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Abstract

Most existing pose robust methods are too computational
complex to meet practical applications and their perfor-
mance under unconstrained environments are rarely evalu-
ated. In this paper, we propose a novel method for pose ro-
bust face recognition towards practical applications, which
is fast, pose robust and can work well under unconstrained
environments. Firstly, a 3D deformable model is built and a
fast 3D model fitting algorithm is proposed to estimate the
pose of face image. Secondly, a group of Gabor filters are
transformed according to the pose and shape of face image
for feature extraction. Finally, PCA is applied on the pose
adaptive Gabor features to remove the redundances and
Cosine metric is used to evaluate the similarity. The pro-
posed method has three advantages: (1) The pose correc-
tion is applied in the filter space rather than image space,
which makes our method less affected by the precision of the
3D model; (2) By combining the holistic pose transforma-
tion and local Gabor filtering, the final feature is robust to
pose and other negative factors in face recognition; (3) The
3D structure and facial symmetry are successfully used to
deal with self-occlusion. Extensive experiments on FERET
and PIE show the proposed method outperforms state-of-
the-art methods significantly, meanwhile, the method works
well on LFW.

1. Introduction

Comparing with other biometrics, the most superiority
of face biometric is its non-intrusive nature. Therefore, face
is one of the most suitable biometrics for surveillance ap-
plications. Superiority is always followed by disadvantage.
In typical surveillance scenarios, people are usually walk-
ing free, and they are impossible to always keep their faces
frontal or looking to the cameras. This leads to a problem
in face recognition, unconstrained face recognition. Most
face images captured by surveillance systems are non-ideal,
because they are often affected by many factors: pose, il-
lumination, expression, occlusion, distance, weather and so
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on. This paper will mainly focus on the pose problem while
considering the other factors together.

From the early stages of face recognition research to
now [31], pose variation was always considered as an im-
portant problem. The problem gained great interest in the
computer vision and pattern recognition research commu-
nity, and many promising methods have been proposed to
tackle the problem of recognizing faces in arbitrary poses,
such as Illumination Cone Model (ICM) [9], EigenLight
Field (ELF) [12], 3D Morphable Model (3DMM) [3], and
so on. However, none of them is free from limitations and
is able to fully solve the pose problem. As noted in a re-
cent survey [28], the protocols for testing face recognition
across pose are even not unified, which indicates we still
have a long way to build a fully pose invariant face recogni-
tion system.

Existing methods can be divided into two categories: 2D
methods and 3D methods (or their hybrid). Because the
pose variation is essentially caused by the 3D rigid motion
of face, 3D model based methods generally have higher pre-
cision than 2D methods. Due to lacking one degree of free-
dom, 2D methods often use some 2D transformations (e.g.,
piecewise affine, thin plate splines [10]) to approximate the
3D transformation and compensate the error by some statis-
tical learning strategies. The learning procedures are either
conducted in image space or feature space. For example,
Locally Linear Regression (LLR) [6] is to learn the relation-
ship between the image patches with different poses. Once
the regression function is learned, the similarity of image
patches with different poses can be evaluated. Although
some good results of 2D methods are reported, their inher-
ent shortages are still constraining their performance, e.g.,
hard to deal with self-occlusion.

3D methods are always based on a 3D face model, which
may be a single model, or a deformable model in certain
parametric forms. The flexibility and precision of the 3D
face model is the core of 3D methods, therefore we usually
call them as 3D model assisted methods. In typical face
recognition applications, the enrolled face images (gallery)
are usually captured under controlled environment, while
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Figure 1. Four kinds of 3D methods for pose robust face recogni-

tion: (A) Pose normalization. (B) Pose synthesis. (C) Recognition
by fitting. (D) Filter transformation.

the quality of on-site face images (probe) are uncontrolled.
In this situation, 3D methods can be divided into four cate-
gories depending on how to use of the 3D model:

1. Pose Normalization: Face images in the probe are nor-
malized to frontal view based on the 3D model, and
then match the normalized probe to the gallery [2].

Pose Synthesis: Use the 3D model to generate some
virtual face images with various poses for the face im-
ages in the gallery, and then match the probe to the
virtual face images [30, 28].

Recognition by Fitting: Fit all face images in the
gallery and probe by the 3D model. The texture and
shape parameters are used for face recognition [3].

Filter Transformation: Transform the filters according
to the pose and shape of face image, and then use the
pose adapted filters for feature extraction.

The processes of four kinds of 3D methods are shown in
Fig. 1. As reported in existing papers, the first three kinds
of methods all need several minutes to process a face image
and their recognition rates are heavily dependent on the pre-
cision of the 3D model and optimization algorithm. On the
contrary, filter transformation is efficient, because it doesn’t
need to fit the 3D model to face image in high precision
and manipulate the texture of 3D model. Once having the
pose and shape of face image, we can transform the filters
to adapt to the face image. A early paper [14] has used
this idea to achieve good results on the pose problem, in
which Gabor filters were transformed according to the pose
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and normal direction of face surface to construct pose ro-
bust features. However, this idea rarely got the attention
of face recognition community since then. Limited by the
face recognition technologies at that time, the method in
[14] is obscure and need many manual steps to construct the
whole system. The main purpose of this paper is to propose
a novel method to advance the 3D methods along the fourth
category. The experiments will prove that our method is
fast, flexible and effective. Compared to [14], our method
is more systematic, complete and automatic.
The contributions of the paper are as follows.

1. We revisit the filter transformation based methods for
the pose problem, which has been neglected for a long
time. Inspired by this idea, many filters could be ex-
tended for the pose problem, such as Gabor, LBP,
HOG and so on.

In the framework of filter transformation, we propose
a novel pose robust face recognition method, which is
both robust to pose variations and other negative fac-
tors in face recognition.

To meet the speed requirement of practical systems,
we propose a fast 3D model fitting algorithm with ac-
ceptable precision for face recognition.

By experiments on FERET, we verify the importance
of facial symmetry to deal with self-occlusion.

. We improve the state-of-the-art recognition rate across
pose on the FERET and PIE databases. Meanwhile,
the proposed method achieves comparable results to
the best methods on LFW.

2. Pose Adaptive Filter

The proposed method in this paper is belong to the fourth
category: filter transformation, the main idea of which is
transforming filter according to the pose and shape of face
image and then using the transformed filter to extract pose
robust features. As the filter varies with the change of pose,
so we call the method as “Pose Adaptive Filter” (PAF).

The flow chart of PAF is shown in Fig. 2. First, we build
a 3D deformable model and define many feature points on
the 3D model. Given a 2D face image, we get its pose and
shape by fitting the 3D model to the image and then project
the defined 3D feature points to the image plane. Finally,
pose robust features are extracted at the projected feature
points by Gabor filters.

2.1. 3D Model and Feature Points Definition

Our 3D face model is similar to the shape part of classi-
cal 3D Morphable Model (3DMM) [3], and drops the tex-
ture part. The shape deformation is represented by PCA,
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Figure 3. Left: Uniform grid used in LBP based face recognition.
Right: User defined 2D feature points on face image. Bottom: Our
feature points defined on the surface of 3D face model.

which is trained by the 4624 samples in the CASIA-3D
FaceV1 Database !. Because the original 3D face have var-
ious poses and their cloud points are partial missing, we
fit these faces by a generic 3D model with 33640 vertexes
and 66750 triangles [5]. After this step, all 3D faces are
repaired, aligned well and have the same parametric form.
Apply PCA on the aligned 3D faces, we get a deformable
3D face model composed by the mean shape m, eigen-
values o and eigen-shapes w. We use the first 59 eigen-
shapes to reserve 95% energy.

For most face recognition methods, features are usually
extracted on uniform grid [1] or feature points defined on
image plane [26]. For in-plane rotation, the uniform grid
or 2D feature points can easily adapt to the face image by
a similarity transformation, but they cannot work for out-
of-plane rotation. To deal with real 3D pose variations, we
will define feature points on the surface of 3D face model,
which is shown in Fig. 3.

Once having the 3D model, we define the 3D feature
points by three steps.

1. Generate 25 x 8 = 200 points on image plane (i.e., X-y
plane).

2. Project the points from image plane to the surface of
the mean shape m and remove the 24 points out of

ICASIA-3D FaceV1: http://biometrics.idealtest.org/
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edges. As shown in Fig. 3, the projected 176 points
are at the right half of the mean shape.

3. By mirroring the points at the right half according to
facial symmetry, we get 176 x 2 = 352 feature points.

The 3D feature points can be represented by their coor-
dinate (z,y, z) or the index J of vertex on the mean shape.
To better deal with the non-rigid deformation of face, we
use vertex index in this paper. The advantages of the sym-
metric structure of the feature points will be illustrated in
experiments, which is effective to deal with self-occlusion
caused by pose variations. The readers who are interested
in facial symmetry can refer to [18].

2.2. Fast 3D Model Fitting

3DMM [3] is the most popular model to estimate the
pose, lighting, shape and texture parameters of face image.
It first uses several landmarks to initialize the parameters
and then optimizes them by non-linear optimization. But
for a face image, 3DMM usually need several minutes to
obtain good result. To appeal the time requirement of prac-
tical systems, we propose a fast algorithm to solve the pose
and shape parameters, while neglect the other parameters.
Compared to 3DMM, our algorithm has lower precision but
is good enough for face recognition across pose.

Precise facial landmarking is the basis of 3D model fit-
ting. In this work, we localize the facial landmarks by a
three-view Active Shape Model (ASM) [7]. ASM is com-
posed by three parts: PCA shape model, local experts and
optimization strategy. For local experts, we use LBP [1]
feature and Boosting classifier for each landmark. Based on
the output of Boosting classifiers, we can get a confidence
map for each landmark. These confidence maps are feed to
a landmark mean-shift procedure [20]. Then we can get the
positions of all facial landmarks. For robustness and effi-
ciency, the process is repeated several times on two scales.

The training set of our landmarker is constructed from
the MUCT database [15]. Subsets a, d and e, with small
pose variations, are used to train the first view, and the other
subsets (b and c) are used to train the second view. By mir-
roring the second view, we can get the third view. The fi-
nal three-view landmarker can detect the landmarks well on
face images from -60 to 60 degree. Note that we just use the
34 of 76 landmarks because those landmarks on the bound-
ary of face are unstable to pose variations [2]. For more
details about the training process and dataset, one can refer
to [27].

Given a face image, landmarks x on the face image, and
their corresponding vertex index I on the 3D model, we can
solve the pose T' of face and the shape parameter o by opti-
mizing the following problem.

ming.o|[x =TI+ a;w;(D)][5+ X" a, (1)
=1
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where (m, w, o) is the 3D deformable model. X is a diag-
onal matrix composed by the eigen-values o and n is the
number of eigen-shapes. The first term of Equ.(1) is data
cost of the landmarks and the second term is regulariza-
tion term to constrain the shape parameter. While using the
weak perspective projection model, 7' = s[R,t] is a2 x 4
matrix composed by scale s, rotation R and translation t.
Because 7" and « are coupled by matrix product, we can
not get a close-form solution. When T' or « is fixed, the
objective function is quadratic for another variable. There-
fore, we can solve the problem by updating 7" and « in an
alternative way:

1. Let a = 0, solve the problem minz||x — Tm(I)|[3
by least squares. At this time, we assume Tisa 2 x 4
affine matrix.

For rigid motion, T'(1,1 : 3) and T'(2,1 : 3) must be
orthogonal. Hence, we use the method in [4] to orth-
normalize these two vectors and can decompose the
matrix T to s[R, t].

. And then « can be updated by solving the problem
ming||x — Tm(I) = >0 a;Tw(I)|[3 + AaTEa,
which is a least squares problem too.

Repeat step 1 to 3 until 7" and « are convergent (3-5
iterations are enough in practice).

After getting 1" and «, we say 1" is the pose of the face
image, and its corresponding 3D shape S can be recon-
structed by Equ.(2).

n
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2.3. Pose Adaptive Feature Extraction

Mapping the face image to the vertexes of .S, we can get
a 3D face with texture, using which we could synthesize
face images with new poses. Because the fitting algorithm
is coarse and the reconstructed 3D face is far from perfect,
we don’t use this model to generate face images in PAF. S
is just used as a mid-man to extract pose adaptive features.
As described in Section 2.1, the 3D feature points are
defined on the surface of 3D face and denoted by the vertex
index J. By projecting S to the image plane, we can get
the 2D coordinates of the feature points 7°S(J) on the face
image. The process is shown in Fig. 4, from which we can
see feature points always have fixed semantic meaning for
face images with various poses, i.e., feature points on the
nose are always on the nose, and those on the mouth are
always on the mouth.
At these feature points, we extract local features by a
Gabor wavelet described in [17].
k* 2
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Figure 4. 2D feature points are obtained by projecting the recon-
structed 3D shape S to image plane. Three face images of the same
subject are shown and their feature points are marked by red dots.

The wavelet is a plane wave with wave vector k, restricted
by a Gaussian envelope, the size of which relative to the
wavelength is parameterized by o. The second term in the
brace removes the DC component. Following the popular
way, we sample the space of wave vectors k and scale o
in 8 orientations and 5 resolutions, thus giving 5 x 8 = 40
complex values for each feature point. Because the phase
information is sensitive to mis-alignment, we drop the phase
and use the amplitude as feature for face recognition.

Merging the feature values at all feature points together
and grouping them by left and right halves, we get two fea-
ture vectors with 176 x 40 = 7040 dimensions for each
face image. To reduce the dimensionality of feature and re-
move the redundant information, PCA is used to learn a low
dimensional subspace. In training phase, the left and right
halves are considered as two samples. In testing phase, only
the lesser-occluded half is used for matching. By using z-
buffer algorithm [25], the occluded area can be easily got
based on the pose 7" and 3D shape S. In the PCA sub-
space, the similarity of feature vectors are evaluated by Co-
sine metric.

In summary, the proposed PAF deals with pose variations
from four aspects: holistic rigid transformation, non-rigid
shape deformation, local Gabor filtering, and “half face” se-
lection by facial symmetry. By combining rigid, non-rigid
transformations and local Gabor feature, PAF is robust to
pose variations and other factors. And the facial symmetry
can help it robust to self-occlusion.

3. Experiments

The advantages of the proposed method are illustrated
on three popular databases: FERET [19], PIE [22] and
LFW [13]. FERET is mainly used for algorithm devel-
opment, on which we compare some methods with PAF
and evaluate the performance improvement caused by each
step. As the most widely used database in the pose problem,
PIE is further used for comparing PAF with state-of-the-art
methods. Furthermore, we use LFW to evaluate the perfor-
mance of PAF under unconstrained environments.

3.1. Data Description

FERET has been used to evaluate the robustness of face
recognition system to pose in FRVT 2000 [16]. There are
4 sub-experiments named as T1, T2, T3 and T4. In the ex-



periments, 200 frontal images are used as gallery, and face
images with pose variations are used as probe. The poses
of T1, T2, T3, T4 are (bf: -15, be: 15), (bg: -25, bd: 25),
(bh:-40, bc: 40), (bi: -60, bb: 60) degree respectively. The
face images in the training set are all fontal.

Because most of existing methods have reported their re-
sults on PIE, the comparison with state-of-the-art methods
is further performed on the expression subset of PIE, with
frontal pose as gallery and the remaining 12 poses as probes.
Gallery includes 68 subjects and 1 image / subject. Probes
are divided into 12 sub-experiments by their pose, and each
probe includes 68 subjects and 96 images. We denote each
sub-experiment by its code of pose: c01, c05, c07, c09, c11,
cl4, c22, c25, c29, c31, ¢34 and c37. To illustrate the gen-
eralization ability of the proposed method, FERET is still
used as training set.

Good pose robust face algorithms should perform well
against not only pose variations but also other factors. LFW
is the best database to evaluate the overall performance of
face recognition algorithms under unconstrained environ-
ments. The restricted protocol is used in this paper, and the
ROC and accuracy are reported by 10-fold cross validation.
In the training phase, the label of training pairs are ignored,
all the samples are used in an unsupervised way by PCA.

3.2. Face Recognition across Pose

3.2.1 Performance Analysis of PAF

To evaluate the contributions of each step of PAF, the
method and three baselines are tested on FERET.

1. 2L: Two landmarks based alignment (the center of two
eyes and the center of mouth), and the full face is used
for face recognition.

2. 2L-Half: Two landmarks based alignment, and the
lesser-occluded half of face is used for face recogni-
tion.

PN: All face images are normalized to frontal pose by
the 3D model in Subsection 2.1 and the algorithm de-
scribed in Subsection 2.2 and the missing texture is
filled by facial symmetry. Then face recognition is per-
formed on the normalized face images.

The proposed method (PAF): The filters are adapted to
the pose of face images, and the pose adaptive features
are extracted for face recognition.

For fair comparison, the above methods both use Gabor fil-
ter and PCA for feature extraction. PN and PAF are also
only use the lesser-occluded half of face. 2L vs. 2L-Half
is used to evaluate the contribution of facial symmetry. 2L-
Half vs. PAF is used to evaluate the contribution of the 3D
model. PN vs. PAF is used to compare the “pose normal-
ization” and “filter transformation”.
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Table 1 shows the results of above four methods on the
FERET database. When on experiments with little pose
(T1), the difference of all methods are not notable. But as
the pose increases, the gaps between these methods are be-
coming large and the advantage of PAF is significant. Tak-
ing T4 as an example, the “half” trick improves the recog-
nition rate from 29.0% to 75.0%, which illustrates the im-
portance of facial symmetry in pose problem. PN applies
pose normalization in the image space using the same 3D
model and algorithm with PAF, therefore, PN would be ex-
pected to have comparable performance with PAF. But PAF
is consistently better than PN in all experiments, the main
reason may be that PN is too heavily rely on the precision
the 3D model. As the precision of the 3D model and the
fitting algorithm improves, we think the difference between
PN and PAF will decrease.

Table 1 also list three latest methods for reference, in
which the automatic pose normalization proposed in [2] is
very similar to our PN baseline. We can see the performance
of [2] and [20] are comparable to PN and worse than PAF.

3.2.2 Comparisons with Other Methods

To compare with other reported methods comprehensively,
we evaluate PAF on PIE for each pose. For PAF, frontal
images (c27) are used as gallery and other poses are used
as probes. For other methods, their gallery and probes are
list in Table 2. The training set is remained as the training
set of FERET, i.e., the PCA projection matrix of FERET
is used in the following experiments. Note that the pose
parameters in the second column come from [12] and [28].
Since the authors of ELF didn’t provide specific numbers,
we estimate the recognition rates from Fig. 6 in [11].

From Table 2 we can see that PAF is almost better than
other methods across all poses. Especially for large poses,
the superiority of PAF is significantly, even when some
other methods use multiple images in the gallery. The last
column of Table 2 shows that PAF performs well in most
experiments on PIE except for the hardest cases: ¢22 and
c34. This phenomenon indicates that we should focus more
on large pose variations (> 45 degree) in the future. Fur-
thermore, the mean recognition rate of PAF on 12 poses is
95.31%, which is higher than 93.9% the latest reported re-
sult in [21]. Although the performance of CLS [21] in ¢22
and c34 are higher than our method, but CLS is only evalu-
ated on 34 subjects. On the contrary, our method is evalu-
ated in a more hard setting, training on FERET and testing
on all 68 subjects of PIE.

3.3. Unconstrained Face Recognition

As the most challenging database in face recognition
community, LFW nearly contains all typical variations of
face image. Therefore, we use LFW to evaluate the over-



Table 1. The rank-1 recognition rate of the four methods on the FERET database. Some state-of-the-art methods are list for comparison.

Experiment T1 (be: 15, bf: -15) T2 (bd: 25, bg: -25) T3 (bc: 40, bh: -40) T4 (bb: 60, bi: -60)
2L 96.25% 86.75% 60.25% 29.0%
2L.-Half 96.50% 96.0% 90.0% 75.0%
PN 98.25% 97.25% 92.50% 80.75%
PAF 99.25% 98.50% 98.0% 93.75%
APN [2] be: 97.5%, bf: 98.5% | bd: 97.5%, bg: 98.0% | bc: 91.9%, bh: 90.5% N/A
Sarfraz [20] | be: 98.6%, bf: 100% | bd: 97.0%, bg: 89.7% | bc: 89.0%, bh: 92.4% | bb: 82.5%, bi: 79.2%
CLS [21] be: 95.0%, bf: 96.0% | bd: 90.0%, bg: 94.0% | bc: 82.0%, bh: 85.0% | bb: 70.0%, bi: 79.0%
Table 2. Recognition rate comparison of the proposed PAF and the reported methods: ELF [11], PDM [10], AA-PCA [29], AA-LBP [29],
APN [2] and CLS [21].
ELF PDM AA-PCA | AA-LBP | APN CLS PAF
Gallery | 05,¢27,c20 | 27 | 22,027 | 22,027 | 27 | 27 27
Probe
c02, yaw: 44 68% 72.5% 67% 95% N/A 88.0% | 97.92%
c05, yaw: 16 N/A 100% 100% 100% 100% | 100% 100%
c07, yaw: 0, pitch: -13 98% N/A 100% 100% 98.5% | 100% 100%
c09, yaw: 0, pitch: 13 94% N/A 100% 100% 100% | 100% 100%
cll, yaw: -32 83% 94.12% 95% 100% 98.5% | 100% 100%
cl4, yaw: -46 76% 62.5% 79% 91% N/A 97% 98.96%
c22, yaw: 62 38% N/A N/A N/A N/A 79.0% | 72.92%
c25, yaw: 44, pitch: 11 44% N/A 61% 89% N/A 85.0% 100%
c29, yaw: -17 N/A 98.53% 100% 100% 100% | 100% 100%
c31, yaw: -47, pitch: 11 70% N/A 67% 80% N/A 91.0% | 98.96%
c34, yaw: -66 50% N/A 65% 73% N/A 85.0% 75%
c37, yaw: 31 89% 97.06% 98% 100% 97% 100% 100%

Table 3. Mean classification accuracy and standard error on LFW
View 2.

Method Mean Std
BIF [8] 88.13% | 0.0058
I-LQP [24] | 86.20% | 0.0046
PAF 87.77% | 0.0051

all performance of PAF under unconstrained environments
besides of pose. All face images in LFW are processed by
the assembly line described in Section 2, and then the re-
sults are reported according to the restricted protocol. Be-
cause PAF is an unsupervised method and uses outside data
for alignment, we compare its performance to the meth-
ods belonging to the same categories: the best unsupervised
method I-LQP [23] and the best method using outside data
for alignment BIF (Brain-Inspired Features) [8]. The mean
classification accuracy of the methods on View 2 are shown
in Table 3, from which we can see that the proposed PAF is
comparable to BIF and outperforms the best unsupervised
method I-LQP.

3.4. Computational Cost Analysis

Speed is a major contribution of this paper. For 480 x 640
image, the mean processing time is 104.2ms on a laptop

with P4 CPU@2.0GHz. The details are as follows. 1) Face
detection: 12.5ms, 2) Landmarking: 60.9ms, 3) 3D model
fitting: 10ms, 4) Gabor filtering: 18.7ms, 5) PCA projec-
tion: 2.1ms. Compared to other 3D model based methods,
the biggest advantage is the speed of step 3), which just
needs 10ms to process an image while other methods usu-
ally need several minutes. Due to the simplicity of LBP, our
landmarker in step 2) is also faster than other multi-view
landmarkers.

4. Conclusions

Pose is a challenging and unsolved problem in face
recognition. And the pose problem is usually coupled with
other factors to jointly affect the performance of practical
face recognition systems. To build a fast and pose robust
face recognition system, this paper proposed a method PAF
to transform filters according to the pose of face image and
extract pose adaptive features. Compared to existing 3D
model based methods, PAF applied 3D transformation in
the filter space instead of the image space, which was faster
and less affected by the precision of the 3D model. Experi-
ments on three popular databases illustrated the advantages
of PAF from various aspects. From the results on FERET
and PIE, we can see PAF outperforms other compared pose
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robust methods significantly. Furthermore, PAF achieves
comparable performance with state-of-the-art methods on
LFW, which shows PAF can work well under unconstrained
environments.
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