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Abstract

We present a method to capture both 3D shape and
spatially varying reflectance with a multi-view photometric
stereo technique that works for general isotropic materials.
Our data capture setup is simple, which consists of only a
digital camera and a handheld light source. From a sin-
gle viewpoint, we use a set of photometric stereo images to
identify surface points with the same distance to the cam-
era. We collect this information from multiple viewpoints
and combine it with structure-from-motion to obtain a pre-
cise reconstruction of the complete 3D shape. The spatially
varying isotropic bidirectional reflectance distribution func-
tion (BRDF) is captured by simultaneously inferring a set
of basis BRDFs and their mixing weights at each surface
point. According to our experiments, the captured shapes
are accurate to 0.3 millimeters. The captured reflectance
has relative root-mean-square error (RMSE) of 9%.

1. Introduction

Appearance capture methods recover both 3D shape and
surface reflectance of objects, allowing photorealistic ren-
dering of the captured objects from arbitrary viewpoints and
lighting conditions. This capture is an important and chal-
lenging problem with many applications such as graphics
and reverse engineering. Typically, appearance capture is
performed with sophisticated hardware setups such as the
light stage of Ghosh et al. [9] and the coaxial lights of Hol-
royd et al. [14]. Though these methods achieve highly ac-
curate results, the data capture setup is expensive and com-
plicated. We design a method with simple setup so that it
can be used more widely. Our simplest setup only contains
a digital camera and a handheld moving light source. Com-
pared with [14], our method achieves lower but still useful
accuracy (0.3 millimeters vs. 50 microns). This lightweight
solution provides a practical step towards enabling casual
users the ability to perform appearance capture.

The appearance of opaque objects is well represented by
a bi-directional reflectance distribution function (BRDF).
Most previous methods on simultaneous shape and BRDF
capture, e.g. [10, 12], assumed specific parametric BRDF

models. Their performance degrades when the real objects
have different reflectance from the assumed model.

We exploit reflectance symmetries to work on objects
with general spatially varying isotropic BRDF. According
to [2], isotropy allows us to identify ‘iso-depth contours’,
i.e. pixels with the same distance to the image plane, from
photometric stereo images. We collect iso-depth contours
from multiple viewpoints to reconstruct the complete 3D
shape. Specifically, we first apply structure-from-motion
[11] to reconstruct a sparse set of 3D points. We then propa-
gate the depths of these 3D points along iso-depth contours.
Each propagation generates additional 3D points, whose
depths can be further propagated. A surprisingly small
number of 3D points (about two hundred) can be propa-
gated to reconstruct the complete 3D shape (about two mil-
lion points). Once the shape is fixed, we use the same set of
input images to infer the spatially varying reflectance. We
assume the BRDF at each surface point is a linear combina-
tion of a few basis isotropic BRDFs which are represented
by 3D discrete tables to handle general material. The ba-
sis BRDFs and mixing weights at each point are iteratively
estimated by the ACLS method [16].

2. Related Work

Image-based modeling. These methods reconstruct a
3D shape and a ‘texture map’ to model objects from im-
ages. [19, 8] are two recent representative methods. Texture
color at each surface point is decided according to its image
projections. However, a texture map is often insufficient to
represent general non-Lambertian materials.

Shape scanning and reflectance fitting. To obtain pre-
cise 3D shape, laser scanners and structured-light patterns
were used in [18, 27, 36, 6]. Based on a precise 3D recon-
struction, parametric reflectance functions can be fitted at
each surface point according to the image observations, as
in [28, 17].These methods require precise registration be-
tween images and 3D shapes. Since different sensors are
used for shape and reflectance capture, this registration is
difficult and often causes artifacts in misaligned regions.
Some methods [23, 1] combine reflectance recovered from
photometric stereo and shape recovered from structured-
light, where registration is relatively simple. However, they
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need to capture images under both structured-light and vary-
ing directional light at each viewpoint, which is tedious and
requires a more complicated setup than ours.

Photometric appearance capture. Our method belongs
to photometric approaches that capture both shape and re-
flectance from the same set of images. Most of previous
methods, e.g. [35, 12, 10], assumed specific parametric
BRDF models such as Lambert’s or Ward’s model [33]. The
performance of these methods degrades when the real ob-
jects have different reflectance from the assumed model.

Some other methods employed a sophisticated hardware
setup to achieve high quality results. Ma et al. [20] and
Ghosh et al. [9] used a light stage where the intensity of
each LED on the stage was precisely controlled. Holroyd
et al. [14] required specialized coaxial lights. This require-
ment of expensive and complicated hardware limits their
wide application. Recently, a few algorithms [3, 13] were
proposed for appearance capture by exploiting various re-
flectance symmetries that are valid for a broader class of
objects. However, [13] required up to a thousand input im-
ages at each viewpoint and [3] relied on fragile optimiza-
tion. Tan et al. [32] and Chandraker et al. [5] both re-
covered iso-contours of depth and gradient magnitude for
isotropic surfaces. Additional user interactions or boundary
conditions are required to recover the 3D shape.

The work closest to our method is [3]. Both methods
are built upon reflectance symmetry embedded in ‘isotropic
pairs’ introduced in [31]. There are three key differences
between our method and [3]. First, we reconstruct a com-
plete 3D shape rather than a single-view normal map. Sec-
ond, we combine multi-view geometry and photometric
cues to avoid fragile iterative optimization of shape and re-
flectance. Third, our method works with general tri-variant
isotropic BRDFs while [3] assumed bi-variant BRDFs to
simplify the optimization.

BRDF acquisition. Our work is also related to BRDF
acquisition methods such as [7, 25]. These methods are only
applicable to near-flat surfaces where the surface normals
are known beforehand. Our method can be considered as a
generalization of these methods to non-planar surfaces.

3. Overview

We capture images from multiple viewpoints. At each
viewpoint, we capture photometric stereo images with a
moving light source. We design a robust algorithm to iden-
tify iso-depth contours from these images. Further, we ap-
ply structure-from-motion to images from different view-
points to reconstruct a sparse set of 3D points. We then
derive a complete 3D shape by propagating the depths of
these points along the dense iso-depth contours. Once the
shape is fixed, we estimate a set of basis isotropic BRDFs
and their mixing weights at each surface point to model the
surface reflectance.

4. Shape Reconstruction

4.1. Iso-depth contour estimation

Alldrin and Kriegman [2] observed that isotropy allows
almost trivial estimation of iso-depth contours in the ab-
sence of global illumination effects such as shadows and
inter-reflections. We propose an algorithm that is more ro-
bust in real data than the naı̈ve approach described in [2].
Specifically, we relax the assumption about lighting and
propose a method to enhance robustness to global illumi-
nation effects.

Under orthographic projection and directional lighting
that moves on a view-centered circle, the plane spanned
by the viewing direction and the surface normal direction
of an isotropic 1 surface point can be recovered precisely
according to the symmetry of the observed pixel intensity
profile. In the camera local coordinate system, where the z-
axis is aligned with the viewing direction, this plane gives
the azimuth angle of the surface normal, which is the angle
between the x-axis and the normal’s projection in the xy-
plane. We briefly explain this idea in Figure 1 (a). For more
details, please refer to [2]. Figure 1 (a) shows the observed
pixel intensities under 36 different lighting directions on a
view-centered circle. The vertical axis of the chart indicates
pixel intensities, while the horizontal axis is the range of az-
imuth angles. The red symmetry axis of these observations
provides a good estimation of the azimuth angle. Once az-
imuth angles are computed, at each pixel, we can recover an
iso-depth contour by tracing along the directions perpendic-
ular to the xy-plane projection of the surface normal there.
For easier reference, we refer this direction of a projected
surface normal as the azimuth direction in this paper.

Handheld Point Light Source In practice, it is more
convenient to capture images with a handheld bulb, i.e. a
point light source that does not lie precisely on a view-
centered circle. So we compute spatially variant lighting
directions at each pixel, and interpolate the desired obser-
vations from recorded pixel intensities.

We take the average depth of an object (computed from
the reconstructed sparse 3D points in Section 4.2) to esti-
mate an approximate 3D position of each pixel. We also
calibrate the 3D positions of the light source (see the ex-
periments section). The lighting directions at each pixel are
then computed according to the 3D positions of that pixel
and the light sources.

To allow flexible data capture, we interpolate observa-
tions under lighting directions lying on a view-centered cir-
cle, and compute the azimuth angle from these interpolated
observations. We study this interpolation problem in the
projective plane where a unit 3D direction (x, y, z) is rep-

1Note that the original algorithm is based on the bilateral symmetry.
Here, we follow [2] to refer it as isotropy because bilateral symmetry is
often observed for isotropic surfaces.
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Figure 1. (a) The symmetry axis of intensity profiles tells the azimuth angle of a pixel’s normal direction; (b) cast shadows can break this
symmetry; (c) the intensity profile of most of isotropic BRDFs in [21] can be well represented by a 2-order Fourier series.

Figure 2. We compute a Delaunay triangulation of the original
lighting directions (red dots) in the projective plane. The desired
observations (blue dots) on a view-centered circle are generated by
linear interpolation within these triangles. Left: the circle radius
d is the mean distance between the red dots and the viewpoint v.
Right: the circle radius d is set as (di + do)/2. Here, di (or do) is
the largest (or smallest) distance between v and the red dots on the
inner (or outer) conic.

resented by a 2D point (x/z, y/z). As shown in the left of
Figure 2, the original lighting directions at a pixel are rep-
resented by the red points. We compute a Delaunay trian-
gulation of these points in the projective plane. The desired
observations – those blue dots – on a view-centered circle
are generated by linear interpolation within these triangles.
The radius d of the blue circle is computed as the mean dis-
tance between the red dots and the viewpoint v.

Global Illumination Effects To improve accuracy, we
need to identify cast shadows, which break the symmetry
of pixel intensities. Figure 1 (b) shows an example pixel
with cast shadow. (This pixel is marked in red in the input
image of the ‘Buddha’ example in Figure 7.) The original
intensity profile marked by red ‘×’ is asymmetric. Though
we might use an intensity threshold to detect shadows, it is
hard to identify penumbra this way. Two samples in the
penumbra are marked with red ‘⊗’ in Figure 1 (b). As
shown in Figure 1 (b), the azimuth angle estimated by the
naı̈ve method in [2] is far from the ground truth at this
point. Points in the penumbra also cause problems in the
reflectance estimation in Section 5. So we identify them as
‘outliers’ by fitting a parametric model to the observed in-
tensity profiles. Consider a Lambertian point with surface
normal n = (nx, ny, nz) and albedo ρ. Its intensity should
be ρrnx cos θ + ρrny sin θ − ρznz when the lighting di-
rection is (r cos θ, r sin θ,−z). This motivates us to fit a
truncated Fourier series

A0 +
∑

k

Ak cos kθ +
∑

k

Bk sin kθ

to an intensity profile. We evaluate the fitting error on
synthetic data generated according to the MERL BRDF
database [21]. For each BRDF in the database, we uni-
formly sample ninety normals along a longitude on the visi-
ble upper hemisphere, and render them under a light moving
on a view-centered circle. Figure 1 (c) plots the normalized
RMSE (root-mean-square error) of all materials with dif-
ferent orders of Fourier series. For most of materials, an
intensity profile can be well represented by a second order
(i.e. 1 ≤ k ≤ 2) Fourier series with normalized RMSE
less than 5%. So we always apply RANSAC to fit a sec-
ond order Fourier series to each observed intensity profile,
and estimate the azimuth angle according to the symmetry
of the fitted curve. As shown by the green vertical line in
Figure 1 (b), our estimated azimuth angle is closer to the
ground truth. In fact, this fitting also makes our method
less sensitive to specular inter-reflections, which are outliers
above the fitted curve.

Tracing Contours Once an azimuth angle is computed
at each pixel, we proceed to generate iso-depth contours.
Starting from every pixel, we iteratively trace along the
two directions perpendicular to the azimuth direction with a
step of 0.1 pixel. Specifically, suppose the estimated az-
imuth angle is θ at a pixel x. We trace along the two
2D directions d+ = (cos(θ + π/2), sin(θ + π/2)) and
d− = (cos(θ−π/2), sin(θ−π/2)) to x+ = x+0.1d+ and
x− = x + 0.1d−. We then replace d+ and d− according to
the azimuth angles of x+ and x− respectively and continue
to trace. We stop tracing when the maximum number of
iterations is reached (500 in our experiments). Pixels on
one traced curve should have the same distance to the im-
age plane. To avoid tracing across discontinuous surface
points, we use the method described in the ‘NPR camera’
[24] to identify discontinuities. Further, we define a con-
fidence measure for these traced contours as the inverse of
the maximum curvature along them. Intuitively, smoother
contours with relatively small curvature are more reliable.

4.2. Multi-view depth propagation

A standard structure-from-motion algorithm such as [19,
30] can reconstruct a set of sparse 3D points on the object.
We capture experiment objects on a turntable with a check-
board pattern to ensure sufficient feature matching for tex-
tureless examples. Since structure-from-motion algorithms
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Figure 3. We propagate the depth of x to the iso-depth contour
segment Ci that passes through its projection in the i-th view. This
propagation generates new 3D points, e.g. y1, y2, whose depths
in other images can also be propagated along their corresponding
iso-depth contours Cj1, Cj2.

could be affected by moving highlights, we compute a me-
dian image at each viewpoint by taking the median intensity
of each pixel and use these images for feature matching.
Reconstructed 3D points are combined with the traced iso-
depth contours to recover the complete 3D shape.

Depth Propagation As illustrated in Figure 3, given a
reconstructed 3D point x, we project it to all images where it
is visible. Suppose an iso-depth contour Ci goes through its
projection in the i-th image. We perform a depth propaga-
tion to assign the depth of x to all pixels on Ci. (If the depth
of a pixel on Ci is already known, we keep it unchanged.)
This propagation generates new 3D points, whose depths
in other images can also be propagated. We begin with a
sparse set of 3D points P reconstructed by structure-from-
motion. Depth propagation with P in all images generates
a large set of 3D points P ′. We then replace P by P ′ and
apply depth propagation iteratively. We keep iterating until
P ′ is empty.

Direct application of the algorithm described above will
generate poor results. There are a few important issues
which must be addressed for robust 3D reconstruction.

Point Sorting We sort all points in P according to the
confidence of their associated iso-depth contours. Note that
if a point is visible in K different views, it is repeated K
times in P and each repetition is associated with an iso-
depth contour in one view. At each iteration, we only select
half of the points in P of high confidence for depth propa-
gation. We then remove those selected points, and insert P ′

into the sorted set P for the next iteration.
Visibility Check We should not propagate the depth of

a 3D point in an image where it is invisible. However, the
visibility information is missing for 3D points generated by
propagation. So we apply a consistency check when propa-
gating the depth of a 3D point x to a contour C. We check

Figure 4. Definition of θh, θd and φ.

pixels on C one by one, starting from the projection of x to
the two ends of C. If a pixel p fails the check, we truncate
C at p, and only assign the depth of x to pixels on the trun-
cated contour. If the updated contour is too short (less than
5 pixels in our implementation), we do not propagate.

To evaluate consistency at a pixel p, we assign it the
depth of x to determine its 3D position. We then use the sur-
face normal of x to select L (L = 7 in our implementation)
most front parallel views where x is visible. We assume p
is visible in all these L images and check the consistency
of the azimuth angles at its projections. The azimuth angles
at corresponding pixels in two different views uniquely de-
cide a 3D normal direction 2. If different combinations of
these L views all lead to consistent 3D normals (the angle
between any two normals is within T degrees), we consider
p as consistent. Otherwise, we discard the view that is most
different from the mean view angle and check consistency
with the remaining L − 1 views iteratively. We consider p
consistent, if it is consistent over at least 3 views. Other-
wise, it is inconsistent. For each consistent 3D point, we
set its normal as the mean of all consistent normals. In our
implementation, we begin with T = 3, and relax it by 1.3
times whenever P ′ is empty until T > 15.

We note the number of consistent views for each 3D
point when inserting it to the set P ′. Points are first sorted
by the number of consistent views in descending order.
Those with the same number of consistent views are sorted
by the confidence of contours.

Shape Optimization After depth propagation, we have a
set of 3D points, each with a normal direction estimated. We
apply the Poisson surface reconstruction [15] to these points
to obtain a triangulated surface. This surface is further op-
timized according to [23] by fusing the 3D point positions
and their normal directions.

5. Reflectance Capture

We assume the surface reflectance can be represented
by a linear combination of several (K=2) basis isotropic
BRDFs. Once the 3D shape is reconstructed, we follow
[16] to estimate the basis BRDFs and their mixing weights
at each point on the surface. We consider the general tri-

2An azimuth angle in one view (with the camera center) decides a plane
where the normal must lie in. Intersecting two such planes determines the
3D normal direction.
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variant isotropic BRDF, which is a function of θh, θd, φ as
shown in Figure 4. We discretize θh, θd and φ into 90, 2 and
5 bins respectively all in the interval [0, π/2]. Please refer
to [26] for a justification of choosing this interval. Hence, a
BRDF is represented as a 900 × 1 vector by concatenating
its values at these bins.

We build an N ×M observation matrix V, and factorize
it into a matrix of mixing weights W and a matrix of basis
BRDFs H as,

VN×M = WN×KHK×M .

M = 900 is the dimension of a BRDF. N is the number of
3D points. Each row of V represents the observed BRDF
of a surface point. In constructing the matrix V, we avoid
pixels observed from slanted viewing directions (the angle
between viewing direction and surface normal is larger than
40 degrees in our implementation), where a small shape re-
construction error can cause a big change in their projected
image positions. V contains missing elements because of
incomplete observation. We apply the Alternating Con-
strained Least Squares (ACLS) algorithm [16] to iteratively
compute the rows of W and columns of H.

To further improve reflectance capture accuracy, we first
compute H from a subset of precisely reconstructed 3D
points, whose reconstructed normals from different combi-
nations of azimuth angles are consistent within 1.5 degrees.
We then fix H and compute W at all surface points.

6. Experiment

We evaluated our algorithm on real data with two hard-
ware setups. Both setups used a PointGrey Grasshopper
camera, which captures linear images at 1200× 900 resolu-
tion. The first setup used a handheld bulb as light source
to ensure data capture flexibility. The second one used
blinking LED lights synchronized with the video camera to
speedup capture. We captured images viewpoint by view-
point. This process can be speeded up by an automatic
turntable. But we used a broken LP player to simplify the
setup. After capturing images at one viewpoint, we manu-
ally rotated the LP player to capture the next viewpoint.

In our experiments, the 3D points obtained from the
structure-from-motion algorithm were often noisy. We only
kept points with reprojection error less than 0.5 pixels. Typ-
ically, about 200 initial points were obtained for each ex-
ample. Our system can also easily incorporate manual in-
tervention in the form of matched feature points to handle
textureless regions. To provide a ‘ground truth’ validation,
all experimental objects were scanned using a Rexcan III
industrial scanner, which is accurate to 10 microns. Our
results were registered with the scanned shapes using the
iterative closest point (ICP) algorithm [4].

6.1. A Handheld System

Consisting of just a video camera and a handheld light
source, this system is compact and portable. At each view-
point, we moved a handheld bulb to capture a short video
clip (about two minutes), and then uniformly sampled about
100 images with different lighting directions. The light
source positions and intensities were recorded with calibra-
tion spheres. An example is provided in Figure 5 (see the
supplementary files for more results). Figure 5 (a) shows
a sample input image. This example was captured from 10
viewpoints, which allow us to reconstruct part of its sur-
face. To better visualize the recovered shape, we render it
with uniform diffuse shading in (b). Most of the geometry
details are successfully captured. (c) is a rendering accord-
ing to the captured reflectance from the same viewpoint and
lighting condition as the input image in (a). To provide a
quantitative evaluation on shape capture, we visualize the
shape reconstruction error (measured in millimeters) in (d).
The larger errors at the surface boundary are due to insuf-
ficient and slanted observations. Overall, the median (and
mean) shape error is 0.53 (and 0.79) millimeters. Here, the
object diameter is 250 millimeters.

6.2. A Ring-Light System

Setup To facilitate data capture, we built a simple device
shown in Figure 6. 72 LEDs were uniformly distributed on
two concentric circles of diameter 400 and 600 millimeters
respectively. A video camera was mounted at the center of
these circles, facing the direction perpendicular to the board
3. The camera was synchronized with the LED lights such
that at each video frame, there was only one light turned on.
At each viewpoint, we captured 30 images with different
lighting directions in 12 seconds (at 4fps). (Please refer to
the supplementary file for a justification of the number of
images per viewpoint.)

We pre-calibrated the intensities and positions of these
LEDs. Since they are uniformly distributed and the circle
radiuses are known, we only need to calibrate one parame-
ter θ0 to determine their positions. Here, θ0 is the reference
angle of the first LED light as shown in Figure 6. For more
details of this calibration please refer to the supplementary
files. We considered LEDs to be point light sources. Hence,
at a general surface point, the local lighting directions will
form two conics in the projective plane as illustrated on the
right of Figure 2. When computing azimuth angles, we per-
formed a Delaunay triangulation based interpolation as in-
troduced in Section 4.1. We chose a circle with diameter
d = (di + do)/2 to interpolate the required observations.
Here, di (or do) is the largest (or smallest) distance between

3The camera was mounted manually. It might not exactly sit on the
circle center. Its direction might also be slightly off. We ignored these two
factors as they introduce little errors according to our experiments.
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(a) (b) (c) (d)
Figure 5. Results from the handheld system. (a) one of the input images, (b) the recovered shape rendered with uniform diffuse shading. (c)
a rendering with the recovered reflectance model from the same viewpoint and lighting condition as the image in (a). (d) the color-coded
shape error (in millimeters) compared to laser-scanned ‘ground truth’.

Figure 6. The hardware setup. Left: our device consists of a video
camera and two circles of LED lights. Right: we need to calibrate
one parameter θ0 to determine lighting positions.

v and the original lighting directions – the red dots – in the
inner (or outer) conic.

Results An example, an polished wooden ‘Buddha’, is
provided in the first row of Figure 7. This example has fo-
cused and strong highlight. The object diameter is 120 mil-
limeters. We captured it from 41 different viewpoints. This
example contains many discontinuities at clothes folds and
large concavities at the shoulder. These shape details were
faithfully captured, as shown in the rendering in (b) and (c).
The median (or mean) shape error was 0.36 (or 0.57) mil-
limeters in this example. Most of the large shape errors
appeared at concave carvings with strong inter-reflection.

Another two examples, ‘Cup’ and ‘Frog’, are included
in Figure 7 (more can be found in the supplementary files).
Their diameters are 120 and 90 millimeters respectively.
Our examples cover a wide range of different material.
The rusted metal ‘Cup’ has quickly change reflectance over
its surface. The painted ‘Frog’ also has significant spatial
BRDF changes. We captured 30 and 34 viewpoints for the
‘Cup’ and ‘Frog’ examples respectively. Our method con-
sistently performed well on all of them. Their median (or
mean) shape reconstruction error was 0.29 and 0.25 (or 0.5
and 0.47) millimeters respectively. The ‘Teapot2’ example
had relatively larger error at one side, mainly due to the
imprecise structure-from-motion reconstruction caused by
erroneous feature matching.

6.3. Comparison with Existing Methods

We compared our results with those obtained from [3].
and [12]. We used the same code as the authors. The it-
erative shape and reflectance optimization in [3] is compli-

(a) (b) (c) (d)
Figure 8. Results according to [3]. (a) the color coded normal
map estimated. (b) the shape computed from the estimated normal
according to [34]. (c) a rendering under novel illumination. (d) the
color coded shape error (in millimeters).

Figure 9. Results according to [12].

cated and slow. It took over 40 hours to compute the re-
sults of one viewpoint with 72 input images at resolution of
200 × 350. Figure 8 shows the results from [3]. (a) is a
color coded normal map where the x, y, z components of a
normal direction are linearly encoded in the RGB channels,
e.g. (x + 1)/2 → R. Shown in (b) is a surface computed
from the recovered normal map according to [34]. (c) is a
rendering from novel lighting direction according to the es-
timated normal and reflectance. We can see clear artifacts
in all these images. (d) is the color coded shape error (in
millimeters). Notice the error range is from 0 to 5. The me-
dian (and mean) shape error is 2.38 (and 2.85) millimeters.
The median (and mean) angular error of normal directions
is 13.1 (and 17.6) degrees. Figure 9 shows the results from
[12] which is designed for Lambertian surfaces, where most
of the shape details are smoothed out.

6.4. Runtime Efficiency

Our implementation was not optimized for speed. We
did all experiments on a computer with 24GB RAM and a
8-core 3.0GHz CPU. At each viewpoint, our matlab code
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Figure 7. Results from the ring-light system. From left to right, these figures are arranged in the same way as Figure 5.

computed azimuth angles in 1 minute, and traced iso-depth
contours in 1.5 minutes. Depth propagation took 16 min-
utes (for 40 viewpoints), and the final shape optimization
took 1 minute. It took about 15 minutes to compute the
basis BRDFs from 5,000 samples with ACLS. Our output
mesh typically had about two million points with average
spatial distance 0.095 millimeters. It took another 45 min-
utes to compute their BRDF mixing weights. Much of the
involved process including azimuth angle computation, iso-
depth contour tracing, and BRDF mixing weight computa-
tion can be easily parallelized.

7. Discussion

We propose a method to capture both shape and re-
flectance of real objects with spatially variant isotropic re-
flectance. Our method requires a simple hardware setup and
is able to capture 3D shapes accurate to 0.3 millimeters and
reflectance with 9% relative RMSE error.

Our method has a few limitations. First, our method
cannot model anisotropic material. It also cannot handle
translucent objects and mirror surfaces. Second, although
our method is robust to cast shadows and strong specular
inter-reflections with Fourier series fitting, it suffers from
diffuse inter-reflections. To resolve this problem, we could

replace LEDs by projectors and apply the method in [22]
to separate inter-reflection. However, it would significantly
complicate the hardware setup. Alternatively, we might it-
eratively estimate the shape and inter-reflection. Last, our
ring-light capture setup contains only two circles of LEDs.
Hence, we only capture the BRDF of a point with two dif-
ferent θd values. (Note that θd is the angle between viewing
and lighting directions as shown in Figure 4.) Hence, dur-
ing reflectance capturing, we can only discretize θd to two
levels, and cannot capture Fresnel effects faithfully. Note
this limitation does not apply to the handheld setup. We
could increase the number of circles of LED lights, or fit
parametric Fresnel terms [29] to solve this problem.
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