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Abstract

Recently, a new image deformation technique called
content-preserving warping (CPW) has been successfully
employed to produce the state-of-the-art video stabilization
results in many challenging cases. The key insight of CPW
is that the true image deformation due to viewpoint change
can be well approximated by a carefully constructed warp
using a set of sparsely constructed 3D points only. How-
ever, since CPW solely relies on the tracked feature points
to guide the warping, it works poorly in large textureless
regions, such as ground and building interiors. To over-
come this limitation, in this paper we present a hybrid ap-
proach for novel view synthesis, observing that the texture-
less regions often correspond to large planar surfaces in
the scene. Particularly, given a jittery video, we first seg-
ment each frame into piecewise planar regions as well as
regions labeled as non-planar using Markov random fields.
Then, a new warp is computed by estimating a single ho-
mography for regions belong to the same plane, while in-
heriting results from CPW in the non-planar regions. We
demonstrate how the segmentation information can be ef-
ficiently obtained and seamlessly integrated into the stabi-
lization framework. Experimental results on a variety of
real video sequences verify the effectiveness of our method.

1. Introduction
With the fast development of hand-held digital cameras,

we have seen a dramatic increase in the amount of ama-

teur videos shot over the past decade. However, very often

people find their videos hard to watch, mainly due to the ex-

cessive amount of shake and undirected camera motions in

the footage. Therefore, there has been an urgent demand

in developing high-quality video stabilization algorithms,

which are able to remove the undesirable jitters from ama-

teur videos so that they look like to be taken under smooth,

directed camera paths.

In general, there are two major steps in stabilizing a jit-

tery input video, namely (1) designing new smooth camera

paths, and (2) synthesizing stabilized video frames accord-

ing to the new path. In this paper, we focus ourselves on the

second step, which still remains a highly challenging prob-

lem nowadays. Most existing methods [19, 10, 6, 15, 13]

apply a full-frame 2D transformation to each input frame

to obtain the stabilized output frame. Despite its compu-

tational efficiency and robustness, this approach is well-

known for its inability in handling the parallax effects of

a non-degenarate scene and camera motion, as illustrated in

Figure 1 (first row).

In fact, in the ideal case one will need the dense 3D

structures of the scene in order to create a novel view of

it. However, obtaining such a dense reconstruction from 2D

images is extremely challenging in terms of both effective-

ness and efficiency. Several attempts have been made along

this direction [5, 7, 3], which rely on image-based render-

ing (IBR) to generate new images of a scene as seen along

the smooth camera path. But these techniques are all lim-

ited to static scenes, among other issues. In a recent work

[16], Liu et al. propose a novel method, namely content-

preserving warping (CPW), which instead uses the sparse
3D points obtained by any structure from motion system for

synthesis. The key idea of CPW is that the true dense de-

formation can be well approximated by diffusing the sparse

displacements suggested by the reconstructed 3D points via

a carefully chosen regularization term. This approximation

is shown to be sufficient for stabilization, producing state-

of-the-art results in many challenging cases, as long as there

are enough feature tracks in each image region. In practice,

however, large textureless regions often exist in the scene,

such as ground, building facades, and indoor walls, where

feature tracks are rare. It has been noticed that CPW per-

forms poorly in these regions, as illustrated in Figure 1 (sec-

ond row).

In this paper, we propose a new synthesizing scheme

which aims to remedy this important issue of CPW. Our key

observation is that real scenes often exhibit strong structural

regularities, in the form of one or more planar surfaces,

which are largely ignored so far by existing methods. More

importantly, these planar surfaces typically correspond to

the textureless regions in the scene, which are problematic

to CPW as well as many other methods.
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Figure 1. Effects of various warping methods. Each row shows a sequences of warps of a single input frame created by pulling the camera

away from its original location. First row: Warping based on 2D transformation (e.g., homography) is too rigid to handle general motion

and structures, resulting in large distortions in non-planar regions (e.g., buildings). Second row: Content-preserving warping preserves

the non-planar structures well, but yields increasingly visible distortion in the textureless regions (i.e., the ground) where features are rare.

Third row: Our plane-based warping is able to produce visually pleasing results by combining the strengths of both methods. Red line

represents the boundary of planar and non-planar regions obtained by our video segmentation algorithm.

Therefore, our goal is to develop a novel 3D stabilization

method that can explicitly take advantage of the presence of

(relatively large) planar surfaces in the scene. To this end,

we propose to automatically detect large planes in the scene,

and partition each frame into regions associated with each

plane, as well as regions that are “non-planar”. Note that,

since our ultimate goal is to improve the stabilization sys-

tem and produce jitter-free videos, it is crucial for our seg-

mentation algorithm to process the entire video in a short

period of time, and obtain results which can be seamlessly

integrated into the stabilization pipeline. To achieve this

goal, we develop a novel algorithm which directly works on

the same uniform grid mesh that is employed by CPW, and

only uses geometric cues for fast processing. This is con-

trary to the existing piecewise planar scene segmentation

algorithms, which operate at the per-pixel level and rely on

multiple low-level and high-level photometric cues. These

methods are generally too slow for stabilization purposes,

taking hours to process a video with a few hundred frames.

We demonstrate that our algorithm is capable of processing

the entire video in about 30 seconds, and obtaining results

that are sufficient for stabilization.

With the segmentation information, our new plane-based

warping method computes a single homography for image

regions that belong to the same plane, while borrowing the

results of CPW for non-planar regions (Figure 1 third row).

In this way, we not only seamlessly integrate the informa-

tion about planar structures of the scene into the stabiliza-

tion framework, but also provide an unified framework for

2D-3D stabilization. When the scene is dominated by com-

plex non-planar or dynamic structures, our method becomes

CPW which is known to work well in such cases, whereas

on the other end, if the scene contains a single large plane,

it reduces to the robust and efficient 2D method.

1.1. Related Work

In general, depending on the level of scene geometry

one recovers, existing video stabilization techniques can be

roughly divided into two categories. Methods in the first

category [19, 10, 6, 15, 13] aim to estimate a single 2D

transformation between each pair of frames. Stabilization

is then obtained by smoothing the parameters of 2D trans-

formations followed by synthesizing a new video using the

smoothed parameters. It is well known that 2D stabiliza-

tion can only achieve limited smoothing before introducing

noticeable artifacts to the output video. Several ideas have

been examined in recent years to alleviate this problem, in-

cluding interpolating the homography matrices in a trans-

formed space [10], considering user’s capturing intention

[6], directly smoothing a set of robust feature trajectories

[15], and designing an �1-optimal camera path [13].

In order to fully handle general scene structure and cam-

era motion, 3D stabilization methods [5, 7, 3, 16] attempt to

recover true camera motion and scene structures via struc-

ture from motion (SFM) systems. Stabilization is subse-

quently done by smoothing the camera path in 3D and syn-

thesizing a new video based on the smoothed path. To

avoid the dependency on structure from motion techniques,

[17] directly smoothes the 2D feature trajectories based

on the observation that they approximately lie in a low-
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dimensional subspace over any short period of time. Al-

ternatively, [11] resorts to epipolar point transfer, which

only requires projective reconstruction. However, all these

methods except [11] solely rely on features that allow reli-

able tracking, and hence suffer from the presence of large

textureless regions. In [11], epipolar constraints are used

to search for additional matches along edges. But this ap-

proach is very sensitive to noise, and does not work if there

is no strong edge in the scene. Recently, [18] proposed to

use additional depth sensors to compensate for the lack of

feature tracks, but access to depth data is unrealistic for the

vast majority of amateur videos.

The problem of segmenting video into motion layers that

admit parametric transformation models was first studied in

[25], and remains an active research topic in computer vi-

sion today. Since its goal is to obtain simultaneous mo-

tion estimation and segmentation, it typically involves iter-

ative schemes which are prone to local minima. Given cam-

era motion and 3D point cloud, early works on piecewise-

planar scene segmentation from multiple images [1, 26] are

based on line grouping and plane sweeping, whose com-

plexity is prohibitive beyond a few images. More recently,

[2] and [24] both combine the idea of random sampling con-

sensus (RANSAC) with photometric consistency check to

obtain piecewise planar scene models. However, the exper-

iment results in both papers only involve simple examples

with little non-planar structure. In addition, their compu-

tational complexity is still too high for our purpose. For

example, it is reported in [24] that it takes 14 hours to pro-

cess a sequence consisting of 380 frames. Finally, planes

extracted from 3D point clouds or depth maps have been re-

cently explored to improve the performance of multi-view

stereo (MVS) systems [21, 8, 9, 20]. But these methods are

again too slow for more than a few images. In summary,

none of the existing methods meets our goal of obtaining

satisfactory segmentation results within a few seconds for

long video sequences.

2. Overview of the Content-Preserving Warp-
ing Technique

Since our method is built upon the content-preserving

warping (CPW) technique introduced in [16], in this section

we give a brief review of it.

Generally speaking, CPW is an image warping technique

specifically designed for 3D stabilization, which aims to de-

form an input frame according to a set of 2D sparse dis-

placement constraints induced by the 3D viewpoint change,

while minimizing the distortion of local shape and salient

image content. In particular, it takes two sets of correspond-

ing 2D points as input – P̂ in the input frame, and P in the

output frame – and create a dense warp guided by the dis-

placements from P̂ to P . For 3D stabilization, P̂ and P
are obtained by projecting the reconstructed 3D points into

input and output (stabilized) cameras, respectively.

To create the dense warp, CPW first divides the original

video frame Î into an m×n uniform grid mesh, represented

by a set of N vertices V̂ = {v̂q}N
q=1. Then, it estimates a

warped version of the mesh, denoted by V = {vq}N
q=1,

for the output frame by minimizing the following objective

function:

E(V ) = Ed(V ) + αEs(V ), (1)

where α is a scalar weight between the data term Ed(V )
and smoothness term Es(V ).
Data term. The data term penalizes the difference in the

output frame between the projected location of each point

Pt and the location suggested by the estimated mesh V . For

each point P̂t in the input frame, a bilinear interpolation of

the four corners of the enclosing grid cell, denoted by V̂t,

is first computed so that P̂t = wT
t V̂t. Here, the vector wt

contains the four coefficients that sum to 1. Then, the data

term is defined as:

Ed(V ) =
∑

t

‖wT
t Vt − Pt‖2. (2)

Smoothness Term. The smoothness term measures the de-

viation of the estimated 2D transformation of each grid cell

from a similarity transformation. This is inspired by the

work [14], which suggests that warps resembling a simi-

larity transformation can effectively avoid noticeable dis-

tortions of image content due to shearing and non-uniform

scaling, and hence should be preferred as long as the view-

point change is not too large, which is indeed the case in

video stabilization. [14] further shows that this constraint

can be written in the form of every three vertices that form

a triangle in a grid cell. Specifically, let (V̂ Δ
1 , V̂ Δ

2 , V̂ Δ
3 ) and

(V Δ
1 , V Δ

2 , V Δ
3 ) denote the vertices of any triangle Δ in the

input and output grid mesh, respectively. Then, its deviation

from a similarity transformation can be written as

es(Δ) = ‖V Δ
1 −(V Δ

2 +aΔ(V Δ
3 −V Δ

2 )+bΔR90(V Δ
3 −V Δ

2 ))‖2,
(3)

where aΔ, bΔ satisfy

V̂ Δ
1 = V̂ Δ

2 + aΔ(V̂ Δ
3 − V̂ Δ

2 ) + bΔR90(V̂ Δ
3 − V̂ Δ

2 ), (4)

and R90 = [0 1;−1 0] is a 2D rotation matrix.

Finally, the smoothness term Es(V ) is the sum of es(Δ)
over all eight triangles of each vertex:

Es(V ) =
∑
Δ

es(Δ). (5)

Since minimizing the energy E(V ) is a linear least-

squares problem in the set of unknown V , it can be solved

efficiently by any standard linear system solver. The out-

put frame is then generated using standard texture mapping

algorithm according to V .
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Finally we note that, according to the above discussion,

the warp obtained by CPW tends to be close to a similarity
transformation, especially in regions where features are rare

or non-existing. However, similarity transformation cannot

faithfully represent the projective effects of the scene, and

hence may cause serious wobble effects in the stabilized

videos. Next, we show how this problem can be properly

addressed by incorporating information about scene planes.

3. Fast Piecewise Planar and Non-Planar Scene
Segmentation for Videos

In this section, we propose a fast two-step approach to

automatically segment each video frame into piecewise pla-

nar and non-planar regions. First, we detect scene planes

from 3D point cloud obtained by structure from motion us-

ing a robust multiple structure estimation algorithm called

J-Linkage [23]. Second, we describe a novel video segmen-

tation algorithm, which classifies each grid cell in the CPW

framework into K + 1 classes – one for each of the K de-

tected planes, plus a “non-planar” class. For this problem,

we lay out a MRF formulation for the entire sequence to

simultaneously take into account the spatial coherence be-

tween neighboring cells within each frame, and improve the

segmentation consistency across different frames. We now

describe these two steps in detail.

3.1. Multiple Plane Detection

Since real scenes often contain multiple planes as well as

non-planar structures, we adopt a robust multiple structure

estimation method called J-Linkage [23] to detect planes

from 3D point cloud. Similar to the popular RANSAC tech-

nique, this method is based on sampling consensus. Mean-

while, it has been shown in [23] that J-Linkage substan-

tially outperforms other variants of RANSAC for multi-

ple structure detection, such as sequential RANSAC and

multi-RANSAC [29], in many real applications including

3D plane fitting.

Basically, J-Linkage works in the following way. It first

generates a large number (typically a few thousands) of pu-

tative models by random sampling. Next, for each data

point, a preference set (PS) of models is computed, which

include all the models to which the distance from that data

point is less than a threshold ε. J-Linkage then uses a

bottom-up scheme to iteratively group data points that have

similar PS. Here, the PS of a cluster is defined as the inter-

section of the preference sets of its members. Specifically,

in each iteration, J-Linkage computes the Jaccard distance

between any two clusters A and B:

dJ(A, B) =
|A⋃

B| − |A ⋂
B|

|A⋃
B| , (6)

and merge the two clusters with the smallest distance. As

in RANSAC, the only free parameter of J-Linkage is the

Figure 2. Three planes are detected by J-Linkage [23] on the video

shown in FIgure 3.

consensus threshold ε, which is set to 10 in our experiments.

Also, since our goal is to detect large scene planes, we only

keep those clusters with a support size larger than one sixth

of the total number of points.

Figure 2 shows the result of applying J-Linkage to the

3D point cloud for an indoor video sequence taken by a

person walking down the corridor with a hand-held cam-

era (see Figure 3 for some input frames). In this exam-

ple, three planes are detected, namely the ground and two

side-walls. Although J-Linkage fails to detect the other two

planes, namely the ceiling and front door, due to their small

support sizes, we still consider the result successful as these

two planes only occupy a very small portion of the video

frames.

3.2. A Markov Random Field Formulation for
Video Segmentation

Once a set of dominant planes is detected, the next step

is to perform piecewise planar and non-planar segmenta-

tion for each input frame. To take both spatial and tem-

poral consistency into consideration, we define a Markov

random field for the entire sequence. For each frame,

If , f = 1, . . . , F , we divide it into a 64 × 36 uniform grid

mesh and build a graph Gf = (Vf , Ef ) on it. Each ver-

tex p ∈ Vf is a cell of the mesh, while the edges, Ef , de-

note the neighboring relationship between cells. Then, the

graphs {Gf} from all frames are merged into a large graph

G = (V, E), by adding edges between the two cells at the

same spatial location in two consecutive frames.

Given a set of K 3D planes, our goal is to assign a unique

label li to each vertex pi ∈ V . That is, li = k, k =
1, 2, . . . , K if pi belongs to the k-th plane, and li = 0 if

pi lies on any non-planar surface. The solution L = {li}
can be obtained by minimizing the energy function

E(L) =
∑
pi∈V

Ψi(li) +
∑

eij∈E
Ψij(li, lj), (7)

which involves a unary data function Ψi and a pairwise

smoothness function Ψij . In this paper, we adopt the popu-

lar multi-label graph-cut algorithm [4] to minimize E(L). It

is guaranteed to find a solution that is within a constant fac-
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Figure 3. Piecewise planar and non-planar scene segmentation. Top Row: Results of classifying each 3D point (represented by its

image in each frame) into the K + 1 classes based on the proposed distance measure ‖x−x∗
k‖2. Each color represents a class, with black

circles corresponding to the points labeled as “non-planar”, i.e., ‖x − x∗
k‖2 > β, ∀k. Bottom Row: Segmentation results obtained by the

proposed method.

tor of the global minimum, and has been shown to produce

satisfactory results in many vision tasks [22].

Data term. For a vertex in the f -th frame, pi ∈ Vf , the

function Ψi is defined as follows. Let Xi be the set of 3D

points whose images in the f -th frame lie in the cell corre-

sponding to pi. Then, for each point X ∈ Xi, we compute

its projection to the k-th plane, denoted as X∗
k . We further

denote x and x∗
k as the images of X and X∗

k in the f -th

frame, respectively. The function Ψi then measures the im-

age distance between x and x∗
k:

Ψi(li) =
{ ∑

X∈Xi
min{‖x− x∗

k‖2, dmax}, if li = k > 0
β|Xi|, if li = 0

(8)

where β is a penalty assigned to each point X ∈ Xi if the

corresponding cell is classified as “non-planar”. Note that,

geometrically, β can be viewed as a threshold that deter-

mines how far the images of X and its projection onto the k-

th plane X∗
k may be before X is considered not belonging to

that plane. On one hand, by comparing the image distance

instead of the distance in 3D, β sets a uniform threshold

across all 3D points which is irrelevant to their individual

uncertainty in the 3D space. On the other hand, the value of

β should depend on the overall accuracy of structure from

motion, and is chosen to be 1.5 times the size of each cell

in our paper. For example, for a 640× 360 input frame, we

have β = 15. In addition, the distance measure has been

truncated in Eq. (8) to dmax in order to prevent it from be-

ing dominated by a small number of poorly reconstructed

3D points. We fix dmax = 2β for all the experiments.

In Figure 3 (first row) we show the results of classify-

ing each 3D point (represented by its image in each frame)

into the K + 1 classes based on the proposed distance mea-

sure for an indoor scene. As one can see, the classification

results indeed give us very strong cues for segmentation.

Smoothness term. For each edge eij ∈ E in the same im-

age If , the smoothness function is defined as:

Ψij(li, lj) = δ(li, lj) · g(i, j), (9)

where δ(li, lj) is the indicator function which takes value 0

if li = lj , and 1 otherwise.

The function g(i, j) is designed to improve the estima-

tion of label boundaries by imposing geometric constraints

derived from multiple planes in the scene. First, for each

pair of planes in the scene (if one exists), we compute the

2D intersection line L between them in each frame If .

Then, we find all pairs of neighboring cells (pi, pj) in If

where the centers of pi and pj lie on different sides of L,

and accumulate all such pairs for all intersection lines in a

set EL
f . Finally, the function g(i, j) is defined as

g(i, j) =
{

λ1, if (pi, pj) /∈ EL
f

λ2, otherwise
(10)

For edges eij across two frames, the smooth cost is de-

fined as

Ψij(li, lj) = λ3δ(li, lj). (11)

In this paper, λ1, λ2 and λ3 are empirically set to λ1 =
λ3 = 10, λ2 = 2 for all experiments.

In Figure 3 and Figure 4, we show some representa-

tive results of the proposed method. As one can see, our

segmentation algorithm correctly identifies the large planar

regions in a variety of indoor and outdoor scenes. How-

ever, since our algorithm purely relies on geometric cues,

the label boundaries estimated by it may not be very ac-

curate. This is mainly due to the uncertainty in 3D recon-

struction, which decides the smallest possible threshold β
one can choose to distinguish points on a plane from others.

In addition, the facts that our algorithm only operates on

a coarse spatial grid, and that feature points are not evenly

distributed in the images, could also contribute to the errors.

Nevertheless, we find that these errors have little effect on

the final stabilization results, since the shifts in viewpoint

are usually small for video stabilization.

In terms of speed, for a typical sequence such as the one

shown in Figure 3 with 250 frames, the plane detection1 and

1We use the Matlab code downloaded from the J-Linkage website:

http://www.diegm.uniud.it/fusiello/demo/jlk/.
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Scene 1 Scene 2

Scene 3 Scene 4

Scene 5 Scene 6
Figure 4. Additional results on piecewise planar and non-planar scene segmentation.

piecewise planar scene segmentation algorithms take about

10 and 15 seconds on a desktop PC with 3.40GHz CPU and

12GB memory, respectively.

4. Plane-Based Stabilization

As we have already discussed, this paper aims at lever-

aging the flexibility of CPW and the structural regularities

(i.e., planar surfaces) of the scene to produce high-quality

stabilization results, especially in the cases where CPW per-

forms poorly because of large textureless regions. In this

section, we describe our plane-based stabilization algorithm

in detail.

Like other 3D stabilization methods, our plane-based

method first applies structure from motion to recover the

original camera motion and sparse 3D point cloud. In this

paper, we use ACTS [27], a publicly available structure

from motion system. To generate the stabilized camera

path, we apply Gaussian filter to the original camera param-

eters. Since a camera can be modeled by a rotation matrix

R ∈ SO(3) and its center C ∈ R
3, we apply a Gaussian

filter to these two components separately. Note that, since

the space of rotation matrices is not Euclidean, the filtering

of the rotational component is done in a locally linearized

space at each timestamp in the same way described in [16].

For novel view synthesis, we also follow the same idea

of [16] by processing one input frame at a time to avoid

ghosting effect caused by the moving objects. Each input

frame is divided into a 64 × 36 grid mesh V̂ = {v̂q}N
q=1

and the content-preserving warp is then computed. We de-
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Figure 5. Snapshots of the videos used for evaluation.

note the output mesh by V 0 = {v0
q}. To incorporate in-

formation about the piecewise planar scene structures into

stabilization, we give a label, lq, to each vertex of the mesh

according to the labels of its surrounding cells. For any

vertex that lies on the segmentation boundary (hence the

surrounding cells have more than one labels), we simply as-

sign the smallest label to it. Based on the labels, a new mesh

V = {vq} is computed:

vq =
{

Hkv̂q if lq = k, k = 1, . . . , K
v0

q, if lq = 0 (12)

where Hk is the homography induced by the k-th plane be-

tween the input and output frames. The output frame is then

obtained using standard texture mapping algorithms.

5. Experiments
We have tested our algorithm on 32 video sequences (see

Figure 5) which consist of one or more large scene planes,

including 5 videos that are used in [16] to demonstrate the

performance of CPW. These sequences cover a wide range

of scenes from both natural and indoor/outdoor man-made

environments. Among them, noticeable wobble effects can

be seen in 18 results obtained by CPW, due to the lack

of feature tracks in large planar regions. Meanwhile, our

plane-based method succeeds in 30 of the 32 videos, gener-

ating satisfactory stabilization results. We show a number

of results in our project website.2

Challenging cases. For the other two testing videos shown

in Figure 6, our method is not able to completely remove the

wobble effects, although it still produces better results than

CPW. In the first video, only a very small number of points

are reconstructed on the ground, with a large number of out-

liers due to reflection. Therefore, J-Linkage fails to detect

the ground plane in the case. Consequently, our segmen-

tation algorithm incorrectly assigns the ground regions to

the planes corresponding to the walls, causing undesirable

artifacts in the stabilized video. In the second video, the

2http://perception.csl.illinois.edu/stabilization/

(a) Input frame with points (b) Segmentation result
Figure 6. Challenging cases for our method. Top row: In this

case, only a very small number of points are detected on the

ground. Some of them actually correspond to the reflection. Bot-
tom row: In this case, the ground is slightly curved.

ground is slightly curved, which confuses our plane detec-

tion and segmentation algorithms. As a result, a portion of

the ground region is labeled as non-planar, hence the wob-

ble effects remain in the output video.

In fact, both cases reveal the dependency of our method’s

performance on a few free parameters in the plane detection

and segmentation algorithms, for which a set of fixed values

is certainly not enough to handle all cases. Nevertheless, we

have shown in this paper that, by exploiting scene structures

such as the planar surfaces, our method significantly outper-

forms CPW in many challenging cases.

6. Conclusion, Limitations, and Future Work
In this paper we have described a novel method for video

stabilization, which outperforms the state-of-the-art meth-

ods by taking advantage of the presence of large planes in

the scene. Our method is built upon the newly proposed

CPW framework, but is able to avoid the difficulties of CPW

in handling large textureless regions. In particular, we have

proposed an efficient Markov random field formulation to

segment each video frame into piecewise planar and non-
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planar regions. This level of scene understanding is shown

to be ideal for generating high-quality jitter-free videos in a

variety of practical scenarios.

Like CPW and many other 3D methods, our algorithm

relies on structure from motion to get accurate information

about the 3D scene structures and camera motions. For this

reason, all the videos tested in this paper are chosen to be

friendly to SFM. Also, we do not address other common

issues in video stabilization, including the smaller field of

view, motion blur [19], and rolling shuttle effects [12].

Another bottleneck of our method is the plane detection

part. Currently we use the robust model estimation package

J-Linkage, but it leaves to the user to decide the minimum

number of inliers for a valid model; hence it may fail when

the number of reconstructed 3D points on the plane is ex-

tremely small. A different direction would be combining

plane detection with 3D reconstruction, as studied in [28].
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