Predicting Failures of Vision Systems

Peng Zhang, Jiuling Wang, Ali Farhadi, Martial Hebert, Devi Parikh; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 3566-3573


Computer vision systems today fail frequently. They also fail abruptly without warning or explanation. Alleviating the former has been the primary focus of the community. In this work, we hope to draw the community's attention to the latter, which is arguably equally problematic for real applications. We promote two metrics to evaluate failure prediction. We show that a surprisingly straightforward and general approach, that we call ALERT, can predict the likely accuracy (or failure) of a variety of computer vision systems – semantic segmentation, vanishing point and camera parameter estimation, and image memorability prediction – on individual input images. We also explore attribute prediction, where classifiers are typically meant to generalize to new unseen categories. We show that ALERT can be useful in predicting failures of this transfer. Finally, we leverage ALERT to improve the performance of a downstream application of attribute prediction: zero-shot learning. We show that ALERT can outperform several strong baselines for zero-shot learning on four datasets.

Related Material

author = {Zhang, Peng and Wang, Jiuling and Farhadi, Ali and Hebert, Martial and Parikh, Devi},
title = {Predicting Failures of Vision Systems},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2014}