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Abstract

A device just like Harry Potter’s Marauder’s Map, which
pinpoints the location of each person-of-interest at all times,
provides invaluable information for analysis of surveillance
videos. To make this device real, a system would be required
to perform robust person localization and tracking in real
world surveillance scenarios, especially for complex indoor
environments with many walls causing occlusion and long
corridors with sparse surveillance camera coverage. We
propose a tracking-by-detection approach with nonnegative
discretization to tackle this problem. Given a set of person
detection outputs, our framework takes advantage of all im-
portant cues such as color, person detection, face recogni-
tion and non-background information to perform tracking.
Local learning approaches are used to uncover the mani-
fold structure in the appearance space with spatio-temporal
constraints. Nonnegative discretization is used to enforce
the mutual exclusion constraint, which guarantees a person
detection output to only belong to exactly one individual.
Experiments show that our algorithm performs robust lo-
calization and tracking of persons-of-interest not only in
outdoor scenes, but also in a complex indoor real-world
nursing home environment.

1. Introduction
The Marauder’s Map, which locates and tracks friends

and enemies of Harry Potter in the magical world, is also

invaluable in real world surveillance scenarios. If we are

able to localize and track each person as shown in Figure 1,

action recognition of people can be subsequently performed

to analyze human behavior. To perform reliable localization

and tracking, important cues such as color, person detection,

face recognition and non-background detection should all

be utilized. Also, the tracking algorithm has to deal with

typical yet complex indoor scenes consisting of different

rooms, many walls and corridors. Therefore, an ideal Ma-

rauder’s Map algorithm should integrate different sources of

Figure 1. The Marauder’s Map for a nursing home. The map of

the nursing home is in the bottom right. Dots on the map show the

location of a person-of-interest. The surrounding images are the

views from each surveillance camera. Due to space limitations,

only 5 out of 15 cameras are shown.

information in a seamless way to perform reliable localiza-

tion and tracking of persons-of-interest in complex indoor

environments.

There are several cues available for trackers to utilize,

such as color, person detection, face recognition and non-

background detection. Each cue provides important infor-

mation, but the cues are not always reliable. However, many

existing tracking systems [3, 11, 1] only use a subset of

cues to perform tracking. This will not be ideal when the

cues used is not reliable in the current situation. Therefore,

we propose an localization and tracking algorithm which

utilizes color, person detection, face recognition and non-

background detection cues to perform robust tracking. To

the best of our knowledge, we are the first work to utilize

face recognition for tracking.

Incorporating all the available cues seamlessly into a

framework is not a trivial task. Our algorithm follows the

tracking by detection paradigm [14, 1], which can handle

re-initializations naturally and avoids excessive model drift.

This paradigm is also less affected by occlusions caused by

walls or sparse camera setups. Tracking by detection can be
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viewed as a classification problem. If we treat one person-

of-interest as one class, the tracker needs to assign a class la-

bel to each person detection result. Sparse label information

can be acquired from face recognition output and manually

annotated start and end locations of a person. However, la-

bels for most person detection results are unknown. These

conditions motivate us to utilize semi-supervised learning

techniques to perform multi-camera multi-object tracking.

Given two person detection data points which are spatial-

temporal neighbors, if they have similar appearances, it is

very likely that the two points correspond to the same per-

son. As this is a good fit to the manifold assumption, we

propose to uncover the manifold structure of detected data

points by leveraging local learning techniques. Inspired by

[19], instead of directly computing the affinity matrix ac-

cording to the features of data points, we adopt a statistical

approach to exploit the manifold structure, which is more

accurate and robust.

Simply satisfying the manifold assumption is not suffi-

cient for reliable tracking. The mutual exclusion constraint,

which constrains one person detection result to be associ-

ated with only one person, should also be embedded into the

tracker. We perform nonnegative discretization, which par-

titions the detected data points into non-overlapping groups

such that mutual exclusion and the manifold assumption are

satisfied simultaneously. We formulate the problem as a

nonnegative optimization problem. The optimization con-

verges only to a local optima, and thus we resort to weak

supervision for a more stable solution to initialize the algo-

rithm.

In sum, the main contribution of this paper is as follows:

1. We propose a novel method which performs robust

multiple person-of-interest localization and tracking

by incorporating color, non-background, person detec-

tion and face recognition in a semi-supervised learning

framework.

2. We perform experiments on a real-world complex in-

door data set with long corridors and many walls caus-

ing occlusion. To the best of our knowledge, this is the

first work that has applied multi-camera multi-object

tracking in such a complex indoor environment.

The rest of the paper is organized as follows. After a

brief review of multi-object tracking and semi-supervised

tracking in Section 2, we will detail our algorithm in Sec-

tion 3. Experiments are given in Section 4 and Section 5

concludes this paper.

2. Related Work
The Marauder’s Map can be viewed as a multi-camera

multi-object tracking problem. Multi-object tracking has

been an active field of research for the past 10 years. Earlier

work [14] models the multi-modal posterior with a set of

samples and uses a color-based particle filter combined with

an object detector to perform tracking. [13] uses Kalman

filters to perform multi-person tracking with 16 cameras.

Recent work discretizes the solution space of tracking and

uses background and non-background information to locate

potential objects to track for each frame. Graph-cuts [11]

or k-shortest paths [3] are then used to perform optimiza-

tion and find the trajectories of each object. Another line

of work focuses on using the output of an object detec-

tor as input and using integer linear programming [10] or

discrete-continuous energy minimization [1] to find trajec-

tories. However, the aforementioned approaches only fo-

cus on using a subset of available information. The algo-

rithms might not be robust if they just rely on a subset of

cues, because some cues may be potentially noisy and un-

reliable. For example, trackers not using color information

[3, 1] will have difficulty avoiding identity switches when

multiple people come very close together and split up. Ex-

ploiting color information will help in disambiguating dif-

ferent people. Also, most of the aforementioned approaches

use an unsupervised approach to perform tracking, which is

convenient in that very little manual effort is required, but

this will increase the amount of identity switches, which is

not ideal for person-of-interest tracking. Finally, previous

methods all perform experiments on wide and open indoor

or outdoor scenes. It is unclear whether the performance of

previous methods translates into complex indoor environ-

ments with sparse camera setups.

Recently, there have been papers focusing on leverag-

ing semi-supervised learning to improve monocular track-

ing performance. [9] proposes an online boosting semi-

supervised framework to find features that can effectively

separate the tracking target from the background. The

tracker relies on its own prediction scores to update its own

model. [16] extends [9] by combining an offline object de-

tector with an online object recognizer and an online semi-

supervised tracker to alleviate the template drift problem.

However, previous semi-supervised learning trackers are fo-

cused on monocular videos and do not take into account the

interaction between multiple tracked objects. Our method is

different and novel in that it uses semi-supervised learning

to jointly learn the assignment of labels for all objects in a

multi-camera environment.

3. Methodology
Following the tracking by detection paradigm [14], the

input to our algorithm is a set of person detection results

at each time instant. The person detection results from dif-

ferent camera views can be mapped to a common 3D co-

ordinate system using camera calibration and ground plane

parameters provided. Each person detection result is de-

scribed by the color histogram of the person detection re-

sult. Our algorithm’s main task is to predict a label for

each person detection result. To perform the prediction
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task, our algorithm incorporates two main innovative com-

ponents, which are manifold learning in appearance space

with spatio-temporal constraints, and trajectory inference

by nonnegative discretization. The following paragraphs

will describe each step in detail.

3.1. Notations

Hereafter, we call a person detection result as a data
point. Suppose there are n data points generated by the per-

son detector. The color histogram for the i-th data point

is denoted as xi ∈ R
d. Let pi and ti denote the 3D lo-

cation and video frame of the i-th data point respectively.

Let c be the number of individuals to be tracked. Our

task is to assign each data point a class label. We denote

F = [f1, f2, . . . , fn]
T ∈ R

n×c as the scaled label indica-

tor matrix of all the data points 1, 2, . . . , n and fi ∈ R
c is

the label indicator vector for the i-th data point. Without

loss of generality, we assume that the data points are reor-

ganized such that the data points from the same class are

put together. The j-th column of F is given by:

Fj = [0, . . . , 0︸ ︷︷ ︸
∑j−1

i=1 ni

, 1, . . . , 1︸ ︷︷ ︸
nj

, 0, . . . , 0︸ ︷︷ ︸
∑c

i=j+1 ni

]T /
√
nj , (1)

where nj is the number of data points in the j-th class. If

the p-th element in Fj is 1√
nj

, it indicates that the p-th data

point corresponds to the j-th person. According to Equa-

tion 1, it can be verified that

FTF = [F1, . . . , Fc]
T [F1, . . . , Fc] = I, (2)

where I is the identity matrix. In this paper, Tr(·) denotes

the trace operator and |·|F is the Frobenius norm of a matrix.

Given an arbitrary number m, 1m ∈ R
m is a column vector

with all ones.

3.2. Manifold Learning in Appearance Space with
Spatio-Temporal Constraints

The appearance of a person within a short period of time

should not change much. Given two detected points which

are spatio-temporal neighbors, if they have similar appear-

ances, it is very likely that the two points correspond to the

same person. As this is a good fit to the manifold assump-

tion, we follow the method used in [19] to learn the mani-

fold structure. Nearest neighbor selection is a crucial step

in learning manifold structure. Therefore, in the following

paragraphs, we will first detail the method we used for near-

est neighbor selection and then describe how this informa-

tion is utilized in manifold learning.

Given a data point, suitable neighbors are spatio-

temporal neighboring data points with similar color his-

tograms. For the i-th data point, let the set Si contain data

points which are not only less than T frames away from the

Figure 2. The neighbor selection method for data point �.

point, but also reachable from location pi with a reasonable

velocity, i.e.,

Si =
{
l | ||pi − pl||2

|ti − tl| ≤ V, |ti − tl| ≤ T, 1 ≤ l ≤ n

}
,

(3)

where V is the maximum possible velocity of a moving per-

son. If the velocity required to move between two points is

too large, then the two points cannot be of the same indi-

vidual. Points in Si are the spatio-temporal neighbors of

the i-th data point, which are the points inside the bow-tie

shaped region as shown in Figure 2. According to our obser-

vation, detections of the same individual in a local temporal

neighborhood should have similar color histograms. There-

fore, the nearest color histogram neighbors of the i-th data

point in the spatio-temporal neighbor set Si should corre-

spond to data points from the same individual. We denote

Nk
i = [i, i1, i2, . . . , ik] as the vector containing the indices

to the k nearest color histogram neighbors of the i-th data

point in Si and the index of i itself.

This method of finding neighbors is robust to occlu-

sions due to the following reason. Occlusions may cause

the tracking target to be partially or completely occluded.

However, the tracking target usually reappears after a few

frames. Instead of trying to explicitly model occlusions, we

connect the observations of the tracking target before and

after occlusion. As shown in Figure 2, despite heavy occlu-

sions in a time segment, the algorithm is still able to link to

the correct detections after the occlusion. The value of T af-

fects the tracker’s ability to recover from occlusions. If T is

too small, the method will have more difficulty recovering

from occlusions. However, a large T may increase chances

of linking two different objects.

Following the manifold assumption, we assume that the

class labels of the i-th data point and its neighbors can be

predicted by a local function gi(·). Following [19], we
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adopt the linear regression model as the local prediction

function for its simplicity, i.e., gi(xi) = WT
i xi + bi, where

Wi ∈ R
d×c is the local projection matrix and bi ∈ R

c is

the bias term. A local function only corresponds to a small

segment of one trajectory. To exploit the structure of all the

trajectories in the entire video sequence, we minimize the

prediction error of all the local models gi for i = 1, ..., n,

which can be formulated as:

min
Wi|ni=1,bi|ni=1,F̃i|ni=1

n∑

i=1

||XT
i Wi + 1k+1b

T
i − F̃i||2F + λ||Wi||2F

s.t. F̃i = [fi, fi1 , fi2 , . . . , fik ]
T .

(4)

||Wi||2F is the regularization term on Wi to control the ca-

pacity of Wi. Xi = [xi, xi1 , xi2 , . . . , xik ] ∈ R
d×(k+1)

comprises the color histograms of the points in the vector

Nk
i . F̃i = [fi, fi1 , fi2 , . . . , fik ]

T ∈ R
(k+1)×c comprises

the prediction scores of the points in the vector Nk
i . Denote

H = I − 1
k+11k+11Tk+1 ∈ R

(k+1)×(k+1) as the centering

matrix. Following [19], Equation 4 is equivalent to mini-

mizing the following optimization problem:

min
F

Tr
(
FTLF

)
s.t. columns of F satisfy Equation 1,

(5)

where L is defined as:

L = [S1, S2, . . . , Sn]

⎡
⎣L1

. . .
Ln

⎤
⎦ [S1, S2, . . . , Sn]

T .

(6)

Li ∈ R
(k+1)×(k+1), 1 ≤ i ≤ n is defined as:

Li = H −HXT
i (XiHXT

i + λI)−1XiH. (7)

Si ∈ R
n×(1+k), 1 ≤ i ≤ n is a selection matrix which

(Si)pq = 1 if p = (Nk
i )q and (Si)pq = 0 otherwise. L

is the Laplacian matrix which encodes all the neighborhood

information. For more details on the mathematical deriva-

tion, please refer to [19].

3.3. Trajectory Inference

The current objective function shown in Equation 5

is a combinatorial problem, because F is constrained by

Equation 1. However, the combinatorial problem is NP-

complete. Certain relaxation is required to efficiently solve

this objective function. According to Equation 2, F is or-

thogonal by definition, i.e., FTF = I . Also, all the ele-

ments in F is nonnegative by definition, as defined by Equa-

tion 1. Furthermore, according to [20], if both the orthogo-

nal constraint and nonnegative constraint are satisfied for a

matrix, then there will only be at most one nonzero element

in each row of the matrix. If there is at most one nonzero el-

ement per row in F , this means that each data point belongs

to at most one class, which is exactly the mutual exclusion

constraint. Thus we relax the form of F and only keep the

orthogonal and nonnegative constraint. In other words, we

exploit the orthogonal and nonnegative constraints to per-

form discretization of F . Therefore, we propose to mini-

mize Equation 8 to satisfy mutual exclusion and the mani-

fold assumption simultaneously.

min
F

Tr
(
FTLF

)
s.t. FTF = I, F ≥ 0. (8)

In order to solve Equation 8, we rewrite the objective

function as follows:

min
F

Tr
(
FTLF

)
+ τ ||FTF − I||2F s.t. F ≥ 0, (9)

where τ is a large constant to enforce the orthogonality con-

dition FTF = I . τ = 1010 in our experiments. Following

[20], we iteratively optimize Equation 9. The update rule is

the following:

• Fij ← Fij
(2τF )ij

(LF+2τFFTF )ij

• Normalize F such that (FTF )ii = 1 for i = 1, . . . , n.

The justification of the update rule is detailed in [20].

The main problem of this optimization approach is that

the algorithm may converge to a severe local optima. If

the initialization is not good, the performance may degrade

severely. To have the performance more robust, we re-

sort to weak supervision to get a more stable initialization.

More specifically, the initial value of F in our system is

obtained by minimizing the following objective function,

which takes into account label information.

min
F

Tr
(
FTLF

)
+ Tr

(
(F − Y )TU(F − Y )

)
, (10)

where U ∈ R
n×n is a diagonal matrix. Uii = ∞ (a large

constant) if the i-th data point is a ground truth positive for

any class. Otherwise Uii = 1. U is used to enforce that the

prediction results are consistent with the ground truth pos-

itive points. Y ∈ R
n×c is the label matrix, where Yij = 1

if the i-th data point is ground truth positive for class j and

Yij = 0 if we do not have any label information. Accord-

ing to [19], the global optimal solution for Equation 10 is

F0 = (L + U)−1UY . F0 is then used as the initial value

for solving Equation 9.

The labeled data points in Y are acquired from the man-

ually labeled start and end locations of an individual. For

videos with face recognition information available, we can

increase the number of labeled data points. If we know by

face recognition that the i-th data point is from class j, then

we can add this information by setting Yij = 1. By incor-

porating face recognition, we can prevent the tracker from

losing track of the person-of-interest.
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Given the predicted label information for each person de-

tection result, the final step is to link together the detections

of each individual and infer the trajectory for each individ-

ual. A reasonable trajectory should be spatially smooth and

follow velocity constraints. Given the start and end location

of each individual, a Viterbi search is performed to select

the best trajectory for each of the c individuals.

It is worth noting that our formulation can naturally han-

dle template updates, which is crucial because the color of

the tracking target can change gradually from time to time.

The templates are implicitly encoded in the manifold struc-

ture we learn through semi-supervised learning. If the ap-

pearance of a tracked object changes smoothly along a man-

ifold, our algorithm can handle the change. In sum, tem-

plate updating is integrated seamlessly into the entire opti-

mization process.

4. Experiments
We compared our performance with two other trackers

on two data sets. The competing algorithms are [3] and a

self implemented 3D color particle filter (CPF) similar to

[15]. We used HSV color histograms as done in [14]. We

split the bounding box horizontally into regions and com-

puted the color histogram for each region similar to the spa-

tial pyramid matching technique [12]. Given L layers, we

will have 2L − 1 partitions for each template. L is 3 in

our experiments. The color particle filter tracks each object

independently using a particle filter, which is susceptible

to object hijacking, i.e. a particle filter starts tracking an-

other particle filter’s object. However, the particle filter per-

forms some basic occlusion analysis. If an object is known

to be occluded by a wall or some other object, the compu-

tation of the color histogram for the occluded object only

focuses on the non-occluded part. The starting points of

persons-of-interest are given to CPF. For [3], we acquired

the source code from the authors and applied it to our data

sets. This is an unsupervised method which only relies on

background information and does not require any label in-

formation. [17] was used for background subtraction. For

our method, we used the person detection result from [6, 8].

To describe the person detection result, we used the same

kind of color histograms as in CPF. We used the output of

the Probabilistic Occupancy Map [7] to filter out all person

detection points situated at locations which were deemed

to not contain any non-background object. The start and

end positions of the persons-of-interest are given to our al-

gorithm. We ran face detection and recognition using the

PittPatt software1.

The evaluation metrics used are the Multiple Object
Tracking Accuracy (MOTA2) and Precision (MOTP) from

the CLEAR metrics [4], which is the most widely-used eval-

1Pittsburgh Pattern Recognition (http://www.pittpatt.com)
2Code from http://www.micc.unifi.it/lisanti/source-code/.

uation metric to evaluate multi-object tracking algorithms.

Following the evaluation method used in [1], association

between tracking results and ground truth are computed in

3D with a hit/miss threshold of 1 meter. MOTA takes into

account the number of true positives (TP), false positives

(FP), missed detections (MD) and identity switches (ID-S).

Given the true positive associations, MOTP is the average

3D distance between the ground truth and tracking output.

4.1. Data Sets

We tested our algorithm on two real-world data sets: the

PETS 2009 data set and the Caremedia data set. The PETS

2009 [5] S2.L1 sequence consists of 7 cameras and 19 peo-

ple walking in an open outdoor scene for 795 frames. This is

a relatively easy data set because there is one camera (view-

001) which has a near global view of the whole scene. All

our ground-truths are based on view-001 from [2]. No faces

can be extracted due to low resolution of cameras.

The second data set is the Caremedia data set [18]

recorded in a nursing home. The surveillance cameras are

setup in the public areas. There are many occlusions caused

by walls which are typical in indoor scenes. There are also

many challenging scenes such as long corridors with sparse

camera setups which can easily have much occlusion. There

is also no single camera which has a global view of the

whole environment, which is typical in many surveillance

camera setups, but atypical in the data sets that have been

used to perform multi-camera tracking. Furthermore, the

data set records activities in a nursing home, where people

were focused on their daily tasks and not on the surveillance

cameras, which makes the data set a very good representa-

tion of situations that may occur in real life. In sum, this is

a very challenging real world data set in a complex indoor

environment.

The video recordings are 6 minutes 17 seconds long with

11310 frames from 15 cameras. There were a total of 29

trajectories identified, and these trajectories belonged to 13

people in the scene. Patients and staff are all persons-of-

interest, because staff at nursing homes interact frequently

with the patients, and it is valuable information if we are

able to localize and track staff as well. Trajectories that

were no more than 3 seconds were ignored. For each tra-

jectory, the ground truth bounding boxes of each tracking

target in the 15 cameras are manually labeled at one second

intervals. The longest trajectory in the video is 6 minutes

17 seconds, and the shortest trajectory is 4 seconds. The

mean length of the trajectories is 39.72 seconds. Faces can

be extracted and recognized if a person is close enough to

the camera. For our algorithm, we treated each of the 29 tra-

jectories as a class during the learning process. There was a

11310 frame trajectory, which was significantly longer than

all the other trajectories. To balance the data set, we split

the trajectory into 4 sub-trajectories and concatenated the
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MOTA MOTP TP FP FN ID-S

[3] 0.684 0.633 3974 1050 426 272

CPF 0.448 0.615 3190 1269 1310 172

Ours-NF 0.963 0.785 4565 70 104 3
(a) Results for PETS 2009 S2.L1 sequence. Ground truth count: 4672.

MOTA MOTP TP FP FN ID-S

[3] -1.877 0.570 19069 84938 12930 2020

CPF -0.309 0.583 11772 22527 22014 233

Ours-NF 0.170 0.608 19877 14180 14060 82

Ours-F 0.762 0.632 29988 4103 3983 48
(b) Results for Caremedia sequence. Ground truth count: 34019.

Figure 3. Results for the two evaluation sequences. TP: true posi-

tive. FP: false positive. FN: false negative. ID-S: identity switch.

Ours-NF: our method, no face recognition. Ours-F: our method,

with face recognition.

sub-trajectories once our learning process was complete.

4.2. Results

The results of the PETS 2009 S2.L1 sequence and the

Caremedia data set are shown in Table 3(a) and Table 3(b)

respectively. Most algorithms perform reasonably well on

the relatively easy PETS 2009 S2.L1 sequence. In [3], the

authors report 0.77 MOTA for this sequence while we only

achieve 0.684. However the authors also mentioned that

only 5 out of 7 cameras are used, because there were two

cameras with calibration imprecision. We used all 7 cam-

eras, which could be the cause of the performance drop. No

face recognition information is available on this sequence,

so we ran our method without face recognition (Ours-NF).

For the more complex Caremedia data set, the perfor-

mance gap between different algorithms is much more vis-

ible. Although [3] and CPF works fairly well for PETS

2009 S2.L1, they fail in tackling the Caremedia data set.

The main reason is that the large number of false positives

detected will lower the MOTA score significantly. To un-

derstand the impact of face recognition, we run our tracker

without face recognition (Ours-NF) and with face recogni-

tion (Ours-F). Our tracker, which utilizes all available infor-

mation, can still achieve reasonable tracking performance.

Snapshots of our algorithm’s localization and tracking is

shown in Figure 1 and 4. Even though there are 4 cameras

viewing the corridor, the clutter in the corridor still causes

serious occlusions.

4.3. Discussion: Advantages and Limitations

We analyzed the performance of the compared algo-

rithms. For [3], surveillance camera setups with near-

parallel viewing angles of cameras can cause the Proba-

bilistic Occupancy Map (POM) [7] to be inaccurate. For

example, cameras setup in a corridor only view the princi-

ple direction of the corridor. Therefore, when there is heavy

occlusion on the corridor, there can be ambiguity in how

(a)

(b)

Figure 4. Snapshots of localization and tracking results from Care-

media data set. To increase readability, not all arrows are drawn.

to generate a set of person location hypotheses. Also, for

locations which are only viewed by one camera, the POM

is also not as effective. These are the main difficulties [3]

faced. The CPF does not perform well because of two main

reasons. The first reason is that the cameras are not color

calibrated, which makes cross-camera tracking difficult be-

cause the same person may have slightly different color ap-

pearance when viewed from different cameras. The second

problem is that the CPF does not have the mutual exclusion

constraint, and multiple particle filters may start tracking

the same object.

Our proposed algorithm performs reasonably well due

to two main reasons. First, manifold learning coupled with

nonnegative discretization is effective in enhancing track-

ing performance. Our algorithm utilizes the manifold as-

sumption to deal with slight color differences of the track-

ing target at different times. The nonnegative discretization

enforces the mutual exclusion constraint. Second, we uti-

lize PittPatt face recognition, which is a very reliable source

of label information. Face recognition provides more la-

bels for each tracking target. Face recognition also helps

overcome the color-mismatch problem the CPF faces, be-

cause if a face is detected in a given camera, then the color
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histogram of the person for the camera is known. With-

out faces, manifold learning with nonnegative discretization

already achieves scores which are already better than our

baselines on both data sets. By incorporating face recogni-

tion (Ours-F), we further improve the MOTA score of the

Caremedia data set to 0.762. Even though our algorithm

requires the start and end information of a track, we empha-

size that labeling the additional information requires very

little human labor, but can lead to substantial improvement

in accuracy. In sum, experiments show that by incorporat-

ing all available cues and exploiting the manifold assump-

tion with nonnegative discretization, we can achieve sub-

stantial improvements in performance.

There are still limitations to our algorithm. First, our ob-

jective function does not have a spatial locality constraint on

a trajectory, i.e., an individual cannot be at multiple places

at the same time. Therefore, our algorithm is not effective

in very crowded sequences where each person wears the

same color clothes, such as the laboratory sequence from

[3]. Second, the optimization may converge to a severe lo-

cal optima, which makes the initialization very important.

Bad initialization may cause the performance to degrade.

We plan to solve these issues in the future.

5. Conclusions
We propose a novel semi-supervised learning framework

with nonnegative discretization to incorporate all available

cues to perform robust person-of-interest localization and

tracking in complex indoor environments. Available cues

such as color, person detection, face recognition and non-

background information are all utilized in the manifold

learning process. The nonnegative discretization groups the

data points into non-overlapping groups such that mutual

exclusion and manifold assumption are satisfied simultane-

ously. We have shown in our experiments that our method

is effective in both outdoor and complex indoor environ-

ments. Our algorithm is effective because of reliable face

recognition and the combination of manifold learning with

nonnegative discretization.
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