏
i∈Ut

((1− π)p0(si | θ0) + πp1(si | θ1))

×
∏
i∈Lt

πyi(1− π)1−yipyi
(si | θyi

), (2)

where Yt = {yi | i ∈ Lt}. This allows the model to make

use of the scores of unlabeled items in addition to the la-

beled items, which enables accurate performance estimates

with only a handful of labels. Once we have the likelihood,

we can take a Bayesian approach to estimate the parameters

θ. Starting from a prior on the parameters, p(θ), we can

obtain a posterior p(θ | S, Yt) by using Bayes’ rule,

p(θ | S, Yt) ∝ p(S, Yt | θ) p(θ). (3)

Let us look at a real example. Figure 2a shows a his-

togram of the scores obtained from classifier on a pub-

lic dataset (see Section 4 for more information about the

datasets we use). At first glance, it is difficult to guess the

performance of the classifier unless the oracle provides a

lot of labels. However, if we assume that the scores follow

a two-component mixture model as in (2), with a Gamma

distribution for the yi = 0 and a Normal distribution for the

yi = 1 component, then there is a only a narrow choice of θ
that can explain the scores with high likelihood; the red and

green curves in Figure 2a show such a high probability hy-

pothesis. As we will see in the next section, the posterior on

θ can be used to estimate the performance of the classifier.
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dataset 1st 2nd r.l.l. 3rd r.l.l.
(CPD) ChnFtrs [0] g ln 1.00 f-r 0.99
(CPD) ChnFtrs [1] f-r n 0.99 gu-r 0.97
(CPD) LatSvmV2 [0] ln g 1.00 f-r 0.99
(CPD) LatSvmV2 [1] f-r g 0.97 gu-r 0.96
(CPD) FeatSynth [0] n f-r 0.99 g 0.98
(CPD) FeatSynth [1] n g 1.00 f-r 0.98
(INR) LatSvmV2 [0] ln g 0.99 f-r 0.98
(INR) LatSvmV2 [1] n f-r 0.87 gu-l 0.73
(INR) ChnFtrs [0] g f-r 1.00 n 0.97
(INR) ChnFtrs [1] f-r n 0.97 g 0.84
(DGT) logres9 [0] f-r n 0.98 gu-l 0.96
(DGT) logres9 [1] f-r gu-l 0.99 n 0.99
(SAT) svm3 [0] n f-r 0.98 gu-r 0.84
(SAT) svm3 [1] n g 0.99 ln 0.98

(DGT) logres9 y=0

(CPD) ChnFtrs y=0 (CPD) ChnFtrs y=1A B

C (DGT) logres9 y=1
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Figure 4. Modeling class-conditional score densities by standard parametric distributions. A–F: Standard parametric distributions py(s |
θy) (black solid curve) fitted to the class conditional scores for a few example datasets and classifiers. The score distributions are shown

as histograms. In all cases, we normalized the scores to be in the interval si ∈ (0, 1], and made the truncation at s = 0 for the truncated

distributions. See Section 4.2 for more information. G: Comparison of standard parametric distributions best representing empirical

class-conditional score distributions (for a subset of the 78 cases we tried). Each row shows the top-3 distributions, i.e. explaining the

class-conditional scores with highest likelihood, for different combinations of datasets, classifiers and the class-labels (shown in brackets,

y = 0 or y = 1). The distribution families we tried included (with abbreviations used in last three columns in parentheses) the truncated

Normal (n), truncated Student’s t (t), Gamma (g), log-normal (ln), left- and right-skewed Gumbel (g-l and g-r), Gompertz (gz), and Frechet

right (f-r) distribution. The last and second to last column show the relative log likelihood (r.l.l.) with respect to the best (1st) distribution.

Two densities, truncated Normal and Gamma, are either top or indistinguishable from the top in all the datasets we tried.

3. Estimating performance
Most performance measures can be computed directly

from the model parameters θ. For example, two often used

performance measures are the precision P (τ ; θ) and recall

R(τ ; θ) at a particular score threshold τ . We can define

these quantities in terms of the conditional distributions

py(si | θy). Recall is defined as the fraction of the posi-

tive, i.e. yi = 1, examples that have scores above a given

threshold,

R(τ ; θ) =

∫ ∞

τ

p1(s | θ1) ds. (4)

Precision is defined to be the fraction of all examples with

scores above a given threshold that are positive,

P (τ ; θ) =
πR(τ ; θ)

πR(τ ; θ) + (1− π)
∫∞
τ

p0(s | θ0) ds
. (5)

We can also compute the precision at a given level of re-

call by inverting R(τ ; θ), i.e. Pr(r; θ) = P (R−1(r; θ); θ)
for some recall r. Other performance measures, such as the

equal error rate, true positive rate, true negative rate, sensi-

tivity, specificity, and the ROC can be computed from θ in

a similar manner.

The posterior on θ may be used to obtain confidence

bounds on the performance of the classifier. For example,

for some choice of parameters θ, the precision and recall

can be computed for a range of score thresholds τ to ob-

tain a curve (see solid curves in Figure 2b). Similarly, given

the posterior on θ, the distribution of P (τ ; θ) and R(τ ; θ)
can be computed for a fixed τ to obtain confidence intervals

(shown as colored bands in Figure 2b). The same applies to

the precision-recall curve: for some recall r, the distribution

of precisions, found using Pr(r; θ) can be used to compute

confidence intervals on the curve (see Figure 2c).

While the approach of estimating performance based

purely on the estimate of θ works well in limit when the

number of data items N → ∞, it has some drawbacks

when N is small (on the order of 103−104) and π is unbal-

anced, in which case finite-sample effects come into play.

This is especially the case when the number of positive ex-

amples is very small, say 10–100, in which case the per-

formance curve will be very jagged. Since the previous

approach views the scores (and the associated labels) as a

finite sample from p(S, Y | θ), there will always be un-

certainty in the performance estimate. When all items have

been labeled by the oracle, the remaining uncertainty in the

performance represents the variability in sampling (S, Y )
from p(S, Y | θ). In practice, however, one question that

is often asked is, “What is our best guess for the classifier

performance on this particular test set?” In other words,

we are interested in the sample performance rather than the

population performance. Thus, when the oracle has labeled
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the whole test set, there should not be any uncertainty in

the performance; it can simply be computed directly from

(S, Y ).
To estimate the sample performance, we need to account

for uncertainty in the unlabeled items, i ∈ Ut. This un-

certainty is captured by the distribution of the unobserved

labels Y ′t = {yi | i ∈ Ut}, found by marginalizing out the

model parameters,

p(Y ′t | S, Yt) =

∫
Θ

p(Y ′t , θ | S, Yt) dθ

=

∫
Θ

p(Y ′t | θ)p(θ | S, Yt) dθ. (6)

Here Θ is the space of all possible parameters. On the sec-

ond line of (6) we rely on the assumption of a mixture model

to factor the joint probability distribution on θ and Y ′t .

One way to think of this approach is as follows: imag-

ine that we sample Y ′t from p(Y ′t | S, Yt). We can then use

all the labels Y = Yt ∪ Y ′t and the scores S to trace out

a performance curve (e.g., a precision-recall curve). Every

time we sample a different value for the labels Y ′t the perfor-

mance curve will look slightly different. Thus, the posterior

distribution on Y ′t in effect gives us a distribution of per-

formance curves. We can use this distribution to compute

quantities such as the expected performance curve, the vari-

ance in the curves, and confidence intervals. The main dif-

ference between the sample and population performance es-

timates will be at the tails of the score distribution, p(S | θ),
where individual item labels can have a large impact on the

performance curve.

3.1. Sampling from the posterior

In practice, we cannot compute p(Y ′t | S, Yt) in (6) ana-

lytically, so we must resort to approximate methods. For

some choices of class conditional densities, py(s | θ0),
such as Normal distributions, it is possible to carry out

the marginalization over θ in (6) analytically. In that case

one could use collapsed Gibbs sampling to sample from

the posterior on Y ′t , as is often done for models involving

the Dirichlet process [14]. A more generally applicable

method, which we will describe here, is to split the sam-

pling into three steps: (a) sample θ̄ from p(θ | S, Yt), (b) fix

the mixture parameters to θ̄ and sample the labels Y ′t given

their associated scores, and (c) compute the performance,

such as precision and recall, for all score thresholds τ ∈ S.

By repeating these three steps, each of which is described in

detail below, we can obtain a sample from the distribution

over the performance curves.

The first step, sampling from the posterior p(θ | S, Yt),
can be carried out using importance sampling (IS). We

experimented with Metropolis-Hastings and Hamiltonian

Monte Carlo [15], but found that IS worked well for this

problem, required less parameter tuning, and was much

faster. In IS, we sample from a proposal distribution q(θ)
in order to estimate properties of the desired distribution

p(θ | S, Yt). Suppose we draw M samples of θ from q(θ)
to get Θ̄ = {θ̄1, . . . , θ̄M}. Then, we can approximate ex-

pected value of some function g(·) of θ using the weighted

function evaluations, i.e. E[g] � ∑M
m=1 wmg(θ̄m). The

weights wm ∈ W correct for the bias introduced by sam-

pling from q(θ) and are defined as,

wm =
p(θ̄m | S, Yt)/q(θ̄

m)∑
l p(θ̄

l | S, Yt)/q(θ̄l)
. (7)

For the datasets in this paper, we found that the state-

space around the MAP estimate1 of θ,

θ� = argmax
θ

p(θ | S, Yl), (8)

was well approximated by a multivariate Normal distribu-

tion. Hence, for the proposal distribution we used,

q(θ) = N (θ | μq,Σq). (9)

To simplify things further, we used a diagonal covariance

matrix, Σq . The elements along the diagonal of Σq were

found by fitting a univariate Normal locally to p(θ | S, Yt)
along each dimension of θ while the other elements were

fixed at their MAP-estimates. The mean of the proposal

distribution, μq , was set to the MAP estimate of θ.

We now have all steps needed to estimate the perfor-

mance of the classifier, given the scores S and some labels

Yt obtained from the oracle:

1. Find the MAP estimate μq of θ using (8).

2. Fit a proposal distribution q(θ) to p(θ | S, Yt) locally

around μq .

3. Sample M instances of θ, Θ̄ = {θ̄1, . . . , θ̄M}, from

q(θ) and calculate the weights wm ∈W .

4. For each θ̄m ∈ Θ̄, sample the labels for i ∈ Ut to get

Ȳ ′t = {Ȳ ′t,1, . . . , Ȳ ′t,M}.
5. Estimate performance measures using the scores S, la-

bels Ȳt,m = Yt ∪ Ȳ ′t,m and weights wm ∈W .

4. Experiments
4.1. Datasets

We surveyed the literature for published classifier scores

with ground truth labels. One such dataset that we found

was the Caltech Pedestrian Dataset2 (CPD), for which both

1We used BFGS-B [4] to carry out the optimization. To minimize the

issue of local maxima, we used multiple starting points.
2Downloaded from http://www.vision.caltech.edu/Image_

Datasets/CaltechPedestrians/.
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Figure 5. Recalibrating the classifier by estimating the probability that a condition is met. A: The conditions in panel B shown as colored

“boxes,” e.g. the yellow curve shows the condition that the precision P > 0.5 and recall R > 0.5. The blue curve and confidence band

show SPE applied to the ChnFtrs detector on the CPD dataset with 100 observed labels (black curve is ground truth). B: Probability that the

conditions shown in A are satisfied for different score thresholds. Based on a curve like this, a practitioner can “recalibrate” a pre-trained

classifier by picking a threshold for new dataset such that some pre-defined criteria (e.g. in terms of precision and recall) are met.

detector scores and ground truth labels are available for a

wide variety of detectors [7]. Moreover, the CPD website

also has scores and labels available, using the same detec-

tors, for other pedestrian detection datasets, such as the IN-

RIA (abbr. INR) dataset [5].

We made use of the detections in the CPD and INR

datasets as if they were classifier outputs. To some ex-

tent, these detectors are in fact classifiers, in that they use

the sliding-window technique for object detection. Here,

windows are extracted at different locations and scales in

the image, and each window is classified using a pedes-

trian classifier (with the caveat that there is often some ex-

tra post-processing steps carried out, such as non-maximum

suppression to reduce the number of false positive detec-

tions). For our experiments, we show the results on detec-

tors and datasets to highlight both the advantages and draw-

backs with using SPE. To make experiments go faster, we

sampled the datasets randomly to have between 800–2,000

items. See [7] for references to all detectors.

To complement the pedestrian datasets, we also used a

basic linear SVM classifier and a logistic regression classi-

fier on the “optdigits” (abbr. DGT) and “sat” (SAT) datasets

from the UCI Machine Learning Repository [10]. Since

both datasets are multiclass, but our method only handles

binary classification, we chose one category for y = 1 and

grouped the others into y = 0. Thus, each multi-class

dataset was turned into multiple binary datasets. Planned

future work includes extending our approach to multiclass

classifiers. In the figures, the naming convention is as fol-

lows: “svm3” is used to mean that the SVM classifier was

used with category 3 in the dataset being assigned to the

y = 1 class, and “logres9” denotes that the logistic regres-

sion classifier was used with category 9 being the y = 1
class, and so on. The datasets had 1,800–2,000 items each.

4.2. Choosing class conditionals

Which distribution families should one use for the class

conditional py(s | θy) distributions? To explore this ques-

tion, we took the classifier scores and split them into two

groups, one for yi = 0 and one for yi = 1. We used MLE

to fit different families of probability distributions (see Fig-

ure 4 for a list of distributions) on 80% of the data (sam-

pled randomly) in each group. We then ranked the distribu-

tions by the log likelihood of the remaining 20% of the data

(given the MLE-fitted parameters). In total, we carried out

this procedure on 78 class conditionals from the different

datasets and classifiers.

Figure 4G shows the top-3 distributions that explained

the class-conditional scores with highest likelihood for a se-

lection of the datasets and classifiers. We found that the

truncated Normal distribution was in the top-3 list for 48/78

dataset class-conditionals, and that the Gamma distribution

was in the top-3 list 53/78 times; at least one of the two dis-

tributions were always in the top-3 list. Figure 4A–F show

some examples of the fitted distributions. In some cases,

like Figure 4C, a mixture model would have provided a bet-

ter fit than the simple distributions we tried. That said, we

found that truncated Normal and Gamma distributions were

good choices for most of the datasets.

Since we use a Bayesian approach in equation (3), we
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must also define a prior on θ. The prior will vary depending

on which distribution is chosen, and it should be chosen

based on what we know about the data and the classifier. As

an example, for the truncated Normal distribution, we use a

Normal and a Gamma distribution as priors on the mean and

standard deviation respectively (since we use sampling for

inference, we are not limited to conjugate priors). As a prior

on the mixture weight π, we use a Beta distribution.

In some situations when little is known about the classi-

fier, it makes sense to try different kinds of class-conditional

distributions. One heuristic, which we found worked well

in our experiments, is to try different combinations of dis-

tributions for p0 and p1, and then choose the combination

achieving the highest maximum likelihood on the labeled

and unlabeled data.

4.3. Applying SPE

Figure 3 shows SPE applied to different datasets. The

left-most plots show the estimation error, as measured by

the area between the true and predicted precision-recall

curves, versus the number of labels sampled. The datasets

in Figure 3A–B and C–D were chosen to highlight the

strengths and weaknesses of using SPE. Figure 3A shows

SPE applied to the ChnFtrs detector in the CPD dataset. Al-

ready at 20 sampled labels, the estimate is very close (see

Figure 3B). In a few cases, e.g. in Figure 3C–D (logres8 on

the DGT dataset), SPE does not fare as well. While SPE

performs as well as the naive method in terms of estimation

error, the score distribution is not well explained by the as-

sumptions of the model, so there is a bias in the prediction.

That said, despite the fact that SPE is biased in Figure 3D, it

is still far better than the naive method for 100 labels. Ulti-

mately, the accuracy of SPE depends on how well the score

data fit the assumptions in Section 2.

Figure 3E compares the estimation error of SPE to the

naive method for different datasets, when only 20 labels

are known. In almost all cases, SPE performs significantly

better. Moreover, the variances in the SPE estimates are

smaller than those of the naive method.

4.4. Classifier recalibration

Applying SPE to a test dataset allows us to “recalibrate”

the classifier to that dataset. Unlike previous work on clas-

sifier calibration [1, 17], SPE does not require all items to

be labeled. For each unlabeled data item, we can com-

pute the probability that it belongs to the y = 1 class by

calculating the empirical expectation from the samples, i.e.

p̂(yi = 1) = E [yi = 1 | S, Yt].
Similarly, we can choose a threshold τ to use with

the classifier h̄(xi; τ) based on some pre-determined cri-

teria. For example, the requirement might be that the

classifier performs with recall R(τ) > r̂ and precision

P (τ) > p̂. In that case, we define a condition C(τ) =

[R(τ) > r̂ ∧ P (τ) > p̂]. Then, for each τ , we find the prob-

ability that the condition is satisfied by calculating the ex-

pectation p̂(C(τ) = 1) = E [C(τ)] over the unlabeled

items Y ′t . Figure 5 shows the probability that C(τ) is sat-

isfied at different values of τ . Thus, this approach can be

used to choose new thresholds for different datasets.

5. Related work

Previous approaches for estimating classifier perfor-

mance with few labels falls into two categories: stratified

sampling and active estimation using importance sampling.

Bennett and Carvalho [2] suggested that the accuracy of

classifiers can be estimated cost-effectively by dividing the

data into disjoint strata based on the item scores, and pro-

posed an online algorithm for sampling from the strata. This

work has since been generalized to other classifier perfor-

mance metrics, such as precision and recall [8]. Sawade

et al. proposed instead to use importance sampling to fo-

cus labeling effort on data items with high classifier uncer-

tainty, and applied it to standard loss functions [19] and F-

measures [18]. Both of these approaches assume that the

classifier threshold τ is fixed (see Section 2) and that a sin-

gle scalar performance measure is desired. SPE does not

fix τ , and can thus be used to show the tradeoff between

different performance measures in the form of performance

curves.

Fitting mixture models to the class-conditional score dis-

tributions has been studied in previous work with the goal

of obtaining smooth performance curves. Gu et al. [11] and

Hellmich et al. [12] showed how a two-component Gaus-

sian mixture model can be used to obtain accurate ROC

curves in different settings. Erkanli et al. [9] extended this

work by fitting mixtures of Dirichlet process priors to the

class-conditional distributions. This allowed them to pro-

vide smooth performance estimates even when the class-

conditional distributions could not be explained by standard

parametric distributions. Similarly, previous work on classi-

fier calibration has involved fitting mixture models to score

distributions [1, 17]. In contrast to previous work, which re-

quire all data items to be labeled, SPE also makes use of the

unlabeled data. This semisupervised approach allows SPE

to estimate classifier performance with very few labels, or

when the proportions of positive and negative examples are

very unbalanced.

6. Discussion

We explored the problem of estimating classifier per-

formance from few labeled items. We propose a method,

Semisupervised Performance Evaluation (SPE), based on

modeling the scores of classifiers with mixtures of densities.

SPE estimates performance curves even when a very small

number (none in the limit) of the samples are labeled. Fur-
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thermore, it produces bounds on the performance curves.

The bounds shrink as we add more level examples, allow-

ing a user to trade off labeling effort and uncertainty. A

sampling scheme based on importance sampling enables ef-

ficient inference.

One disadvantage with using an approach like SPE is

that there are no guarantees that the assumption of standard

parametric distributions will hold for any dataset, some-

thing we hope to address in future work. Furthermore,

strong model assumptions always bear the risk of underes-

timating errors. However, using four public datasets, and

multiple classifiers, we showed that classifier score dis-

tributions are often well approximated by standard two-

component mixture models in practice.

This line of research opens up many interesting avenues

for future exploration. For example, is it possible to do

unbiased active querying, so that the oracle is asked to la-

bel the most informative examples? One possibility in this

direction would be to employ importance weighted active

sampling techniques [3, 6], so similar in spirit to [19, 18]

but for performance curves. Another direction for investiga-

tion is extending SPE to multi-component mixture models

and multiclass problems. Multi-component mixture mod-

els, for example, would overcome the assumption of uni-

modal score conditionals. That said, as shown by our exper-

iments, SPE already works well for a broad range of clas-

sifiers and datasets, and can estimate classifier performance

with as few as 10 labels (see Figure 2).
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