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Abstract

Active contours are widely used in image segmentation.
To cope with missing or misleading features in images, re-
searchers have introduced various ways to model the prior
of shapes and use the prior to constrain active contours.
However, the shape prior is usually learnt from a large set
of annotated data, which is not always accessible in prac-
tice. Moreover; it is often doubted that the existing shapes in
the training set will be sufficient to model the new instance
in the testing image. In this paper, we propose to use the
group similarity of object shapes in multiple images as a
prior to aid segmentation, which can be interpreted as an
unsupervised approach of shape prior modeling. We show
that the rank of the matrix consisting of multiple shapes is a
good measure of the group similarity of the shapes, and the
nuclear norm minimization is a simple and effective way to
impose the proposed constraint on existing active contour
models. Moreover, we develop a fast algorithm to solve the
proposed model by using the accelerated proximal method.
Experiments using echocardiographic image sequences ac-
quired from acute canine experiments demonstrate that the
proposed method can consistently improve the performance
of active contour models and increase the robustness a-
gainst image defects such as missing boundaries.

1. Introduction

Image segmentation is a fundamental task in many ap-
plications. Among various techniques, the active contour
model is widely used. A contour is evolved by minimizing
certain energies to match the object boundary while pre-
serving the smoothness of the contour [2]. The active con-
tour is usually represented by landmarks [18] or level set-
s [20, 8]. A variety of image features have been used to
guide the active contour, typically including image gradient
[7, 31], region statistics [34, 8], color and texture [14].

In real applications, the performance of the active con-
tour model is prone to be corrupted by missing or mislead-
ing features. For example, segmentation of the left ventri-
cle in ultrasound images is still an unresolved problem due
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Figure 1. A toy example illustrating our idea. The images in the
top row show the segmentation results of the region-based active
contour applied on each image separately. The images in the bot-
tom row show the corresponding results with a group similarity
constraint on the shapes, which makes the shapes consistent with
each other and less affected by local misleading features. This
property is desired in many applications, such as segmentation of
the left ventricle from a cardiac image sequence.

to the characteristic artefacts in ultrasound such as attenu-
ation, speckle and signal dropout [23]. To improve the ro-
bustness of active contours, the shape prior is often used.
The prior knowledge of the shape to be segmented is mod-
eled based on a set of manually-annotated shapes to guide
the segmentation. Previous deformable template models
[32,27, 17, 21] can be regarded as the early efforts towards
knowledge-based segmentation. In more recent works, the
shape prior was applied by regularizing the distance from
the active contour to the template in a level-set framework
[10, 24, 9]. Another category of methods popularly used
for shape prior modeling is the active shape model or point
distribution model [ |]. Briefly speaking, each shape is de-
noted by a vector and regarded as a point in the shape space.
Then, the principal component analysis is carried out to ob-
tain the mean and several most significant modes of shape
variations, which establish a low-dimensional space to de-
scribe the favorable shapes. During the segmentation of a
new image, the candidate shape is constrained in the shape
space [19, 29]. Also, dynamic models can be integrated to
model the temporal continuity when tracking an object in
a sequence [12, 35]. Other extensions of the active shape



model include manifold learning [
tation [33], to name a few.

While the shape prior has proven to be a powerful tool in
segmentation, it has two limitations:

] and sparse represen-

1. Previous methods for shape prior modeling require a
large set of annotated data, which is not always acces-
sible in practice.

It is often doubted that the existing shapes in the train-
ing set will be sufficient to model the object shape in a
new image.

In this paper, we propose to use the similarity among
object shapes as a prior for segmentation. A practical ap-
plication is the segmentation of cardiac images, where the
shape of the left ventricle shall keep consistent throughout
a cardiac cycle although it deforms globally due to the heart
beating. Figure 1 gives a simple illustration. The three
hearts in the top row share the similar shape, while there are
some local artefacts such as occlusion and missing bound-
aries. If the active contour is applied on each of them sep-
arately, the segmentation result will be affected by the mis-
leading features. Our results are presented in the bottom
row, where the similarity among the object shapes is used
as a constraint to make the active contours more robust. In
summary, the contributions of this paper are:

1. We showed that the vectors representing a group of
similar shapes would form a low-rank matrix, even if
they are different with each other due to certain global
coordinate transformation.

Based on the low-rank property of similar shapes, we
proposed to use the nuclear norm (convex surrogate of
rank) to regularize the group similarity of shapes in
segmentation. The regularizer could be conveniently
integrated into existing active contour models.

We developed a fast algorithm to solve the proposed
model by using the accelerated proximal gradien-
t method. The experiments showed that the proposed
constraint made the active contour model better regu-
larized and require fewer iterations to converge.

We applied the proposed method to ultrasound im-
age segmentation and demonstrated that the group-
similarity regularization could significantly improve
the robustness of the active contour model.

The rest of this paper is organized as follows: Section
2 introduces the basic theory and the formulation of our
method. Section 3 describes the algorithm to solve our mod-
el. Section 4 demonstrates the merits of our method by ex-
periments. Finally, Section 5 concludes the paper with some
discussions.
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2. Formulation
2.1. Group similarity measure

To apply a group similarity constraint to active contours,
a proper similarity measure is desired. Typically, the simi-
larity between two contours is measured by calculating the
distances between the corresponding points on the contours,
and the group similarity can be measured by the sum of
pairwise distances between contours. The main drawback
of this method is that the contour distance is not invariant
under similarity transformation. For example, two contours
with identical shapes but different sizes may be regarded as
dissimilar based on the distance between them, which is not
desired in our task of segmenting the left ventricle.

Here, we propose to use the matrix rank to measure the
group similarity of shapes. Suppose each shape is represent-
ed by a vector. Multiple shapes form a matrix. Intuitively,
the rank of the matrix measures the correlation among the
shapes. For example, the rank equals to 1 if the shapes are
identical, and the rank may increase if some shapes change.
Moreover, we can show that the shape matrix is still low-
rank if the shape change is due to the similarity transforma-
tion such as translation, scaling and rotation.

For example, let vector C = [x1, -+ , Tp, Y1, ,Yp]L €
R?? represent a digitized parametric curve in the 2-D plane,
where (z;, y;) is a landmark on the curve. Suppose there are
n curves C1,Cs, - - - ,Cp, and for each i # 1, C; is generated
from C; through affine transformation. Then, the matrix
[C1,Ca,- - ,Cp] € R?PX™ has the following property

rank([Cy, -+, Cp]) <6, (1)
for any large n and p. The proof is straightforward. For
any C generated from C; by certain affine transformation
x' = Mx + T, where x (or x’) denotes the coordinates of a
landmark before (or after) transformation, we can represent

C as C = ®w, where

s_|Ct 0 ¢ 0 10
0 cx 0o ¢/ o 1|’
w = [m117m217m127m227t1,t2]T

Here, C{ and Ci’ € RP denote the first half and the sec-
ond half of vector C;, and m;; and ¢; are the elements
of M and T, respectively. Since ® only depends on C;
for any C, [C1,---,C] = ®[wy,---,w,]. The dimen-
sion of the column space of ® is at most 6. Therefore,
rank([Cy,- -+ ,Cp]) < 6.

Intrinsically, the rank of the shape matrix describes the
degree of freedom of the shape change. The low-rank con-
straint will allow the global change of contours such as
translation, scaling, rotation and principal deformation to
fit the image data while truncating the local variation caused
by image defects.



2.2. Energy function

Given a sequence of images [, - ,I,, we try to find
a set of contours Cy, - - - ,C,, to segment the object in these
images. To keep the contours similar to each other, we pro-
pose to segment the images by

: " . <
m)én; fi(C;), subjectto rank(X) < K, )

where X = [C1,---,C,] and K is a predefined constant.
1i(C;) is the energy of an active contour model to evolve the
contour in each frame, such as snake [18], geodesic active
contour [7], and region-based models [34, 8]. For example,
the region-based energy in [8] reads

fi(Cy) = ‘/Q (I;(x) — uy)?dx —1—/9 (I;(x) — ug)?dx
+ B length(C;), (3)

where (2; and (2 represent the regions inside and outside
the contour, and u; and wuo denote the mean intensity of €24
and €),, respectively.

Since rank is a discrete operator which is both difficult
to optimize and too rigid as a regularization method, we
propose to use the following relaxed form as the objective
function:

ng;n;fi(co + AX.. “)

Here, rank(X) in (2) is replaced by the nuclear norm || X,
i.e. the sum of singular values of X. Recently, the nucle-
ar norm minimization has been widely used in low-rank
modeling such as matrix completion [0] and robust prin-
cipal component analysis [5]. As a tight convex surrogate
to the rank operator [16], the nuclear norm has several good
properties: Firstly, the convexity of the nuclear norm makes
it possible to develop fast and convergent algorithms in opti-
mization. Secondly, the nuclear norm is a continuous func-
tion, which is important for a good regularizer in many ap-
plications. For instance, in our problem, the small perturba-
tion in the shapes may result in a large increase of rank(X),
while ||X]|, may rarely change.

3. Algorithm

In this section, we will discuss how to solve the opti-
mization problem in (4). If there is no regularizer | X||., (4)
can be locally minimized by gradient descent, which gives
the curve evolution steps in typical active contour models.
In our model, it is difficult to apply gradient descent directly
due to the nuclear norm, which is nonsmooth and its subgra-
dient is hard to compute.
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Recently, the Proximal Gradient (PG) method [1,
used to solve the following category of problems

]is

ngn F(X) + AR(X), 5)
where F(X) is a differentiable function and R(X) corre-
sponds to a convex penalty which can be nonsmooth. Our
problem is in this category with F(X) = >""" | f;(C;) and
R(X) = ||X]||«. The basic step in PG is to make the follow-
ing quadratic approximation to F'(X) based on the previous
estimate X' at each iteration

Qu(X,X')
= F(X') + (VF(X'),X — X') + gnx — X/||Z 4+ AR(X),

= gux - [X' - iVF(X/)]H% + AR(X) + const, (6)

where (-,-) means the inner product, || - ||z denotes the
Frobenius norm, and p is a constant. It is shown in [22] that,
if F(X) is differentiable with Lipschitz continuous gradi-
ent, the sequence generated by the following iteration will
converge to a stationary point of the function in (5) with a
convergence rate of O(7)

Xk = arg m}én Q.(X,X"),

A
;R(X).

)

N | RN
= argmin 2||X X qu(X Nz +

The next question is how to solve the update step in (7).
For our problem, the following lemma is required, which
has been proven in [4].

Lemma 1 Given X € R™*", the solution to the problem

1 9
min 5 X — Z|[5 + ol Xl ®)
is given by X* = D, (Z), where
min(m,n)
Do(Z)= Y (0i—a)suv], ©)

u; and v; are the left and right singular vectors of Z, o; is
the singular value, and (-)1 = max(-,0).

The operator D, (Z) refers to the singular value threshold-
ing operator [4]. Hence, the update step of our algorithm
reads

X+ = D%(X’“ — iVF(X’“)), (10)

The remaining issue is to find VF(X*). Here, F(X)
is decomposable as a sum of quantities over each frame.



Figure 2. Toy example. Top: the results of region-based segmentation without the similarity constraint proposed in this paper. Bottom: the
results of the same model with the similarity constraint.

Hence, VF(XF) = [Vf1(CF), -,V f.(CF)]. For exam-
ple, the gradient of the region-based energy defined in (3) is
[34]

Vi(p) = [(I(p) = u2)® = (I(p) — u1)’Inp + Brpnp, (1)

where p is a landmark on C, and n,, and &, are the normal
vector and the curvature at p, respectively.

To accelerate the convergence of the proximal method,
the Nesterov method can be used [22]. Instead of updating
X from the previous estimate X*, the approximation in (6)
is made at an intermediate point Y*, which is the linear
extrapolation from X*~! and X*

th=1 _1

k _ ywk
Yh=XF

(XF-XMh, a2
where t* is determined online. This modification will give a
convergence rate of 0(13_2) Please refer to [1, 22] for more
details.

The intuition of our algorithm is that, at each iteration,
we first evolve the active contours according to the image-
based forces and then impose the group similarity regular-
ization via singular value thresholding. The overall algo-
rithm is summarized in Algorithm 1.

Algorithm 1 Accelerated proximal gradient algorithm to
solve our model in (4)

1. Initialize: X° =X t, =t_1 =1

2. for k = 0 — maximum number of iterations do

5. YR =Xk 4 tk;;—l(Xk — Xk
4. fori=1—ndo

s yEeyE - LVl

6. end for

7. Xk = D% (YF)

g thtl = 1Hy/144(k)2

9. if || Xk+L — X2k||p < tolerance then
10. return

1.  endif

12. end for
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4. Results

In this section, we evaluate the proposed method on both
synthesized data and ultrasound images. To demonstrate the
advantages of the group similarity constraint, we compare
the results of the same active contour model before and af-
ter applying the proposed constraint. We select the region-
based active contour in (3) as the basic model, which is less
sensitive to initialization and has fewer parameters to tune
compared with edge-based methods.

In our implementation, we initialize the active contours
as X" = [Co, - - -, Co], where Cy is a rough outline of the ob-
ject placed manually in an image. Three parameters need to
be selected in our algorithm. 3 in (3) controls the smooth-
ness of each contour, A in (4) controls the group similarity
of contours, and p in (7) controls the step-length of curve
evolution in each iteration. We choose the parameters em-
pirically and use the same set of values for all experiments.
The effect of A will be further elaborated in Section 4.3.

4.1. Toy example

To better illustrate our idea, we synthesized eight images
as shown in Figure 2. The dark region in a heart shape is
the object to be segmented, which has different sizes and
positions in different images. Occlusion or deletion is sim-
ulated and added to the different part of each shape. Gaus-
sian noise is also added. Our goal is to find the heart shapes
in all images based on the prior that the shapes are similar
to each other in these images. As shown in Figure 2, our
results with the shape similarity constraint are more robust
against the local defects in images compared to the results
without such constraint. The rank of output X is 4.

4.2. Ultrasound image segmentation

We apply our method to five 2-D short-axis sequences of
canine echocardiography. The echocardiography segmenta-
tion is a very challenging problem due to various misleading
features in ultrasound images. Please refer to Table 1 and
the appendix for more information on the data sets.
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Figure 3. Two examples of left ventricle segmentation. For each sequence, 7 frames uniformly spaced through the sequence are selected
to demonstrate the results. For each panel, the top row and the bottom row present the results of region-based active contours without and
with the proposed constraint, respectively. The green solid curve is the output contour. The yellow dashed curve is the manual reference.

seq.  (#pixel)x#frame rank  #iter  time (sec) to the low contrast over there. Similar errors can be found
1 (328x302) %20 4 28(50) 9.6(16.4) in frames 11 and 13 of sequence 2. Moreover, the active
2 (267%x257) %26 7 35(50) 12.5(17.3) contour is prone to be trapped by the misleading features,
3 (306x279)x26 5 14(50) 5.2(174) e.g. the upper part of the contour in frame 1 of sequence 2
4 (276x271)x24 4 30(34) 10.7(12.0) is attracted to the bright pattern in the blood pool.

W

(275%x278)x22 3 26 (27) 8.0(8.1)
Table 1. Sequence information including the data size, the rank of Our results are given in the bottom rows. There are two
output X, the number of iterations for the algorithm to stop, and observations worth mentioning. Firstly, the contour shapes
the computational time. The value in parentheses corresponds to  are globally consistent with each other throughout the se-
the result without the shape constraint. quence, which is attributed to the group similarity constrain-
t. Hence, the contours are more resistent to local misleading
features. Secondly, the constrained shape model is still flex-
4.2.1 Qualitative comparison ible enough to adapt the deformation of the object shape.
For example, the segmented shapes in frame 1 and frame
Uniformly-selected frames of two sequences are displayed 13 of sequence 2 are largely different and the shape change
in Figure 3 to qualitatively evaluate the segmentation. is far away from the affine transformation. The drawback
The results of the region-based active contour without  of our method is that it cannot address the global bias of
the proposed constraint are given in the top rows. The  the model. For example, the image contrast of sequence
results are corrupted in several images. For example, in 2 is poor near the upper endocardial border. Therefore,
frames 7, 9 and 13 of sequence 1, the active contour fail- the region-based active contours cannot attach closely to
s to stop near the true endocardial border on the right due  the true boundary. In practice, more appealing results can
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Sequence 1
Method | MAD (mm) | HD (mm) Dice (%)
w/ 0.80 £0.20 | 3.154+0.98 | 93.1 £ 1.3
w/o 1.29 £0.60 | 7.47 +£3.22 | 88.7 £ 5.7
Sequence 2
Method | MAD (mm) | HD (mm) Dice (%)
w/ 0.75+0.15 | 345+0.79 | 922+ 1.6
w/o 1.02+0.17 | 5.81 £1.08 | 88.8 3.4
Sequence 3
Method | MAD (mm) HD (mm) Dice (%)
w/ 0.50 £0.10 | 2.40 £ 0.70 | 95.1 £0.5
w/o 0.58+0.20 | 2.81+1.23 | 944+ 1.2
Sequence 4
Method | MAD (mm) | HD (mm) Dice (%)
w/ 0.75+0.19 | 252 4+0.68 | 929 £ 1.3
w/o 1.10 £ 0.78 | 4.15+£2.18 | 89.6 £ 6.2
Sequence 5
Method | MAD (mm) | HD (mm) Dice (%)
w/ 1.16 2 0.34 | 427 £ 1.17 | 88.4 £ 2.1
w/o 1.26 £ 0.66 | 5.01 £2.22 | 87.5£5.1

Table 2. Quantitative evaluation of the segmentation results w/ and
w/o the proposed constraint on the region-based active contours.
The values in each cell indicate mean =+ standard deviation calcu-
lated over all frames in each sequence.

be obtained by including more energy terms such as edge-
based energies, which is out of the scope of this paper.

4.2.2 Quantitative evaluation

We use the following metrics to quantitatively evaluate the
segmentation results compared to the manual segmentation:
Mean Absolute Distance (MAD), Hausdorff Distance (HD),
and the Dice coefficient. Let C; and Cy be two contours to
be compared, then

Ji d(Ci(5),C2)[C4(s)|ds

MAD =
(C17C2) 2|Cl|
Jo d(Ca(s),C2)|Cs(s)|ds
2|Ca| ’
HD(Cy,C3) = max{sup d(C;(s),Cz2),supd(Cz2(s),C1)},
. 2|§2c r1§20 |
Dice(Cy,C) = — 22—, 13
G0 = 1001+ 0, (4

Here, d(p, C) is the minimum distance from point p to con-
tour C, |C| represents the contour length, {2¢ denotes the
region inside C, |Q¢| means the area of the region, and sup
indicates the supremum.

The results are summarized in Table 2. Regarding the
mean of the metrics, a smaller MAD/HD or a larger Dice
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Figure 4. The effect of the regularization parameter A. The mark-
ers and bars denote the mean values and standard deviations of
MAD, respectively. The curve shows the cubic fitting of the mean-
s. The results are averaged over all sequences.

coefficient indicates a more accurate segmentation. Gener-
ally, the performance with the proposed constraint is better
than that without the constraint. The improvement in the
Hausdorf distance is the most notable, which measures the
largest error for each contour. This is due to the fact that
part of the segmentation result is corrupted by the missing
boundary while this error can be corrected by adding the
shape constraint. Regarding the standard deviation of the
metrics, a smaller standard deviation indicates the more sta-
ble performance. As shown in Table 2, the standard devi-
ation with the proposed constraint is distinctly lower than
that without the constraint, which shows the significance of
the proposed constraint to improve the robustness of the ac-
tive contour model.

4.3. Effect of )

The most important parameter in our method is the
weight A of the nuclear norm regularization in (4). The larg-
er )\ is, the lower rank(X) will be, which makes the output
contours more similar to each other. Figure 4 shows the in-
fluence of A to the segmentation accuracy averaged over the
tested sequences in our experiments. As the A increases in a
proper range, both of the accuracy and the variance are im-
proved, which demonstrates the advantage of the proposed
constraint. However, after the turning point the accuracy
decreases, since the over-regularization gives a large bias in
shape estimation.

In our experiments, we selected A\ empirically and ap-
plied the same A to all sequences. The curve in Figure 4
shows that the accuracy changes smoothly over A and the
performance is stable in a wide range. Another alternative
way is to choose a constant K specifying the degree of free-
dom allowed for shape variation and then solve the model
with a decreasing sequence of A until rank(X) reaches K.



4.4. Convergence and computational time

Our algorithm is implemented in MATLAB and tested
on a desktop with a Intel i7 3.4GHz CPU and 8G RAM. The
computational time and the number of iterations required
are listed in Table 1. The experiments showed that the al-
gorithm with the shape constraint converged faster than that
without shape constraint. This can be explained by the fact
that the added constraint will make the active contour model
better regularized, which results in faster convergency and
fewer iterations. For instance, in the case of missing bound-
ary, the active contour without the shape constraint may e-
volve further away from the ground truth and converge s-
lowly, where we have to stop it manually after a number
of iterations, e.g. 50 iterations in our experiments. Instead,
the algorithm with the constraint converged within 40 it-
erations for all sequences. Moreover, the only additional
computation brought by adding the constraint is the singu-
lar value decomposition on X. Since the size of X is mere-
ly 2p x n, where p is the number of landmarks and n is
the number of frames, the singular value decomposition is
not very time-consuming. Therefore, the algorithm with the
proposed constraint is even faster in computation compared
to that without the constraint.

5. Discussion

In this paper, we proposed a simple and effective way to
regularize the group similarity of shapes in the active con-
tour model based on low-rank modeling and rank minimiza-
tion. Following are some discussions.

Relation to other works. In the active shape model
[11], a candidate shape is constrained in a shape space de-
scribed by C(w) = C + ®w, where C is the mean shape,
® is a matrix with columns representing different modes
of shape variation, and w is a vector of coefficients. Since
the number of columns of ® is often small, the candidate
shape is limited in a low-dimensional space. Hence, the
active shape model also admits a low-dimensional assump-
tion, which is similar to our low-rank assumption. The dif-
ference is that the shape space in the active shape model is
constructed from offline training, while the low-rank model
in our method is constructed unsupervisely along with the
segmentation. The low-rank constraint has also been adopt-
ed in other vision problems such as structure from motion
[3], tracking [28], and motion segmentation [30]. Matrix
factorization was used in these works to extract structure or
motion information from detected feature points. Anoth-
er topic closely related to our work is shape analysis such
as shape clustering [26, 25]. The difference is that sample
shapes are provided as inputs in shape analysis while they
are the outputs of segmentation.

Why not using level sets. We use the landmarks to rep-
resent the contour instead of level sets. The reason is that
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the low-rank property in (1) will not hold if the level-set
representation is used. For instance, if there are n contours
represented by the zero-level sets of n signed distance func-
tions (SDFs), and the contours are identical in shape but
different in location, the matrix consisting of the vectorized
SDFs has a rank of n, which is full-rank. Other variational
methods for image segmentation [ 3] also have this issue.

Limitations. A limitation of using the shape similari-
ty constraint is the possibility of removing frame-specific
details of the shapes. The trade-off between noise removal
and signal preserving is a fundamental challenge in many
problems. A possible solution in our problem is to refine
the segmentation by running an active contour model that is
more sensitive to local features with our results being both
initialization and templates to constrain the curve evolution.

Extension to 3-D segmentation. In this paper, we
demonstrate the advantages of our method based on 2-D
active contours. In practice, it can be naturally applied to
3-D deformable models. The implementation for 3-D seg-
mentation will be our future work.
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Appendix

All ultrasound images were acquired using an open chest
canine preparation at the Yale Translational Research Imag-
ing Center and the studies were performed with appropri-
ate institutional approvals. 2D short-axis images were ac-
quired at a frame rate of 122-149 fps using a Philips iE33
ultrasound system with X7-2 phased array transducer at a
nominal frequency of 4.4 MHz (Philips Healthcare, An-
dover, MA). The exported B-mode data sets were temporal-
ly downsampled to generate the sequences used here with
a frame rate of 30-40 fps. The two sets of data in Figure 3
represent continuous runs of data selected to begin at two
different times during the cardiac cycle. Manual tracings
were performed by computer vision researchers working
with these data.
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