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Abstract

Local spatio-temporal interest points (STIPs) and the re-
sulting features from RGB videos have been proven success-
ful at activity recognition that can handle cluttered back-
grounds and partial occlusions. In this paper, we propose
its counterpart in depth video and show its efficacy on ac-
tivity recognition. We present a filtering method to extract
STIPs from depth videos (called DSTIP) that effectively sup-
press the noisy measurements. Further, we build a novel
depth cuboid similarity feature (DCSF) to describe the lo-
cal 3D depth cuboid around the DSTIPs with an adaptable
supporting size. We test this feature on activity recognition
application using the public MSRAction3D, MSRDailyAc-
tivity3D datasets and our own dataset. Experimental evalu-
ation shows that the proposed approach outperforms state-
of-the-art activity recognition algorithms on depth videos,
and the framework is more widely applicable than existing
approaches. We also give detailed comparisons with other
features and analysis of choice of parameters as a guidance
for applications.

1. Introduction

Activity recognition has been an active field of research

in the past several decades [1, 12, 2]. It has connections

to many fields of study such as medicine, human-computer

interaction, and sociology. The activities that have been

studied include single person activities, interactions of sev-

eral people, and group activities. In the past, research has

mainly focused on learning and recognizing actions from

image sequences taken by visible light cameras [15, 11].

There are inherent limitations of this type of data source,

e.g. it is sensitive to color and illumination changes, occlu-

sions, and background clutters. Despite significant effort,

recognizing actions accurately still remains a challenging

task.

With the recent advent of the cost-effective Kinect, depth

cameras have received a great deal of attention from re-

searchers. It excited interest within the vision and robotics

community for its broad applications [6]. The depth sen-

sor has several advantages over visible light camera. First,

the range sensor provides 3D structural information of the

scene, which offers more discerning information to recover

postures and recognize actions. The common low-level dif-

ficulties in RGB imagery are significantly alleviated. Sec-

ond, the depth camera can work in total darkness. This is

a benefit for applications such as patient/animal monitoring

systems which run 24/7. These advantages lead to inter-

esting research such as estimating human skeletons from

a single depth image [21]. The skeletons estimated from

depth images are quite accurate under experimental settings

and bring benefits to many applications including activity

recognition, but the algorithm is limited at the same time.

It can hardly work when the human body is partly in view,

and the estimation is not reliable or can fail when the per-

son touches the background or when the person is not in an

upright position (e.g. patient lying on bed). In surveillance,

the camera is usually mounted on an elevated location and

the subjects is not facing the camera; these issues will cause

difficulties for skeletal estimation.

In this paper, we present algorithm for extracting STIPs

from depth videos (DSTIPs) and describing local 3D depth

cuboid using the Depth Cuboid Similarity Feature (DCSF).

The DSTIP and DCSF can be effectively used to recognize

activities without the dependence on skeleton tracking, thus

they offer greater flexibility. Our contribution can be sum-

marized as follows: first, we present an algorithm to extract

DSTIPs which deals with the noise in depth videos. Second,

we present DCSF as a descriptor for the 3D local cuboid

in depth videos. Third, we show that this DSTIP+DCSF

pipeline may be applied to recognize activity from depth

videos, with no dependence on the skeletal joints infor-

mation, motion segmentation, tracking, or denoising pro-

cedures. Moreover, its flexibility and recognition accuracy

outperforms other state-of-the-art methods.
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2. Related Work

2.1. Interest points extraction and description

Interest points provide a compact representation of im-

age content by describing local parts of the scene thus of-

fer robustness to clutter, occlusions, and intra-class vari-

ations. Interest points from 2D images can be used for

image matching and retrieval, instance recognition, scene

classification, and so on. Its extension into 3D is STIP

which is usually used for activity or event recognition. The

widely used STIP detectors include the Harris3D detec-

tor [11], cuboid detector [5], and Hessian detector [28].

The popular STIP descriptors include Cuboid descriptor [5],

HOGHOF [12], HOG3D [10], and extended SURF [28].

Although depth data has existed for several decades,

the interest point detection and description has stayed at

the level of describing static scenes or objects for a long

time [24, 16, 23]. Existing descriptors that describe the

local geometry around given points are aimed for object

recognition, pose estimation, or 3D registration, such as

NARF [22], VFH [19], FPFH [18], and C3-HLAC [9].

Until recently, a few spatial-temporal cuboid descrip-

tors for depth videos were proposed. Cheng et al. [4]

build a Comparative Coding Descriptor(CCD) to describe

the 3 × 3 × 3 depth cuboid by comparing the depth value

of the center point with the nearby 26 points. Zhao et

al. [32] build Local Depth Pattern(LDP) by computing the

difference of the average depth values between the cells.

In this paper, we propose DCSF as the descriptor for the

spatio-temporal depth cuboid that describes the local ”ap-

pearances” in the depth video based on self-similarity con-

cept. Local self-similarity captures internal geometric lay-

outs of local patches of videos without putting strict restric-

tions of sharing the same visual patterns. The self-similarity

based feature has been proven to work well at object de-

tection/retrieval and action detection on RGB data [20] and

object recognition tasks on depth data [8, 9].

2.2. Activity recognition from depth videos

Human activity or gesture recognition using depth im-

ages may be divided into two categories: algorithms based

on low-level features, and algorithms based on high-level

features. In the first category, Li et al. [13] sample a bag

of 3D points from the depth maps to characterize a set

of salient postures and employ an action graph to model

the dynamics of the actions. The algorithm was tested

on a clean dataset where humans have been segmented

out. Several researchers tried the STIP framework on depth

videos. Ni et al. [14] use depth information to partition the

space into layers, extract STIPs from RGB channels of each

layer using a Harris3D detector, and use HOGHOF to de-

scribe the neighborhood of STIPs also in the RGB channel.

[32, 7, 4] choose Harris3D detector [11] to extract STIPs

from RGB or depth channels.Hernández-Vela et al. [7] uses

VFHCRH to describe the 2D depth image patch around the

STIPs, Zhao et al. [32] tried HOGHOF and LDP for repre-

sentation. Zhang et al. [31] extract STIPs by calculating a

response function from both depth and RGB channels and

use the gradients along x, y, t directions as the descriptor.

Notice that most existing methods still depend on the detec-

tors and descriptors designed for RGB images.

In the second category, Wang et al. [27] combine joint

location features and local occupancy features and employ

a Fourier temporal pyramid to represent the temporal dy-

namics of the actions. Xia et al. [29] take the skeletal joint

locations and vote them into 3D spatial bins and build pos-

ture words for action recognition. The second category usu-

ally gives better recognition rates, because the high-level

skeletal information is well trained and greatly alleviates

the difficulties. But the application of such algorithms is

also limited, because the skeleton information is not always

available for real applications.

3. DSTIP Detection
Like much of the work on interest point detection, a re-

sponse function is computed at each pixel in the 3D spatio-

temporal volume. Our response function is calculated by

application of separable filters.

3.1. Spatio-Temporal Filtering

First, a 2D Gaussian smoothing filter is applied on to the

spatial dimensions:

Ds(x, y, t) = D(x, y, t) ∗ g(x, y | σ) (1)

where ∗ denotes convolution, D and Ds denote the origi-

nal depth volume and that after spatial filtering respectively.

g(x, y;σ) is a 2D Gaussian kernel:

g(x, y | σ) = 1

2πσ2
e−(x2+y2)/(2σ2) (2)

σ controls the spatial scale along x and y. Then we apply a

temporal filter along the t dimension:

Dst(x, y, t) = Ds(x, y, t) ∗h(t | τ, ω) ◦ s̄(x, y, t | τ) (3)

where Dst denotes the depth volume after spatio-temporal

filtering. ◦ denotes element wise matrix multiplication and

h(t | τ, ω) is a 1D complex Gabor filter:

h(t | τ, ω) = e−t2/2τ2 · e2πiωt (4)

where τ controls the temporal scale of the filter. We use ω =
0.6/τ . s̄(x, y, t | τ) is a correction function for the noise

of the depth sequence at location (x, y, t). τ is the same

control parameter as in the Gabor filter. The next section

introduces the correction function in detail.
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(a) Signal from pixel on object boundary: the value flips from

0 to about 3000 (mm) at a high frequency.
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(b) Signal from pixel in the middle of a static object, the value

fluctuates around 3006± 27(mm).
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(c) Signal from pixel where movement happens.

Figure 1: Temporal evolution of pixel values at different

locations in the scene.

3.2. Noise Suppression

In RGB videos, smoothing functions usually serve to

suppress noise. The reason we choose a correction function

instead of using filters is based on the different nature of the

noise in depth videos. One may divide the noise in depth

videos into three categories: The first category of noise

comes from the variation of the sensing device, which is

evenly distributed throughout the entire image, the magni-

tude of which is comparatively small. The second category

of noise occurs around the boundary of objects, the values

jump from the depth of the background to the depth of the

foreground, back and forth frequently. The magnitude of

the jump can be a few thousand (mm). The third category of

noise is the ”holes” that appear in the depth images, caused

by special reflectance materials, fast movements, porous

surfaces, and other random effects. The magnitude of the

noise can be a few thousand (mm) as well. Figure 1 gives

the temporal evolution of pixel values at different locations

in the scene.

The first category is similar to the noise in RGB images,

it is usually less distinguishable than real movements. This

noise may be reasonably removed using smoothing filters,

but in the second and third categories, the magnitude of the

noise is usually many times larger than real movements.

We can hardly smooth out the noise while leaving the real

movement signals unaffected.

The flip of the signal caused by sensor noise usually hap-

pens much faster than human movements, and it can happen

from once to dozens of times during the whole video. In

view of this, we calculate the average duration of the flip of

the signal, and use it as a correction function:

s(x, y, t0 | τ) =
∑nfp

i=1 δti(x, y)

nfp(x, y)
(5)

where nfp(x, y) is the total number of flips during the time

(a) without correction function (b) with correction function

Figure 2: DSTIPs projected onto x-y dimensions on top of

one frame of the video drink

interval [t0 − τ, t0 + τ ] at location (x, y), and δti(x, y) is

the duration of the i-th flip. We define the number of flips as

the number of zero-crossing of the normalized signal d̃(t) =
d(t)− (d(t)max + d(t)min).

This correction function is an indicator of the noise-

signal ratio of the pixel at location (x, y, t) during interval

[t0− τ, t0+ τ ]. It has a higher value at the pixels where real

movement happens thus highlight those movements. We

take a threshold so that it only affects the noises and does

not discriminate between different movements:

s̄ =

{
s0, if s > s0

s, else
(6)

where s0 is selected to best separate the value s(x, y, t) at

the location of noises and location of real motions (e.g.s0 =
2). Figure 2 shows the DSTIPs before and after the correc-

tion function. We can see the correction function effectively

removes interest points resulting from noise.

3.3. Interest point extraction

Finally, we take the response as:

R(x, y, t) = ‖Dst(x, y, t)‖22 (7)

The overall response can be written in a closed form:

R(x, y, t) = (D ∗ g ∗ hev ◦ s̄)2 + (D ∗ g ∗ hod ◦ s̄)2 (8)

hev(t | τ, ω) = cos(2πωt)e−t2/2τ2

hod(t | τ, ω) = sin(2πωt)e−t2/2τ2
(9)

DSTIP is selected at the local maximum of R in spatio-

temporal domains and also in scale domain. We take the

local maximum with top Np largest response value as the

DSTIPs for each video.

4. Interest Point Description
Here we propose a descriptor for the local 3D cuboid

centered at DSTIP. Note it is 3D instead of 4D because

the depth image is a function of x and y, not all 3D points

{x, y, z}, but it still provides useful information along the z
dimension.
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Figure 3: Illustration of extracting DCSF from depth video

4.1. Adaptable supporting size

We extract a 3D cuboid which contains the spatio-

temporally windowed pixel values around the DSTIP. Con-

sidering objects appear smaller in the image at a farther

distance, we design the cuboid size to be adaptable to the

depth. We define the spatial size of the cuboid to be pro-

portional to the scale at which it was detected and inversely

proportional to the depth at which it locates:

Δ(i)
x = Δ(i)

y = σ
L

d(i)
(10)

where σ is the scale at which the i-th cuboid was detected.

And d(i) denotes the depth of the i-th cuboid. Notice that

we do not take the depth pixel value at the interest point

D(xi, yi, ti) as d(i), because the DSTIP sometimes lands at

the edge of body parts. Instead, we compute the minimum

non-zero depth value in the 2τ time interval round the loca-

tion (xi, yi, ti), i.e. {D(xi, yi, ti − τ), . . . ,D(xi, yi, ti +
τ)}. This usually gives the depth we want for the cuboid

locations. In this way, the size of the cuboid is adjusted

according to the real-world size of the object, which corre-

sponds to smaller pixel-size at farther distances and vice-

versa. This renders noticeable improvement as compared to

a fixed pixel size in our experiments.

The side length of the temporal dimension of a cuboid is

simply defined as:

Δ
(i)
t = 2τ (11)

4.2. Depth cuboid similarity feature

Different from RGB data, depth data lacks texture, and

is inherently noisy. We define a DCSF feature based on the

self-similarity to encode the spatio-temporal shape of the

3D cuboid, and we show in Section 6 that this feature is

better than other commonly used features.

As shown in Fig. 3, we divide the cuboid into nxy ×
nxy × nt voxels. (We cut the borders when needed to make

sure each voxel contains an integer number of pixels). We

define the block as containing 1× 1× 1 to nxy × nxy × nt

voxels.

We compute a histogram of the depth pixels contained in

each block, normalize them to make the total value of every

histogram to be 1. Let the histogram calculated from block

p and q be hp and hq respectively, we use the Bhattacharyya

distance to define the similarity:

S(p, q) = ΣM
n=1

√
h
(n)
p h

(n)
q (12)

which describes the depth relationship of the two blocks. M
denotes the number of histogram bins. Note in this defini-

tion, the length of the feature depends on nxy and nt only,

it does not relate to the actual size of the cuboid which of-

fers greater freedom for the interest point detection and the

cuboid extraction process.

We generate a feature vector by concatenating the simi-

larity scores for all combinations of blocks. Varying spatial-

size from 1 × 1 to nxy × nxy gives nxy(nxy − 1)(2nxy −
1)/6 possibilities, varying temporal-size from 1 to nt gives

nt(nt + 1)/2 possibilities. In total, the number of blocks

Nb generated by varying the number of voxels it contains is

at the order of n2
tn

3
xy/6, and the total length of the DCSF

feature is C2
Nb

.

To reduce computational cost, we use integral his-

tograms [17] to compute the depth histograms rapidly. We

quantize the depth pixels into M bins, M = (dmax −
dmin)/Δd, where Δd is chosen according to the spatial

level of movements to recognize, e.g. Δd = 0.1(m).
Then we generate M quantized video volumes Q(n), n =
1, . . . ,M , corresponding to the M bins:

Q(n)(x, y, t) =

{
1, if(n− 1)Δd+ 1 ≤ D(x, y, t) ≤ nΔd

0, else

(13)

We compute an integrated video volume I(n), n =
1, . . . ,M for each of the quantized video volume Q(n):

r(n)(x, y, t) = r(n)(x, y − 1, t) +Q(n)(x, y, t)

c(n)(x, y, t) = c(n)(x− 1, y, t) + r(n)(x, y, t)

I(n)(x, y, t) = I(n)(x, y, t− 1) + c(n)(x, y, t)

(14)

where r(n)(x, y, t) denotes the sum of pixels in the rows of

Q(n)(x, y, t), c(n)(x, y, t) denotes the sum of pixels in the

columns of r(n)(x, y, t), and I(n)(x, y, t) denotes the sum

through the temporal dimension of c(n)(x, y, t). The calcu-

lation of the histogram of a block at bin n can be obtained

using only 7 add operations:

B(n) = {I(n)(p8)− I(n)(p7)− I(n)(p6) + I(n)(p5)}
−{I(n)(p4)− I(n)(p3)− I(n)(p2) + I(n)(p1)}

(15)

the label of the locations p1, . . . , p8 is given in Figure 3.

The integral video volume is computed once for each video,

and the histogram of each block is computed with 7M add

operations.

Note the histogram technique renders invariants to small

translation and rotations. We intentionally do not rotate the

cuboid itself to retain the direction of the movements so that
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we can distinguish between actions such as stand up and

sit down. The local feature captures characteristic shapes

and motion, thus it provides robust representation of events

that is invariant to spatial and temporal shifts, scales, back-

ground clutter, partial occlusions, and multiple motions in

the scene.

5. Action Description
5.1. Cuboid codebook

Inspired by the successful bag-of-words approach at

RGB image classification and retrieval, we build a cuboid

codebook by clustering the DCSF using K-means algorithm

with Euclidean distance. The spatio-temporal codewords

are defined by the center of the clusters and each feature

vector can be assigned to a codeword using Euclidean dis-

tance or rejected as an outlier. Thus, each depth sequence

can be represented as a bag-of-codewords from the code-

book. These bag-of-codewords describe what’s happening

in the depth sequences in a simple yet powerful way. To in-

corporate the positional information of the cuboid, we con-

catenate the spatio-temporal information x, y, z, t with the

DCSF feature before clustering. This gives small improve-

ments under our experimental settings. Dimension reduc-

tion methods such as PCA can be incorporated before clus-

tering without sacrificing the performance when choosing

a suitable number of dimensions while making the cluster-

ing process much faster. We use a histogram of the cuboid

prototypes as the action descriptor and SVM [3] for classi-

fication with histogram intersection kernel:

K(a, b) = Σn
i=1min(ai, bi), ai ≥ 0, bi ≥ 0 (16)

5.2. Mining discriminative feature pool

Not all the cuboid prototypes give the same level of dis-

crimination among different actions, some cuboids may be

related with movements that do not offer good discrimina-

tion among different actions, e.g. the sway of the body.

To select the discriminative feature set from the pool, we

use F-score. In a binary class case, given training vectors

xk, k = 1, . . . ,m, if the number of positive and negative

instances are n+ and n− respectively, the F-score of the i-
th feature F (i) is defined as:

(x̄
(+)
i − x̄i)

2 + (x̄
(−)
i − x̄i)

2

1
n+−1

∑n+

k=1(x
(+)
k,i − x̄

(+)
i )2 + 1

n−−1

∑n−
k=1(x

(−)
k,i − x̄

(−)
i )2

(17)

where x̄i, x̄
(+)
i , x̄

(−)
i are the average of the i-th feature of

the whole, positive, and negative data. x
(+)
k,i is the i-th fea-

ture of the k-th positive instance, and x
(−)
k,i is the i-th feature

of the k-th negative instance. The F-score indicates the dis-

crimination between the positive and negative sets. We rank

Method Accuracy
Li [13] 74.7%

STOP [25] 84.8%

Eigenjoints [30] 82.3%

Random Occupancy Pattern [26] 86.50%

Wang [27] 88.2%

Ours 89.3%
Table 1: Comparison of accuracy on MSRAction3D

dataset.

the cuboid prototypes by their F-scores and select features

with high F-scores. The threshold is manually selected to

cut between low and high F-scores. The number of features

to keep generally depends on how good the STIPs are. In

our experiments, small improvement is observed by delet-

ing 1-2% cuboid prototypes. We also tested the well-known

TF-IDF weighting or stop-words, it turns out it does not

give noticeable improvement in our experiments.

6. Experimental Results

We test our algorithm on two public datasets: MSRAc-

tion3D dataset [13] and MSRDailyActivity3D dataset [27],

and our own dataset. We compare our algorithm with state-

of-the-art methods on activity recognition algorithms from

depth videos [13, 27, 30, 25, 26]. Experimental results show

that our algorithm gives significantly better recognition ac-

curacy than algorithm based on low-level features and gives

even better results than algorithm using high-level joint fea-

tures. We also give detailed comparisons on other choices

of detectors or features and evaluation of parameters on our

model. We take support region size L = 6 in all experi-

ments.

6.1. MSRAction3D dataset

The MSRAction3D dataset [13] mainly collects gaming

actions. The depth image is clean, there are no background

objects, and the subjects appear at the same depth to the

camera. On this dataset, we take σ = 5, σ = T/27 and

T/17 (T denotes the duration of the action sequence) and

Np = 160 for DSTIP extraction, and take the number of

voxels for each cuboid to be nxy = 4, nt = 2. We fix the

cuboid spatial size Δx = Δy = 6σ because all actions take

place at the same depth.

Table 1 shows the comparison of our algorithm with

state-of -the-art algorithms on the MSRAction3D dataset.

All algorithms are tested on the 20 actions, and we select

half of the subjects as training and the rest as testing. Our

algorithm outperforms the algorithms based on 3D silhou-

ette features [13], skeletal joint features [30, 27] and local

occupancy patterns[25, 26].
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Method Accuracy
LOP feature [27] 42.5%

Joint position feature [27] 68.0%

Cuboid descriptor [5] 73.6%

HOG [12] 79.1%

DCSF(Ours) 83.6%
LOP+Joint [27] 85.75%

DCSF+Joint(Ours) 88.2%
Table 2: Comparison of recognition accuracy on MSRDai-

lyActivity3D dataset.

6.2. MSRDailyActivity3D dataset

The MSRDailyActivity3D dataset collects daily activi-

ties in a more realistic setting, there are background ob-

jects and persons appear at different distances to the camera.

Most action types involve human-object interaction. For our

testing, we delete some of the sequences in which the sub-

ject is almost still. (This can happen in action type: sit still,

read books, write on paper and use laptop). Note that Li et

al.’s algorithm [13] cannot work without segmenting out the

human subjects from the depth image, which is not a trivial

work considering the human appears at different depths and

interacts with objects. Such dependence on important pre-

processing largely limits the application of this algorithm.

Here, we compare to Wang et al. [27] and other choices of

STIP detectors and features, and we show the evaluation of

parameters on this dataset.

Table 2 shows the accuracy of different features and

methods. We take σ = 5, τ = T/17, Np = 500 for

DSTIP extraction and take the number of voxels for each

cuboid to be nxy = 4, nt = 3 . Wang et al.’s low-level

feature LOP only achieves 42.5% while our DCSF feature

achieves 83.6%, which is also better than Wang’s high-level

joint position feature. When concatenate our DCSF feature

with joint position feature, it presents an accuracy of 88.2%

which is higher than LOP combined with Joint position fea-

ture reported in [27] 85.75%.

We also compared our DCSF descriptor with widely

used descriptors in RGB images: Cuboid descriptor and

HOG descriptor. To control the variables, we use the same

set of DSTIP locations detected by our DSTIP detector at

σ = 5, τ = T/17 for all the descriptors and perform no

feature selection. For the Cuboid descriptor, we use a fixed

cuboid size Δx = Δy = 6σ, because it does not handle

different sizes. For the HOG descriptor, we incorporate the

adaptable cuboid size and take nxy = 6, nt = 4 and use

4-bin histograms of gradient orientations, which is the best

parameter for HOG on this dataset. Our DCSF descriptor

performs significantly better than the Cuboid descriptor or

gradient based descriptor even with adaptable cuboid size.

Figure 4 shows some examples of extracted DSTIPs

(a) drink-sit (b) drink-stand

Figure 6: STIPs extracted using Harris3D detector [11]

on the MSRDailyActivity dataset using our detector. We

also compared our DSTIP detector with widely used detec-

tors in RGB images, including the Harris3D detector [11]

and Cuboid detector [5]. We implemented the Cuboid

detector and keep the same setting of spatial and tempo-

ral scale with our DSTIP detector. Figure 5 shows the

STIPs extracted by the Cuboid detector and our DSTIP

detector when take the STIPs at local maximum with the

top 50,100,200,300,500,800 response values. As we can

see, the Cuboid detector first captures the noise in the

background, then gradually begins to capture a few points

around the moving arm at Np = 200, but those informa-

tive points are overwhelmed by the large number of noisy

points. This also suggests that the noise is at a larger mag-

nitude than the real movements. Our DSTIP detector effec-

tively captures the movement of the arm, and noisy points

begin to appear as late as Np = 800, but the majority of the

STIPs still gather around the person.

For the Harris3D detector, we use the code on-line1 and

use the standard parameters: number of spatial pyramid

equals 3 combined with σ2 = 4, 8, τ2 = 2, 4, k = 0.0005.

For the tool to work, we smooth and scale the depth pix-

els to 0-255. Figure 6 shows the STIPs extracted. Only

a small fraction of STIPs locates around the moving body

parts, most of them appear near edges or static objects. We

tried varying the parameters but it gives similar results.

Figure 7 shows the influence of parameters on the aver-

age accuracy of our algorithm. The parameter tested are No.

of STIPs per video Np, No. of bins for the depth histogram

M , No. of voxels for a cuboid nxy, nt, support region L,

and codebook size k.

6.3. The University of Texas dataset

Our dataset contains 10 actions: hello, push, pull, box-
ing, step, forward-kick, side-kick, wave hands, bend, and
clap hands. These actions cover the movements of hands,

arms, legs, and upper torso. Each action was collected from

10 different persons each performing the actions 3 times.

The resolution of the depth map is 320 × 240. Each action

sample spans about 8 − 46 frames. We take σ = 5, 10,

τ = T/8, T/5, T/3 when filtering and take the number of

voxels for each cuboid to be nxy = 4, nt = 2.

1http://www.di.ens.fr/ laptev/interestpoints.html
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Figure 4: Example of STIPs extracted using our algorithm. They are projected on to x-y dimensions with one depth frame

from the video for display. Action type from left to right, up to down: drink-sit, eat, drink-stand,call cellphone, play guitar,
sit down, stand up, toss, walk and lay-down

(a) Cuboid detector

(b) DSTIP detector

Figure 5: Comparison of our DSTIP detector with Cuboid detector. Example video is action drink. Column from left to right

is taken Np = 50, 100, 200, 300, 500, 800 respectively.
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Figure 7: Parameter evaluation around optimum value on

the MSRDailyActivity3D dataset. The average accuracy

with the standard deviation denoted by error bar is plotted.

There is no skeleton information recorded so skeleton

feature based algorithms [27, 30] cannot be applied onto it.

On this dataset, we tried another method in which we take

the 3D point clouds of the whole body in each frame and

map it to a posture word. Then each action is represented by

a sequence of posture words and we classify upon that (we

Test One Test Two Cross Subject
DSTIP+DCSF 93.5% 96.7% 85.8%
Posture Word 83.89% 75.65% 79.57%

Table 3: Comparison of recognition rate on our own dataset.

In test one, 1/3 of the samples were used as training samples

and the rest as testing samples; in test two, 2/3 samples

were used as training samples; In cross subject test, half of

the subjects were used as training and the rest as testing.

refer to it as the ”posture word method”). Table 3 gives the

results of the two algorithms on three testing cases. The pro-

posed DSTIP+DCSF pipeline performs significantly better

than posture words method in that it focuses on the location

of movement instead of trying to model the whole body,

and the DSTIP pipeline automatically finds the movements

without requiring segmentation of the human body as the

posture word method does.

Notice from the experiments that our algorithm does not

depend on the availability of skeleton information or pre-

processing as other methods do. By this means, our algo-

rithm is a more general approach to processing depth videos

and recognizing activities, which may also be used for a
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wider variety of settings, e.g. group activities, local body

parts activities, or non-human behavior studies.

7. Discussion and Conclusions
This paper presents algorithm to extract DSTIPs from

depth videos and to calculate descriptors for the local 3D

depth cuboid around the DSTIPs. The descriptor can be

used to recognize actions of either humans or animals with

no dependence on skeleton information or preprocessing

like human detection, motion segmentation, tracking, or

even image denoising or hole-filling. Thus it is more flex-

ible than existing algorithms. It has been applied on three

different datasets and presents better recognition accuracy

than other state-of-the art algorithms based on either low-

level features or high-level features.

Also, there is rich possibility for extensions. As shown

in the experiment, when skeletal joint information is avail-

able, the DCSF can be concatenated with the joint features

to bring more accurate recognition results. Or, joint loca-

tions can be regarded as a type of interest points and cuboids

can be extracted from those locations. On the other hand,

when the corresponding RGB video is available, the DCSF

features can be easily combined with STIP features from

RGB videos to combine the information from two sources.

Additionally, the STIP locations extracted from the depth

videos and RGB videos can be combined or filtered to pro-

vide more discriminate interest point locations and thus ren-

der better recognition performance.
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