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Abstract

A Manhattan World (MW) [3] is composed of planar
surfaces and parallel lines aligned with three mutually or-
thogonal principal axes. Traditional MW understanding
algorithms rely on geometry priors such as the vanishing
points and reference (ground) planes for grouping coplanar
structures. In this paper, we present a novel single-image
MW reconstruction algorithm from the perspective of non-
pinhole cameras. We show that by acquiring the MW us-
ing an XSlit camera, we can instantly resolve coplanarity
ambiguities. Specifically, we prove that parallel 3D lines
map to 2D curves in an XSlit image and they converge at
an XSlit Vanishing Point (XVP). In addition, if the lines
are coplanar, their curved images will intersect at a second
common pixel that we call Coplanar Common Point (CCP).
CCP is a unique image feature in XSlit cameras that does
not exist in pinholes. We present a comprehensive theory
to analyze XVPs and CCPs in a MW scene and study how
to recover 3D geometry in a complex MW scene from XVPs
and CCPs. Finally, we build a prototype XSlit camera by
using two layers of cylindrical lenses. Experimental results
on both synthetic and real data show that our new XSlit-
camera-based solution provides an effective and reliable
solution for MW understanding.

1. Introduction
A pinhole camera collects rays passing through a com-

mon Center-of-Projection (CoP) and has been the dominat-

ing imaging model for computer vision tasks. The pinhole

model is popular for two main reasons. First, pinhole geom-

etry is simple; it is uniquely defined by only 3 parameters

(the position of CoP in 3D) and its imaging process can be

uniformly described by the classic 3 × 4 pinhole camera

matrix [12]. Second, human eyes act as a virtual pinhole

camera, e.g., they observe lines as lines and parallel lines

converging at a vanishing point. Pinhole cameras hence are

also referred to as perspective cameras.

The pinhole imaging model, however, is rare in insect

eyes. Compound eyes, which may consist of thousands of

individual photoreceptor units or ommatidia are much more

common. Images perceived are a combination of inputs

from the numerous individual “eye units” pointing towards

different directions. These multi-perspective imaging mod-

els provide unique advantages for perceiving and interpret-

ing scene geometry [28]. In this paper, we demonstrate

using a special multi-perspective camera, the XSlit camera

[30], for reconstructing the Manhattan World scenes.

The Manhattan World. A Manhattan World (MW) [3]

is composed of planar surfaces and parallel lines aligned

with three mutually orthogonal principal axes. The MW

model fits well to many man-made (interior/exterior) envi-

ronments that exhibit strong geometry regularity such as flat

walls, axis-aligned windows and sharp corners. Tremen-

dous efforts have been focused on reconstructing MW from

images [1, 5, 10, 11] and using the MW assumption for

camera calibration [3, 15, 24]. The main challenge is that

MW generally exhibits repeated line patterns but lacks tex-

tures for distinguishing between them, making it difficult

to directly apply stereo matching. Furukawa et al. [10, 11]

assign a plane to each pixel and then apply graph-cut on

discretized plane parameters.

MW reconstruction/understanding from a single image

is even more challenging. Most previous approaches ex-

ploit monocular cues such as the vanishing points and the

reference planes (e.g. the ground) for approximating scene

geometry. Hoime et al. [13, 14] use image attributes (color,

edge orientation, etc.) to label image regions with different

geometric classes (sky, ground, and vertical) and then “pop-

up” the vertical regions to generate visually pleasing 3D

reconstructions. Delage et al. [5, 6] extend this technique

to indoor scenes. Kosecka and Zhang [15] detect line

structures in the image for recovering the vanishing points

and camera parameters [29]. Criminisi et al. [4] use the

vanishing points and ground plane as priors for recovering

affine scene structures. Saxena et al. [22, 23] apply machine

learning techniques to infer depths from image features and
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use the Markov Random Field (MRF) to determine the

location and orientation of planar regions. Lee et al. [16]

and Flint et al. [9] search for the most feasible combination

of line segments for indoor MW understanding.

Our Approach. We present a novel single-image

MW reconstruction algorithm from the perspective of non-

pinhole imaging. We observe that the core challenge in

pinhole-based solutions is coplanar ambiguities: although

one can easily detect the vanishing point of a group of par-

allel 3D lines, there is an ambiguity on which lines belong

to the same plane. We show that this ambiguity can be

naturally resolved if we use a multi-perspective camera to

acquire the scene.

Conceptually, 3D parallel lines will be mapped to 2D

curves in a multi-perspective camera and these curves will

intersect at multiple points instead of a single vanishing

point. For example, Caglioti et al. [2] examine the curves

in a non-centric catadioptric camera for line localization.

Swaminathan et al. [26] develop a solution for axial non-

centric cameras. In this paper, we show how to group paral-

lel 3D lines on the same plane by analyzing their images in

a special multi-perspective cameras, the XSlit camera [30].

We show that same as in the pinhole camera, images of

parallel lines in an XSlit image, although curved, will still

converge at a vanishing point, i.e., the XSlit Vanishing Point

or XVP. What is different though is that images of coplanar

3D lines will generally intersect at a second common point

that we call Coplanar Common Point or CCP. CCP is a

special feature of XSlits that does not exist in pinholes. We

then present a comprehensive theory to analyze XVPs and

CCPs of a MW scene. We show that the geometry of 3D

lines can be directly recovered from their XVPs and CCPs.

We further develop a robust algorithm to distinguish the

two types of points of complex MW scenes using a single

XSlit image. Finally, we construct a prototype XSlit camera

by using two layers of cylindrical lenses. Experimental

methods on both synthetic and real data show that our XSlit

camera based solution provides an effective and reliable

solution for MW scene understanding.

Our contributions include:

• A new theory to characterize the XVP and CCP of

coplanar parallel 3D lines in an XSlit image.

• A class of robust techniques for locating, separating,

and finally utilizing the XVPs and CCPs for MW scene

reconstruction from a single image.

• A prototype XSlit camera for validating our theory.

2. XSlit Imaging
Traditional approaches use the projection from 3D points

to 2D pixels to model the imaging process in a camera.

In this paper we decompose the projection process into

two components: the mapping from a 3D point to a ray

x

y z

O
slit 1

ImagePlane

slit 2

r = [u, v, s, t]

 [u, v, 0]  [s, t, 1]

Figure 1. An XSlit Camera collects rays simultaneously passing

through two oblique slits. We use a special two-plane parametriza-

tion (2PP) to represent all XSlit rays.

collected in the camera and the mapping from the ray to a

pixel. We use the two-plane parametrization (2PP) [17] for

parameterizing rays. In 2PP, each ray is parameterized as

[u, v, s, t], where [u, v] and [s, t] are the intersections with

the two parallel planes Πuv and Πst lying at z = 0 and

z = 1 respectively. [u, v, s, t] can be viewed as a two-point

representation of a line. To further simplify our analysis,

we use [u, v, σ, τ ] parametrization where σ = s − u and

τ = t − v. We choose Πuv as the default image (sensor)

plane so that [σ, τ, 1] can be viewed as the direction of the

ray.

2.1. XSlit Camera Geometry

An XSlit camera collects rays that simultaneously pass

through two oblique (neither parallel nor coplanar) slits in

3D space [30]. Given two slits l1 and l2, we construct the

2PP as follows: we choose Πuv and Πst that are parallel to

both slits but do not contain them, as shown in Fig. 1. Next,

we orthogonally project both slits on Πuv and use their

intersection point as the origin of the coordinate system.

We assume l1 and l2 lie at z = Z1 and z = Z2 with

directions [d1x, d
1
y, 0] and [d2x, d

2
y, 0], where Z1 �= Z2 and

d1xd
2
y − d1yd

2
x �= 0.

XSlit Ray Constraints. We first explore ray geometry

constraints for all rays in an XSlit camera. Since each ray

[u, v, σ, τ ] simultaneously passes through l1 and l2, there

must exist some λ1 and λ2 so that

{
u+ Z1σ = λ1d

1
x; v + Z1τ = λ1d

1
y

u+ Z2σ = λ2d
2
x; v + Z2τ = λ2d

2
y

(1)

Eliminating λ1 and λ2, we obtain two linear constraints in

[u, v, σ, τ ] as

{
σ = (Au+Bv)/E

τ = (Cu+Dv)/E
(2)
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where

A = d2xd
1
yZ2 − d1xd

2
yZ1, B = d1xd

2
x(Z1 − Z2),

D = d2xd
1
yZ1 − d1xd

2
yZ2, C = d1yd

2
y(Z2 − Z1),

E = (d1xd
2
y − d2xd

1
y)Z1Z2

Recall that the two slits are oblique, therefore E �= 0. We

call Eqn. (2) the XSlit Ray Constraints (XSRC). XSRC has

been introduced in various forms in previous studies, e.g.,

as projection model in [30], as general linear constraints in

[27], and as ray regulus in [21].

2.2. Other Ray Geometry Constraints

Rays Passing Through a 3D Line. The focus of this

paper is to study the projection of 3D lines. We therefore

derive the constraint for rays to pass through a line and then

combine it with XSRC to study its image. Given a 3D line

l 1, we consider two cases.

Case 1: If l ‖ Πuv , we can represent it as l : (xl, yl, zl)+
λ(dlx, d

l
y, 0). If a ray r[u, v, σ, τ ] passes through l, there

must exist some λ and λl so that

[u, v, 0] + λ[σ, τ, 1] = [xl, yl, zl] + λl[d
l
x, d

l
y, 0] (3)

It is easy to see that λ = zl. Eliminating λl, we obtain a

linear constraint:

u

dlx
− v

dly
+

zlσ

dlx
− zlτ

dly
− xl

dlx
+

yl
dly

= 0 (4)

We call Eqn.(4) the Parallel Line Constraint. We can further

combine it with XSRC (Eqn. (2)) to find all rays passing

through l. These three linear constraints yield to a linear

constraint in u and v, i.e., the image of the line. Therefore

the image of l ‖ Πuv is still a line. Further, its slope depends

only on the direction of l and therefore all 3D lines parallel

to Πuv will be mapped to 2D parallel lines.

Case 2: If l ∦ Πuv , we can parameterize it under 2PP

as [ul, vl, σl, τl]. Similar to case 1, there must exist some λ
and λl so that

[u, v, 0] + λ[σ, τ, 1] = [ul, vl, 0] + λl[σl, τl, 1] (5)

We have λ = λl and eliminating λ andλl, we obtain a

bilinear constraint:

u− ul

v − vl
=

σ − σl

τ − τl
(6)

We call Eqn. (6) the Non-Parallel Line Constraint. Using

XSRC (Eqn. (2)), we can solve for σ and τ with u and v
and substitute them into Eqn. (6). We then obtain a conic

curve in u and v, i.e., the image of l as

1Although slits are essentially lines, we distinguish them two for clari-

ty: slits refer to the XSlit camera geometry and lines refer to 3D scene.

Cu2 + (D −A)uv −Bv2 + (Avl − Cul − Eτl)u

+ (Bvl −Dul + Eσl)v + E(ulτl − vlσl) = 0
(7)

To determine the type of the conic, we compute

J = (D −A)2 − 4BC = (d1xd
2
y − d2xd

1
y)

2(Z1 − Z2)
2 > 0 (8)

Therefore, the conic can only be hyperbolas. Eqn. (7) fur-

ther reveals that the quadratic coefficients of the hyperbolas

only depend on the XSlit intrinsic parameters (A, B, C, and

D), i.e., they are identical for all 3D lines. In Sec. 3.3, we

use this property for fitting hyperbolas from the acquired

XSlit images. Notice though that we cannot directly re-

construct a 3D line from its hyperbola image: a line has

four unknowns ul,vl,σl, and τl while we only have three

equations (the u and v coefficients and the constant term in

Eqn. (7)). Similar ambiguity also exists in pinhole cameras.

Rays Lying on A Plane. The last crucial ray geometry

constraint is for rays lying on a common plane. This lies at

the core of this paper as our goal is to disambiguate parallel

3D lines lying on different planes. Given a plane Π ∦ Πuv :
nxx + nyy + nzz + d = 0, with �n = [nx, ny, nz] being

the normal and d the offset, we can intersect Π with Πuv at

line:

nxu+ nyv + d = 0 (9)

All rays [u, v, σ, τ ] that lie on Π must originate from this

line, i.e., they have to satisfy Eqn. (9). Further, the direction

of rays must be orthogonal to �n. Therefore, we have

nxσ + nyτ + nz = 0 (10)

We call these two linear constraints the Rays-on-Plane Con-
straints.

2.3. XSlit Vanishing Points (XVP)

Next, we use the ray geometry constraints for studying

the vanishing points of parallel 3D lines in an XSlit image.

Theorem 1. Given a set of parallel lines L ∦ Πuv , their
images on Πuv have a vanishing point.

Proof. Assume L have a common direction [σ∗, τ∗, 1] but

different origins [ul, vl, 0], all points on each line can be

written as

P (x, y, z) = [ul, vl, 0] + λ[σ∗, τ∗, 1] (11)

Using the XSlit point projection equation, we have a line

image as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u =
(Dσ∗ −Bτ∗)Eλ2 + (Dul −Bvl + E)Eλ+ E2ul

(AD −BC)λ2 + (A+D)Eλ+ E2

v =
(Aτ∗ − Cσ∗)Eλ2 + (Avl − Cul + E)Eλ+ E2vl

(AD −BC)λ2 + (A+D)Eλ+ E2

(12)
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Figure 2. In an XSlit camera, the images of coplanar parallel lines

appear curved and will intersect at two common points, the XSlit

Vanishing Point (XVP) and the Coplanar Common Point (CCP).

Since both the denominators and the numerators are

quadratic in λ, when λ→∞, we have:
⎧⎪⎪⎨
⎪⎪⎩

u∞ =
E(Dσ∗ −Bτ∗)

AD −BC

v∞ =
E(Aτ∗ − Cσ∗)

AD −BC

(13)

where AD − BC = Z1Z2(d1xd12 − d1yd2x)
2 �= 0 as the

two slits are oblique. The results are independent of the

origin of the line and therefore the images of parallel 3D

lines, although being hyperbolas, have a vanishing point.

It corresponds to the intersection point at infinite of these

lines.

2.4. Coplanar Common Points (CCP)

What differs XSlit from pinhole cameras and hence

makes it appealing is that parallel 3D lines lying on a plane

will converge at a second common point in an XSlit image.

Theorem 2. Given a set of lines L that lie on plane Π
unparallel to the two slits, their images in the XSlit camera
generally intersect at a second common point, the Coplanar
Common Point or CCP.

Proof. Notice that the CCP corresponds to some ray r that

1) is collected by the XSlit, 2) lies on Π, and 3) will intersect

all lines in L, as shown in Fig. 2. For 1) and 2), we

can combine the XSRC (Eqn. (2)) and the Rays-on-Plane

Constraints (Eqn. (9) and (10)) and solve for the ray. Notice

that both sets of constraints are linear in u, v, σ, τ , therefore,

we form a linear system:

AΦ = b (14)

where

A =

⎡
⎢⎢⎣
A B −E 0
C D 0 −E
0 0 nx ny

nx ny 0 0

⎤
⎥⎥⎦ , Φ =

⎡
⎢⎢⎣
u
v
σ
τ

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0
0
−nz

−d

⎤
⎥⎥⎦

Computing the determinant of A, we have

det(A) = nx(Bnx +Dny)− ny(Anx + Cny)

= (Z2 − Z1)(nxd
1
x + nyd

1
y)(nxd

2
x + nyd

2
y)

(15)

For any plane Π that is not parallel to either slit,

det(A) �= 0, thus we obtain a unique r from the XSlit and

lies on Π. CCP is then the intersection of r with Πuv:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u =
Enynz − d(Bnx +Dny)

nx(Bnx +Dny)− ny(Anx + Cny)

v = − Enxnz − d(Anx + Cny)

nx(Bnx +Dny)− ny(Anx + Cny)

(16)

r generally intersects L except for the singular case that

L ‖ r.

CCP is a unique image feature in XSlit cameras that does

not exist in pinholes. Notice that pinhole can be viewed as

a degenerate XSlit camera, i.e., when the two slits intersect

(Z1 = Z2). In this case, det(A) = 0 by Eqn. (15) and

therefore CCP does not exist. We can also interpret the

result from the view of geometry. For the pinhole camera to

have a ray to lie completely on a 3D plane, the plane has to

pass the pinhole. In contrast, for a plane to have CCP in an

XSlit camera, it only needs to be unparallel to the two slits,

a condition that generally holds.

3. Manhattan World Reconstruction
Next, we use CCPs and XVPs for MW reconstruction.

3.1. Recovering Planes

We first show how to recover a plane Π that contains

parallel 3D lines L using their CCP and XVP.

Theorem 3. Given a set of coplanar parallel lines L, if they
have a CCP, it will not coincide with their XVP.

Proof. Notice that the CCP corresponds to a ray that inter-

sect all lines at a finite distance whereas the XVP corre-

sponds to a ray that intersects the lines at the infinite dis-

tance. Therefore the two points correspond to two different

rays and thus will not coincide.

Next, we show how to recover the plane Π. We first com-

pute the normal of Π. Given the XVP [uv, vv] and the XSlit

intrinsic parameters (A, B, C, D, and E), by Eqn. (13), we

can directly compute the direction of L �lv = [σv, τv, 1] as{
σv = (Auv +Bvv)/E

τv = (Cuv +Dvv)/E
(17)

Now consider the CCP [uc, vc] that also corresponds to

a ray lying on Π. Therefore, we can compute its direction
�lc = [σc, τc, 1] by using the XSRC (Eqn. (2)) as{

σc = (Auc +Bvc)/E

τc = (Cuc +Dvc)/E
(18)
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By Theorem 3, the XVP and CCP will not coincide and

therefore �lv and �lc will not be collinear. The normal of Π is

thus �n = �lv × �lc. Finally, since the CCP lies on Π, we can

compute Π’s offset using its coordinate as

d = nxuc + nyvc (19)

3.2. Manhattan World

An important requirement for applying the plane recov-

ery algorithm is to know which point is CCP and which

one is XVP, as they both appear as the common intersection

points of the curves. In particular, if only one set of coplanar

parallel lines is available, we cannot distinguish CCP from

XVP. In fact, exchanging the assignment will result in dif-

ferent but both valid planes. In reality, a typical Manhattan

scene contains multiple sets of coplanar parallel lines for

resolving this ambiguity. Specifically, we exploit structural

regularity as follows.

Manhattan World (MW) Assumption [3]: We assume

that objects in the scene are composed of planes and lines

aligned with three mutually orthogonal principal axes, i.e.,

L1, L2, and L3 of [σi, τi, 1], i = 1, 2, 3 respectively, and

σiσj + τiτj + 1 = 0, where i, j = 1, 2, 3 and i �= j. (20)

The three axes will map to three XVPs, namely,

XVP1[u1, v1], XVP2[u2, v2], and XVP3[u3, v3].

Theorem 4. The CCPL1
of a plane with normal L1, i.e., it

is parallel to ΠL2L3 , lies on the line XVP2-XVP3.

Proof. We prove the theorem by showing that the three

points CCPL1 [uc1 , vc1 ], XVP2, and XVP3 are co-linear. We

first compute

det(M) =

∣∣∣∣∣∣
uc1 u2 u3

vc1 v2 v3
1 1 1

∣∣∣∣∣∣ (21)

Since ΠL2L3 has normal [σ1, τ1, 1], by CCP Eqn. (16),

we have [uc1 , vc1 ] as

⎧⎪⎪⎨
⎪⎪⎩

uc1 =
Eτ1 − d(Bσ1 +Dτ1)

σ1(Bσ1 +Dτ1)− τ1(Aσ1 + Cτ1)

vc1 = − Eσ1 − d(Aσ1 + Cτ1)

σ1(Bσ1 +Dτ1)− τ1(Aσ1 + Cτ1)

(22)

Similarly, we can rewrite u2, v2, u3, and v3 in terms

of σ2, τ2, σ3, and τ3 using XVP Eqn. (13) and substitute

them into Eqn. (21). Reusing the orthogonality condition

(Eqn. (20)), we derive that det(M) = 0

Notice that Theorem 4 is independent of the offset d
of the plane. Therefore, the CCPs for all planes parallel

to ΠL2L3
will lie on the line XVP2-XVP3. Similar con-

clusions hold for planes parallel to the other two principal

(a) (b)

Figure 3. Locating XVPs and CCPs. (a) shows the intersection

points between a group of hyperbolas. The blue dots are the

outliers and the yellow ones are either XVPs or CCPs; (b) We

fit three lines using only the yellow dots. The resulting triangle

vertices (red) correspond to XVPs and the edge points to CCPs

(green).

planes ΠL1L2 and ΠL3L1 . Therefore, Theorem 4 provides

an effective and robust means for disambiguating CCPs and

XVPs: in a MW scene, all CCPs and XVPs should lie on a

triangle where XVPs correspond to the triangle vertices and

CCPs lie on triangle edges (or the extension of edges).

3.3. MW Scene Reconstruction

In order to use Theorem 4 for reconstructing a MW

scene, we strategically tilt our XSlit camera to make the

slits unparallel to the principal axes L1, L2, and L3 of the

buildings so that we can use XVPs and CCPs of different

building faces.

Conic Fitting. We first fit conics to images of the lines

and compute pairwise intersections. We have shown in

Sec. 2.2 that the images of lines are hyperbolas with the

form: Ãu2 + B̃uv + C̃v2 + D̃u + Ẽv + F̃ = 0 where

Ã, B̃, and C̃ are uniquely determined by the XSlit camera

intrinsics that can be precomputed and are identical for all

hyperbolas. We apply a similar curve fitting scheme as

[7] by forming an over-determined linear system of conic

coefficients using the sampled points on the curves. We then

apply the Singular Value Decomposition (SVD) to solve for

conic parameters.

XVP/CCP Identification. Once we fit all conics, we

compute their intersection points and locate the XVPs and

CCPs. Notice that in addition to XVPs and CCPs, every two

conics that correspond to two unparallel 3D lines may also

intersect. Since their intersection point will not be shared

by other conics, we can remove the intersections that only

appear once to eliminate outliers.

By Theorem 4, all CCPs are located on the edges of the

triangle determined by the three XVPs. Therefore, we fit

three lines using the rest intersections and use the resulting

triangle vertices and edges to separate the XVPs from the

CCPs. Fig. 3 illustrates this process for a simple scene

composed of 18 lines on 6 planes. Each plane has 3 parallel

lines lying on it and the directions of all lines are aligned

with the three principal axes.

Plane Reconstruction. To reconstruct a MW scene from
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(a)

(d)

(b)

(c)

Figure 4. Manhattan scene reconstruction from a single XSlit im-

age. (a) A pinhole image of the scene. (b) An XSlit image. (c)

Automatically detected planes using our approach are highlighted

in different colors. (d) We re-render the recovered model using a

perspective camera.

a single XSlit image, we directly map each CCP back to

a plane. Theorem 2 reveals that every CCP corresponds

to a unique 3D plane in the scene. Specifically, for each

detected CCP, we can combine it with one of XVPs (trian-

gle vertices) for computing the plane equation as shown in

Sec. 3.1. We further map each curve segment back to a 3D

line segment by intersecting the XSlit rays originated from

the conic with the reconstructed plane. The endpoints of the

line segments can also be used for truncating the recovered

planes.

4. Experiments
We have validated our approach on both synthetic and

real data.

4.1. Synthetic XSlit Images

We start with testing our method on a simple MW

scene. We place three axis-aligned boxes in the scene

and each face of the box contains multiple grid lines. To

simulate an XSlit image, we modify the POV-Ray raytrac-

er (www.povray.org) by adding an XSlit camera model.

Fig. 4(b) shows a sample ray-traced image using the XSlit

camera. In this example, we use two orthogonal slits (i.e.,

a POX-Slit [30]) and the two slits and the image plane are

evenly spaced. We rotate the camera 45◦ around the y axis

and 15◦ around both x and z axes so that axis-aligned lines

will have XVPs and CCPs in the XSlit image.

We use the Canny edge detector to locate the curve.

For each curve, we use multiple pixels that lie on it and

apply the curve fitting technique (Sec. 3.3) for obtaining its

parameters. Next, we compute pairwise curve intersections

and apply the XVP/CCP detection algorithm (Sec. 3.3) to

find the CCPs. Each detected CCP is then mapped back to

(c)

(a) (b)

Figure 5. 3D reconstruction on the skyscraper scene. (a) A per-

spective image of the scene; (b) An XSlit image of the scene.

The detected planes are highlighted in different colors. (c) The

perspective rendering of our reconstruction.

a 3D plane and are properly clipped using the endpoints.

The final recovered geometry is shown in Fig. 4(c). A

total of 7 planes are detected in this example and we use

different colors to highlight these planes. We also re-render

the recovered faces using a perspective camera as shown in

Fig. 4(d). Our solution is able to robustly and accurately

recover most building faces from a single XSlit image.

Next, we generate a more complex and realistic

skyscraper scene. We construct this scene using Autodesk

3ds Max (usa.autodesk.com/3ds-max). We place 2 build-

ing models from Evermotion (www.evermotion.org) at the

center of the scene and surround them with multiple axis-

aligned boxes of various heights. This emulates a complex

MW scene. In this example, we use the image synthe-

sis technique for producing an XSlit panorama [25, 30]:

we translate a perspective camera horizontally from left to

right with constant speed and then stitch linearly varying

columns of pixels. Each view is rendered at resolution

of 300 × 600 and the perspective camera views the scene

from top to down and tilted by 15◦ around the z axis. The

synthesized XSlit panorama resembles a POX-Slit image.

To reduce aliasing, we use a small translation step so that

the neighboring views have small parallax (ranging from 1

to 4 pixels depending on object depth).

Next, we apply Canny edge detection to locate curve

segments and discard short ones below a pre-defined thresh-

old. We then fit conics to the detected curves. Specifically,

we detect a total of 35 conics which result in 8 CCPs and

therefore 8 planes. We are unable to recover the building

blocks completely or largely occluded by the two skyscrap-

ers. Similar to the box scene, we use the approach in

Sec. 3.3 to reconstruct the 8 planes from their CCPs. The 35

line segments are also mapped back for clipping the planes.
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(a) (b)

Figure 6. Our prototype XSlit Camera. (a) We use two layers of

cylindrical lenses, each with a slit aperture; (b) We mount the XSlit

lens on an interchangeable lens camera.

The final recovered planes are shown in different colors in

Fig. 5(c). We re-render the reconstructed geometry using

a perspective camera and compare it with the ground truth

(Fig. 5(a) and (b)). Our results show that the XSlit-camera-

based solution can robustly handle complex scenes.

4.2. Real Scene Experiments

Finally, we have constructed a prototype XSlit camera by

modifying a commercial interchangeable lens camera (Sony

NEX-5N). We replace its lens with a pair of cylindrical

lenses, each using two slit apertures as shown in Fig. 6.

We choose to modify an interchangeable lens camera rather

than an SLR is that it has a shorter flange focal distance
(FFD), i.e., the distance between the sensor and the lens

mount. For a 3D line to appear sufficiently curved, the line

should span a large depth range w.r.t. the image plane (E-

qn. (7)). This indicates that we need to put the camera closer

to the objects as well as use lenses with a large field-of-view

and a smaller focal length. The mirror-free interchangeable

camera has a much shorter FFD than SLRs and therefore

highly suitable. In our prototype, we use use two cylindrical

lenses, one (closer to the sensor) with focal length 25mm

and the other 75mm. The use of slim slit apertures, however,

leads to low light efficiency: the XSlit image appears noisy.

To calibrate the XSlit camera, we use a pattern of five lines

and use an auxiliary perspective camera to determine line

positions and orientations. We then conduct curve fitting

for recovering the XSlit intrinsics.

In Fig. 7, we construct a scene composed of the parallel

lines lying on two different planes. We also put a minifigure

between the two planes. When viewed by a perspective

camera, the lines appear nearly identical: although they

intersect at a common vanishing point, it is difficult to tell

if they belong to different planes, as shown in Fig. 7(b).

In contrast, these lines are apparently different in our XSlit

camera image, as shown in Fig. 7(c): they exhibit different

curviness and one can directly tell that they do not belong

to the same plane. Next, we apply the conic fitting and

CCP detection methods on these curves and we are able

to identify one XVP and two CCPs. Fig. 7(d) maps the

recovered planes (highlighted in red and green) back onto

(a) (b)

(c) (d)

plane 1

plane 2

XSlit 
Camera

Figure 7. A simple scene consists of two sets of parallel lines on

different planes. (a) Scene acquisition; (b) A perspective image;

(c) An XSlit image; (d) We detect the two planes (highlighted in

red and green) using the XSlit image.

(a) (b)

Figure 8. An MW Scene constructed from LEGO® bricks. (a)

Image captured by a commodity camera; (b) Top: image captured

by our XSlit camera; bottom: our recovered four building faces.

the acquired XSlit image. Our results align well with the

ground truth.

Fig. 8 shows another real scene constructed using

LEGO® building bricks, each of dimension 0.7” × 0.7” ×
3.5”. We capture the scene from a top-down perspective

and orient the XSlilt camera to guarantee it observes enough

curviness of vertical parallel lines. Without any processing,

the XSlit image shows that the four groups of parallel lines

exhibit different curviness. We detect 34 curves in the

XSlit image and conduct our algorithm finding the XVPs

and CCPs. Due to defocus blurs, some curves (yellow

region) were missed or truncated (top of the green region).

Nevertheless, our approach is still able to recover 4 faces

(planes) of two buildings.

5. Conclusions and Discussions
We have presented a new solution for MW scene recon-

struction from a unique perspective of non-pinhole imaging.

Our solution directly resolves parallel line ambiguity by

utilizing a unique class of image features in XSlit images,
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i.e., the XSlit Vanishing Point (XVP) and Coplanar Com-

mon Point (CCP), for grouping coplanar parallel lines. Our

main contribution is a new theory that shows each group of

coplanar parallel lines will intersect at an XVP and a CCP in

their XSlit image and its geometry can be directly recovered

from the XVP and CCP. We have further developed a ro-

bust algorithm for automatically distinguishing XVPs from

CCPs in complex MW scenes and validated our solution on

both synthetic and real XSlit images.

Our solution relies on accurately detecting curves and

fitting conics to locate XVPs and CCPs. If a captured

curve is too short or too straight, our conic fitting scheme

can introduce large errors and therefore generate incorrect

XVPs and CCPs. One possible solution is to fit all conics

together instead of each individual one by imposing the

XSlit intrinsic constraint. As our main contribution is in

theory, nearly all our experiments were conducted on syn-

thetic scenes where we can easily modify the XSlit geom-

etry to handle different scene configures. Our real XSlit

camera, however, has limited capability on controlling slit

distance and orientations. For example, due to the small

distance between the slits, only 3D lines lying close to the

camera will appear sufficiently curved. Further, we have

to use relatively large slit apertures for maintaining light

efficiency. As a result, they lead to a shallow depth-of-

field and the conics appear blurry. In the future, we plan

to explore dynamic aperture controls using LCoS [19] or

other physical implementations of XSlit camera, e.g., the

rolling shutter camera [18].

Finally, our prototype XSlit camera may also benefit

several other vision tasks. For example, by translating

or rotating the camera, we can acquire the scene using

a sequence of XSlit cameras. Using two XSlits, we can

directly apply stereo matching as their images satisfy the

Seitz condition [8, 25, 20]. Another potential application

of our design is to construct non-pinhole light sources. In

particular, we plan to explore the dual of the XSlit camera,

i.e., the XSlit light source. For example, we can combine

an area light source with two cylindrical lenses for creating

a prototype XSlit light source. Our theory in this paper can

be used to guide new XSlit-based shape-from-shading and

shape-from-shadow algorithms.
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