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Abstract

We study the problem of interactive segmentation and
contour completion for multiple objects. The form of con-
straints our model incorporates are those coming from user
scribbles (interior or exterior constraints) as well as infor-
mation regarding the topology of the 2-D space after par-
titioning (number of closed contours desired). We discuss
how concepts from discrete calculus and a simple identity
using the Euler characteristic of a planar graph can be uti-
lized to derive a practical algorithm for this problem. We
also present specialized branch and bound methods for the
case of single contour completion under such constraints.
On an extensive dataset of ~ 1000 images, our experi-
ments suggest that a small amount of side knowledge can
give strong improvements over fully unsupervised contour
completion methods. We show that by interpreting user in-
dications topologically, user effort is substantially reduced.

1. Introduction

This paper is focused on developing optimization
models for the problem of multiple contour comple-
tion/segmentation subject to side constraints. The type of
constraints our algorithm incorporates are (a) those relating
to inside (or outside) seed indications given via user scrib-
bles; (b) global constraints on the topology, i.e., information
which reflects the number of unique closed contours a user
is looking for. Given the output from a boundary detec-
tor (e.g., Probability of Boundary or Pb [25]), we obtain a
large set of weighted locally-based contours (or edgelets) as
shown in Fig. 1. The objective then is to find k closed “le-
gal” contour cycles with desirable properties (e.g., curvilin-
ear continuity, strong edge gradient, small curvature), where
legal solutions are those that satisfy the side constraints,
shown in Fig. 1. The basic primitives in our construction
are contour fragments, not pixels. The motivation for this
choice is similar to most works on contour detection for im-
age segmentation — by moving from predominantly region-
based terms to a function that utilizes strength of edges, we
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seek to partly mitigate the dependence of the final segmen-
tation on the homogeneity of the regions alone and the num-
ber of seeds. Additionally, in at least some circumstances,
one expects benefits in terms of running time by utilizing a
few hundred edges instead of a million pixels in the image.
Our high level goal is the design of practical contour com-
pletion algorithms that take advice — which in a sense paral-
lels a powerful suite of methods that have recently demon-
strated how global knowledge can be incorporated within
popular region-based image segmentation methods [26].

W%‘,tw

Figure 1: Left to right: input images, edgelets or
seed indications, and final contour. Foreground is marked in green;
background is marked in red; boundrary is marked in white. Best
viewed in color.

Related Work. The study of methods for detection of
salient edges and object boundaries from images has a long
history in computer vision [37]. The associated body of
literature is vast — methods range from performing edge de-
tection at the level of local patches [32], to taking the conti-
nuity of edge contours into account [37, 29], to incorporat-
ing high-level cues [36] such as those derived from shape
and/or appearance [25]. While the appropriateness of a spe-
cific contour detector is governed by the downstream appli-
cation, developments in recent years have given a number
of powerful methods that yield high quality boundary detec-
tion on a large variety of images and perform well on estab-
lished benchmarks [25]. Broadly, this class of methods uses
local measurements to estimate the likelihood of a boundary
at a pixel location. To do this, the conventional approach
was to identify discontinuities in the brightness channel,
where as newer methods exploit significantly more infor-
mation. For instance, [27] suggests a logistic regression on
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brightness, color, and texture, and [9, 24] learns a classifier
by operating on a large number of features derived from im-
age patches or filter responses at multiple orientations. Con-
temporary to this line of research, there are also a variety of
existing algorithms that integrate (or group) local edge in-
formation into a globally salient contour. Since one expects
the global contour to be smooth, the well known Snakes for-
mulation introduced an objective function based on first and
second derivative of the curve. Others have proposed utiliz-
ing the ratio of two line integrals [ 18], incorporating curva-
ture [31, 10], joining pre-extracted line segments [ 1,
and using CRFs to ensure the continuity of contours [30].
Note that despite similarities, contour detection on its own
is not the same as image segmentation. In fact, even when
formalized under contour completion, an algorithm may not
always produce a closed contour. Nonetheless, from most
“edge-based” methods one can obtain a partition of the im-
age into object and background regions. Without getting
into the merits of edges versus regions, one can view edge-
based contours as a viable alternative to “region-based” im-
age segmentation methods in many applications.

)

The success of the above developments notwithstanding,
the applicability of these methods has been somewhat lim-
ited by their inability to successfully discriminate between
contours of different classes of objects. To address this lim-
itation, there has been a noticeable shift recently towards
the incorporation of additional information within the con-
tour completion process. In particular, several groups have
presented frameworks that leverage category specific (or se-
mantic) information into the process of obtaining closed ob-
ject boundaries. Specific examples of this line of work in-
clude semantic contours [16], the hierarchical ultrametric
contour map [2], and particle filtering based object detec-
tion via edges [23]. The basic idea here is to achieve a
balance between bottom up edge/boundary detection and
top-down supervision, for simultaneous image segmenta-
tion and recognition. While semantic knowledge based con-
tour completion is quite powerful, its performance invari-
ably depends on the richness of the underlying training cor-
pus. Indeed, if the shape epitomes do not reflect the object
of interest accurately enough (significant pose variations),
if there is clutter/occlusion, or when a novel class is not
well represented in the training data, the results may be
unsatisfactory. In these circumstances, it seems natural to
endow the contour completion models with the capability
to leverage some form of user supervision (foreground and
background seeds) [ 5]. Further, knowledge provided in the
form of the number of closed contours a user requires, can
be a powerful form of user guidance as well. Notice that
the adoption of Grabcut type methods suggests that a nom-
inal amount of “interactive scribbles” is readily available in
many applications, and may significantly improve the qual-
ity of solutions. While there are many mechanisms which
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incorporate such constraints in region based segmentation,
only a few methods take such information explicitly into
account for edge-based contour completion. In this work,
we leverage a discrete calculus based toolset to incorpo-
rate such topological and seed indications type supervision
within a practical contour completion algorithm.

The primary contributions of the this paper are: (i) We
present a unified optimization model for multiple con-
tour completion/segmentation which incorporates topologi-
cal constraints as well as inclusion/exclusion of foreground
and background seeds. The topological knowledge is in-
cluded by using the Euler characteristic of the edgelet
graph where as inclusion/exclusion constraints utilize con-
cepts from discrete calculus. (ii) For an extensive dataset,
we provide strong evidence that with a small amount of
user interaction, one can obtain high quality segmentations
based on edge contours information alone. We give an
easy to use implementation, as well as user scribble data
corresponding to varying levels of interaction on this large
(~ 1000) set of images.

2. Preliminaries

The tools of discrete calculus provide a powerful formal-
ism to represent the topological information in an image
[ ]. We use conventions of discrete calculus to de-
scribe our problem of finding multiple contour closures. In
this section, we introduce the idea of cell complices which
are the fundamental building blocks of our construction.
The following text also introduces the necessary notations,
which will be used thoughout the rest of the text.

b} E)

2.1. Discrete Calculus

The domain of an image is decomposed into a set of
cells. If the decomposition is such that (i) the interiors of
the cells are disjoint and (if) the boundary between any two
p-dimensional cells is a (p — 1)-dimensional cell then we
have a cell complex. As an example, consider a planar graph
G = (V, E, F) with vertices V, edges F, and faces F. Such
a graph has incidence relationship between each face and
its bounding edges, and between each edge and its endpoint
vertices. Similarly, each vertex is incident on two or more
edges and each edge is incident on two faces. Notice that
the interior of a pair of faces is disjoint, and the boundary
between any two faces gives an edge, where the dimension
is reduced by one. As a consequence, we get a 2D cell
complex for a planar graph, and also a set of incidence rela-
tionships among simplices of different dimensions.

A cell complex may be oriented such that we can de-
scribe directions on each cell relative to its orientation, see
Fig. 2(a). Each type of cell has a corresponding pair of
possible orientations: a vertex (0-cell) is either a source or
a sink while an edge (1-cell) may be directed toward either
endpoint. Further, each cell induces a corresponding ori-
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Figure 2: Visualization of the orientations on cells of different dimen-
sionalities (a). In (b) we show in the left column p-cells with all of their
boundary (p — 1)-cells coherently oriented, and all boundary cells anti-
coherently oriented in the right column.
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Figure 3: Duality relationships between 2D cell complices.

entation on incident cells; for example, a directed edge has
a source endpoint vertex at one end and sink at the other.
The orientations of a cell and a member of its boundary are
coherent if the induced orientations agree, an example is
shown in Fig. 2(b).

We may represent the two-dimensional image as an ori-
ented complex. All faces are given the same orientation,
while edges and vertices are given arbitrary orientations.
After enumerating its constituent vertices, edges and faces,
a selection of some subset of faces is specified with an in-
dicator vector x € {0, 1}/¥I. x; = 1 denotes the candidate
face F; € F is in the foreground, and x; = 0 otherwise.
Similarly, we represent the edge and vertex configuration of
G by indicator vectors y € {0,1}/#! and z € {0,1}/V re-
spectively. We require that the indicator vectors x,y, z on
each level of cell consistently describe a segmentation. The
key relationship is consistency between the labels on the
incident cells. These relationships can be expressed alge-
braically using the notion of a dimension-appropriate inci-
dence matrix. The edge-face incidence matrix (also called
the boundary operator) C; € {—1,0, 1}EIXIF is defined
by

1 if edge ¢ is incident to face j and coherently oriented,;
C1i 7 = q —1 ifedge 7 is incident to face j and anti-coherently oriented,;
0 otherwise.

()]

Here, C,; refers to entry (4,5) in C;. Similarly,
by discarding orientation information, we can define the
edge-face corresponding matrix Co € {0, 1}1Z1*IF| which
labels which edges are incident to which face. It can
be calculated as the element-wise absolute value of C4,
such that Cy;; = |Ci,j]. The node-edge incident ma-
trix A; € {—1,0, 1}IVIXIZl is defined analogously to (1),

1888

where A;;; = 1 iff node ¢ is incident to edge j. As
with C5, we define the node-edge corresponding matrix
Ay = |Aq| € {0, 1}IVIXIEI We further use a node-edge de-
gree matrix A € RIVIXIEl where As.ij = Agyj/d; where
d; denotes the degree of node i.

Discrete calculus describes the notion of duality between
cell complices. In a p-complex, each g-cell will have a cor-
responding dual (p — g)-cell (say, ¢ < p). For any given cell
complex, we can construct its dual in a way that preserves
incidence relationships between cells, see Fig. 3. Using
these concepts, in the following sections, we will formalize
the required constraints within a contour completion objec-
tive function.

3. Problem Formulation

As described in Section 2.1, our model works with se-
lections of the cells constituting the foreground. Since the
notion of foreground for a face is self-evident, we will de-
scribe the labeling of vertices and edges, starting from a face
labeling x. We enforce the following condition:

Condition 1. A p-cell is in the foreground if and only if it
is incident to a (p + 1)-cell in the foreground.

This condition ensures that each connected component
of the foreground is itself a cell complex, a property we will
use shortly.

First, we introduce an auxiliary indicator variable w €
{0, 1}/E! which selects the boundary edges. These edges
are those which are incident to both a foreground and a
background face. W.l.o.g., consider edge 1 incident to faces
1 and 2 respectively, then wy = |21 — 22| = I(x1 # z2).
Taken together, the full set of boundary edges precisely rep-
resent the contour of the selected foreground. We can now
use the boundary operator from Section 2.1 to derive the
identity
3]

Observe that each edge is incident to exactly two faces,
and we specified that all faces have identical orientation. It
follows that an edge must be coherent with one face and
anti-coherent with the other. Therefore, for all internal
edges (non-boundary edges in the foreground) the C; oper-
ator when multiplied with x, cancels the contribution from
these two faces, leaving non-zero values only for the bound-
ary edges. The internal edges (which are incident to fore-
ground faces on both sides) can still be computed in a dif-
ferent manner. The vector Cax will count the inside edges
twice and the boundary edges once, as we discard orienta-
tion (and thus sign information). In the preceding, w.l.o.g.
(Cex)1 = x1 + x2. Thus, Condition 1 will be satisfied if
the following identity holds:

w = |C1x]

2y = w4+ Cax 3)

We use the matrices A, A3 for a pair of linear inequali-
ties which are equivalent to Condition 1 for vertices. Ob-
serve that the vector A,y will be the number of foreground



Figure 4: A superpixel-based segmentation with the foreground subgraph
consistent under condition 1. Selected faces are shaded, foreground edges
are bold and foreground vertices highlighted in yellow. Internal edges
yi # w; = 0 are bold/black, boundary edges y; = w; = 1 are red.

edges incident to each foreground vertex (or node), where
(A2y); is the number of foreground edges incident to ver-
tex (or node) ¢. Similarily, when scaled by the degree d;
of vertex i, (Asy); € [0, 1] will be the proportion of edges
incident to ¢ which are in foreground. Enforcing condition
1 is equivalent to:

A3y <z< A2y 4)

Since z; € {0, 1}, the condition, z; > (Asy);, will be true
only for z; = 1 if any edge incident to 7 is in foreground.
Conversely, if no edge incident to 7 is selected in the solu-
tion, then (Asy); = (Asy); = 0 and (4) is satisfied only
for z; = 0.

The expressions introduced above allow the identifica-
tion of whether a user provided seed falls “inside” or “out-
side” the contour completion given by w, and will serve
as constraints for our multiple contour completion model.
Fig. 4 shows an illustrative example for an image, where
the input to the contour completion are edgelets (or edgels)
obtained from boundaries of a globalPb derived superpixels.

Euler Characteristic. Our final requirement is to be
able to specify the number of closed contours desired. The
existing literature on region based image segmentation pro-
vides some ideas on how this can be accomplished for ran-
dom field based models — in the form of so-called connect-
edness constraints. TopologyCuts is an extension of graph-
cuts and utilizes certain levelset ideas to preserve topology
[41]. The DijkstraGC [38] finds a segmentation where two
manually indicated seed points are connected via the fore-
ground where as Nowozin [28] makes use of a LP relax-
ation. Very recently, [8] proposed selectively perturbing
the energy function to ensure topological properties. Here,
we show how a much simpler form can capture the desired
topological properties, as described next.

For any graph we can define the Euler characteristic as

x = V=Bl +|F], ®)
where x = 2 for any planar embedding of a graph. If
we explicitly constrain that the Euler characteristic of an in-
duced subgraph created by selecting any given foreground
is exactly two, this will give a foreground region that is
connected and simple in a geometric sense. For multiple
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connected regions, we can use the generalized form of this
formula for arbitrary planar graphs:

|F|+|V|—|E|=n+1 (6)

where n is the number of connected components.)

Lemma 3.1. Let x,y, z denote indicator vectors for the se-
lection of faces, edges, and vertices for planar graph G.
The selected subgraph will satisfy (6) if

dDai+d m—» y=n (O]
i k J

Proof. (Sketch) The left-hand side of this formula counts

each relevant quantity for the Euler characteristic of the se-

lected subgraph, but it neglects to count the “outside” face.

Subtract one from the RHS and derive the equality. O

This will not count the extra outside faces corresponding
to any “holes”. This was not a problem in our experiments,
but can be explicitly avoided by requiring the background
be connected using the spanning tree constraints of [33].
Using (7) as a constraint in our model will guarantee that
we recover n simply connected foregrounds.

3.1. Optimization Model

Before we introduce the contour completion model, we
briefly describe the procedure for deriving the components
of the graph from an image. This process follows exist-
ing algorithms for contour and boundary detection. First,
we run the globalPb detector on an image which provides
the probability of boundary for each image pixel. Next, we
generate a set of superpixels from the image using the glob-
alPb output in conjunction with TurboPixels (which uses
local information and compactness). Each superpixel cor-
responds to a face, and the boundary of the superpixel cor-
responds to edges in the graph (these are the basic primi-
tives of the closed contours we will derive). If two edges
are connected, we introduce a node in the graph. With this
construction, the problem of finding multiple contour clo-
sures reduces to finding multiple cycles in the graph. To se-
lect the cycles for the strongest contours, we want to weight
the edges appropriately. For this purpose, we calculate two
types of weight measures following [21]. The first, denoted
by N, measures the “goodness” of edges. The better edge i
is, the smaller IV; will be. The second, denoted by D, is the
count of all the pixels on the superpixel boundary. We use
an objective function which is the ratio of these quantities,
%. This ends up being the portion of contour w.r.t arc-
length which does not lie on a true image edge. Minimizing
this quantity has been shown to provide a contour that has
strong edge support in the image.

Finally, the user indictations are represented in terms of
indicator vectors Xq, X1, where xo,; = 1 if face ¢ contains



a background seed. With the basic components (or con-
straints) in hand, we now have the main optimization model.

. NTw
min ,
wxy,z DTw
st. w=|Cix|, 2y =w+ Cax, (8a,b)
Asy <z < Asy, 1Tx+17z2—-1Ty=n, (8cd)
x1 <x<1-x0, Ww,x,¥y,z¢€{0,1}. (8e,f)

3.2. Optimizing Ratio Objective

Since the objective in (8) of the main paper is in ratio
form, we transform it into a linear function with a free vari-
able, t. Our linear ratio cost objective function is solved
by minimizing f(¢,u) = (N — ¢D)Tu, over admissible u
for a sequence of chosen values of . Here, u denotes the
concatenated vector of all indicator variables in the model.
Assume D > 0 and D7u # 0. For an initial finite
bounding interval [t;,t,], let ¢y be the initial value. Let
U = arg miny, f (¢, u), the procedure proceeds as follows:

e f(to,u) = 0: NTu/DTa = t, stop with solution g
e f(to,u) <0: NTu/DTua < ty, t, «+ NTu/DTa
o f(to,u) >0: NTu/DTa > tg, t; « tg

Each iteration is easily solved in a few seconds using the
CPLEX IP solver on a standard workstation.

4. Beyond Superpixel-derived Edgelets

Recall that the model in Section 3.1 constructs a cell
complex using a superpixel decomposition of the image do-
main. While fast algorithms for finding this decomposition
are available [22], it is known that superpixels are not ro-
bust for all types of images. Occlusion or weak boundaries
give cases where the set of superpixel boundary primitives
(the input to our optimization) do not include some valid
edgelets (ones which have not been picked up by either the
contour detector or superpixel method). The natural solu-
tion to this is to supplement the basic set of edgelet prim-
itives with additional contour pieces that bridge the ‘gaps’
and allow a more accurate contour closure even in the pres-
ence of very weak signal variations. Next, we present such
an extension to find completions using a base set of discon-
nected edgelets. But introducing completions between all
pairs of edgelets is prohibitive and leads to a problem with a
large number of variables (especially for multiple contours).
The following model, while applicable to the multiple con-
tour setting, is most effective for finding a single contour
which encloses a simply connected foreground region.

Euler Spirals. A key subcomponent of this problem is
how to join two edgelets which will follow each other on
the contour. This is the problem solved by [19] which pro-
poses to use segments of the Euler spiral. This spiral can

Figure 5: Branch-and-bound result on a BSD image.

be shown to be the curve C with minimal fotal curvature
TCy = [, r(s)? ds where £(s) is the curvature at a given
point on the curve parameterized by arc-length. For any pair
of points along with tangents we can construct a segment
of an euler spiral which connects these points with con-
sistent tangents. They show that these completions satisfy
the conditions given by [ 7] for a “pleasing” curve (invari-
ance to similarity transformations, symmetry, extensibility,
smoothness, roundness).

We parameterize the spiral by the turning angle as in
[39]. To form a completion, we consider the Euler spiral
under a similarity transformation determined by the posi-
tion and Frenet frame (P, T¢, Ny) at the spiral’s inflection
point, and a scaling factor a. The transformed spiral is

60>0

00) {Po + aC(0)To + aS(0)Ny 020

Py —aC(—0)T0 — aS(—0)No

where S and C' are the Fresnel integrals. A choice of in-
terval [0, 02] selects a given segment. [39] gives a set of
equations to determine these free variables, given segment
endpoints P, P, and their tangents T';, T'5. We solve these
equations using a modified Newton’s method. The most ex-
pensive step, the computation of the Fresnel integrals, is
sped up considerably using [12], but augmented with pre-
computed tables. We can compute an average completion
in 30us, versus 1ms for [19] on the same machine, making
it an attractive option to calculate a large number of comple-
tions, quickly, within the core contour completion engine.
Euler-Spirals for One Contour Completion. We are
given a set of image edgelets derived from an edge detector
as before, as well as user-provided foreground and back-
ground seeds. The core objective considered by the algo-
rithm is an alternating path p which consists of a sequence
of edgelets joined by Euler Spiral segments. The goal is to
find a closed contour that minimizes an objective function
that increases with the addition of each contour segment.
Our solution strategy is to iteratively build upon the cur-
rent partial path, until we get a cycle that encloses a feasible
region. To do this, we adopt a specialized branch and bound
procedure. Here, each node v of the branch-and-bound tree
corresponds to some alternating path p. If p is a cycle, then
v is a leaf node and thus a candidate solution. In this case,
we check p is checked for feasiblity w.r.t. the seed con-
straints. If p is not a cycle, we may construct the children of
this node by considering each image edglet in sequence and
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calculating the euler completion, on the fly. The path for
the a child is then p plus the current completion and edgelet
appended to the end. Children are discarded if they give rise
to a self-intersecting partial path; therefore, entire subtrees
can be discarded directly. Any partial path with objective
worse than the best candidate solution found so far may be
ignored. Otherwise, we descend the tree to each child in
turn, ordered by the cost of their partial contour.

This algorithm implicitly solves a model of the form in
(8), with a linear objective function on w and smoothness
constraints on the solution contour. We can construct a pla-
nar graph for this model using the extensibility property of
Euler spirals and splitting any two intersecting segments.

5. Experiments

We first provide evaluations of the model from Section
3 on images from the Weizmann Horse Database (WHD)
[5], the Weizmann Segmentation Database (WSD) [1], and
the Berkeley Segmentation Data Set (BSDS500) [3]. We
then continue to experiments with a robot user on the ISEG
dataset. These experiments will show that the combination
of interaction with a contour-based method can achieve high
levels of accuracy with a minimum of user effort.

We compare our approach (which we refer as EulerSeg)
with three other contour grouping methods: (i) Ratio Re-
gion Cut (RRC) from [34], (if) Superpixel Closure (SC)
from [21], and an adaptive grouping method (EJ) [11]. We
note that these are unsupervised whereas our algorithm in-
corporates user interaction, but SC and EJ produce multiple
segmentations of which we select the most favorable. We
compute the F-measure by the region overlapping and re-
port quantitative results in Fig. 9.

The cell complex is generated from superpixels via [22
and the same number of superpixels as SC in all our exper-
iment. We typically indicate 1 ~ 2 interior seeds for the
sought objects, but in the presence of > 2 objects, we may
need 3 — 7 points including both interior and exterior seeds.
The indicated seeds are shown in the images: green marks
are foreground and red marks are background.

RRC was run using the default parameters A = 0, =
1. That method has an additional parameter to indicate an
arbitrary number of objects. However, it frequently fails
to get a second boundary even when the image includes 2
objects. For SC, we use their reported best parameters with
the number of superpixels set to 200 and 7, = 0.05. That
algorithm generates K = 10 possible solutions, here we
report results for the best one.

WHD Results: WHD consists of 328 side-view images
of horses, with exactly one horse in each image. Fig. 6
shows both RRC and SC select large regions of ground be-
tween the horses’ legs due to their large-region bias. As the
examples show, our objective function minimizes gaps in
the closure and leverages user seeds to handle slender ob-

jects better and outperforms both with < 5 seeds.

SC EulerSeg

Figure 6: Sample results from WHD. Best viewed in color.

WSD Results: WSD contains 200 images and is divided
into 2 subsets of images with one or two foreground objects.
As shown in Fig. 7, our algorithm is comparable to RRC
and SC when there is one object with only one seed. How-
ever, when the image contains 2 objects, our Euler charac-
teristic constraint fires in and we correctly segment both ob-
jects of interest, while RRC and SC either selects one of the
objects or segments one large region which includes both.

BSDS500 Results: Compared with WSD and WHD, im-
ages in this dataset are more complicated. We note that in
some images of BSDS500, there are no salient objects or
closed contours (e.g., images of sky or street). In these cases
our algorithm cannot find a meaningful closed contour, but
where one is present our model performs at least as well
as any of the compared methods. However, another chal-
lenging class of images in BSD are those that depict a large
number of foreground objects, here our algorithm signifi-
cantly improves upon previous results with a small amount
of user guideline and the topological constraint. An exam-
ple of this can be seen in the bottom row of Fig. 8, where
RRC and SC fail whereas our method is able to find the
correct solution easily.

ISEG Results: We compare our algorithm with the
state-of-art interactive segmentation methods on the ISEG

EulerSeg RRC SC EulerSeg

Figure 7: Sample results from WSD. Best viewed in color.
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Figure 8: Sample results from BSDS500. Best viewed in color.
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Figure 9: F-measure scores on datasets described in Section 5.

dataset[15]. These include Boykov & Jolly (BJ) with no
shape constraints [6], shortest paths method (SP) [4], Ran-
dom Walker (RW) [13], and Geodesic Star Convexity se-
quential system (GSCseq) [15]. We measure the effects of
user interactions using a robot user setting. All the algo-
rithms are set up with the default setting using the robot
engine from [15]. The question we ask is how much user
interaction is required to get a region F-measure score of
0.95 for the ISEG dataset (restricted to cases where all al-
gorithms can achieve F=0.95 within 20 strokes). Table 1
demonstrates that EulerSeg requires the fewest stokes to
reach a reasonable segmentation. On the other hand, as
ISEG already provides a good initialization, which benefits
the rest methods for building up an appearance model, the
extra effort needed for a good segmentation is reduced. It is
important to note that seeds in EulerSeg act as a pure geo-
metric role and enable segmentation with fewer stroked pix-
els. When starting with no initialization (which we refer as
EulerSeg-0), EulerSeg is still able to segment the object(s)
within 5-10 strokes. These results are shown in Fig. 10.

Table 1: Average interaction efforts required to reach an F=0.95

Method BJ RW SP GSCseq
Avg. Effort | 551 | 6.48 | 4.54 2.30

EulerSeg
2.06
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Running Time The preprocessing to generate super-
pixels is the primary computational cost, and is the only
resolution-dependent component of our method. The total
number of variables in our ILP typically is about 2000 (with
residuals); on a 3GHz i7 CPU, each iteration of the linear
ratio objective solver takes < 1s. Given superpixels, our
implementation creates a segmentation usually within 15 it-
erations, though for some exceptionally textured images or
those with a large number of components our algorithm may
take more than 1 minute to solve.

6. Discussion

We present a framework based on discrete calculus
which unifies the contour completion and segmentation set-
tings. This is augmented with a Euler characteristic con-
straint which allows us to specify the topology of the seg-
mented foreground. Our model easily accommodates user
indications and multiple foreground regions. Two solvers
specialized toward different aspects of the problem are de-
rived, one based on an ILP over superpixels and the other
a branch-and-bound using completions with spirals to join
edgelets. We demonstrate our model finds salient con-
tours across a large dataset, showing significant improve-
ment over similar methods.
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