Depth Enhancement via Low-rank Matrix Completion

Si Lu, Xiaofeng Ren, Feng Liu; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 3390-3397


Depth captured by consumer RGB-D cameras is often noisy and misses values at some pixels, especially around object boundaries. Most existing methods complete the missing depth values guided by the corresponding color image. When the color image is noisy or the correlation between color and depth is weak, the depth map cannot be properly enhanced. In this paper, we present a depth map enhancement algorithm that performs depth map completion and de-noising simultaneously. Our method is based on the observation that similar RGB-D patches lie in a very low-dimensional subspace. We can then assemble the similar patches into a matrix and enforce this low-rank subspace constraint. This low-rank subspace constraint essentially captures the underlying structure in the RGB-D patches and enables robust depth enhancement against the noise or weak correlation between color and depth. Based on this subspace constraint, our method formulates depth map enhancement as a low-rank matrix completion problem. Since the rank of a matrix changes over matrices, we develop a data-driven method to automatically determine the rank number for each matrix. The experiments on both public benchmarks and our own captured RGB-D images show that our method can effectively enhance depth maps.

Related Material

author = {Lu, Si and Ren, Xiaofeng and Liu, Feng},
title = {Depth Enhancement via Low-rank Matrix Completion},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2014}