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Abstract

We introduce a general framework for quickly annotating
an image dataset when previous annotations exist. The new
annotations (e.g. part locations) may be quite different from
the old annotations (e.g. segmentations). Human annota-
tors may be thought of as helping translate the old anno-
tations into the new ones. As annotators label images, our
algorithm incrementally learns a translator from source to
target labels as well as a computer-vision-based structured
predictor. These two components are combined to form an
improved prediction system which accelerates the annota-
tors’ work through a smart GUI.

We show how the method can be applied to translate be-
tween a wide variety of annotation types, including bound-
ing boxes, segmentations, 2D and 3D part-based systems,
and class and attribute labels. The proposed system will be
a useful tool toward exploring new types of representations
beyond simple bounding boxes, object segmentations, and
class labels, and toward finding new ways to exploit exist-
ing large datasets with traditional types of annotations like
SUN [36], Image Net [11], and Pascal VOC [12]. Experi-
ments on the CUB-200-2011 and H3D datasets demonstrate
1) our method accelerates collection of part annotations by
a factor of 3-20 compared to manual labeling, 2) our sys-
tem can be used effectively in a scheme where definitions of
part, attribute, or action vocabularies are evolved interac-
tively without relabeling the entire dataset, and 3) toward
collecting pose annotations, segmentations are more useful
than bounding boxes, and part-level annotations are more
effective than segmentations.

1. Introduction
Datasets for object recognition research have tradition-

ally focused mostly on image class labels, bounding boxes,
and object-level segmentations. Should we be exploring
other possible choices of ways to annotate images? The
decision of how to annotate data affects how image fea-
tures can be extracted (e.g., from a full image vs. from
a bounding box vs rotatable parts, etc.), which types of
statistical models admit computationally tractible learning
problems (e.g., the convexity and NP-hardness properties of
incorporating different types of alignment models, sharing
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Figure 1: We introduce a framework for quickly augmenting a dataset with one type
of pre-existing source annotation (e.g., segmentations) with a new type of target an-
notation (e.g., part locations) using a combination of computer vision, learning, and
human feedback.

models for transfer learning, etc.), what types of applica-
tions we can solve (e.g., do we want to solve problems be-
yond predicting object class labels and bounding boxes?),
the amount of time it takes humans to annotate an image,
how consistently different humans can provide annotations
(e.g., is an annotation task ambiguous?). In short, the deci-
sion of how to best annotate data is a complicated decision
that is intimately related to properties of learning and vi-
sion algorithms, the statistical properties of data, the logis-
tics of human-computer interaction, and the tasks we want
to solve. We believe that figuring out which type of mod-
els/annotations work best is an underexplored problem in
computer vision research relative to its importance. The
reason is simple: annotating data is time-consuming, expen-
sive, and non-intellectually stimulating. It is difficult to find
the time and money to collect large datasets with one type
of annotation, and it is nearly impossible to justify annotat-
ing a large dataset with several different possibly redundant
annotation schemes. Consequently, in depth understanding
and analysis of the relative utility of different possible an-
notation representations is still embarassingly inadequate.

Toward moving beyond class labels, bounding boxes,
and segmentations, representations based on nameable parts
and attributes have recently become popular and resulted in
emerging datasets with part [34, 16, 21] or attribute annota-
tions [20, 34, 19, 23]. Part location annotations have been
shown to (often significantly) improve detection or recog-
nition performance in domains where people have collected
them (e.g., faces [2], human pose [5, 37], birds [3, 9, 14],
and dogs [21]). Attribute annotations have been shown to
be useful for applications such as transfer learning [20, 19].
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Figure 2: System Overview: A human-in-the-loop learning scheme for translating a dataset with pre-existing object segmentations to semantic part annotations. An annotator
incrementally annotates images with part annotations, which is used to train online learning algorithms to predict parts using computer vision and using source segmentations.
These are combined probabilistically to form an improved predictor that is used to accelerate data collection via interactive labeling and verification annotation tools.

While these types of annotations are useful, there exist
many possible ways of decomposing objects into parts or
attributes, with some ways being better than others. For
example, if we decompose a human arm into a forearm
and hand, should we also decompose a hand into fingers?
Should we annotate parts in terms of point locations [5, 34],
line segments [16], bounding boxes [12], or some other
shape? Should we allow the annotator to rotate them in 2D
or 3D? How should we handle occlusion or multiple view-
points/aspects? In our experience, we have found that such
answers tend to arise only after we begin to annotate data,
as we observe the areas where the existing model doesn’t
fit the data well, where annotators struggle to provide con-
sistent labels, or where computer vision algorithms perform
poorly. In retrospect, we wish we had chosen a different
annotation model; however because we don’t want to start
over and re-label the entire dataset, we are stuck with the
decision we made in the beginning. One motivation for this
paper is to provide a framework in which researchers can ef-
ficiently explore these types of incremental changes to the
annotation model.

Related Work: Our system builds off of the method of [9],
which combines online structured learning with interac-
tive labeling [7, 1, 33, 17, 9], where a progressively im-
proving structured predictor is used to accelerate annotation
of new training examples. This is a different type of ac-
tive learning than the more widely-studied problem of ac-
tively selecting which example to label from an unlabeled
pool [31, 25, 32, 29, 22]. Our method is complementary to
such methods–actively selecting examples and interactively
labeling them are two separate ways to speedup annotation.
The main difference between this paper and [9] is that 1) we
incorporate source annotations as an additional information
source to accelerate interactive labeling, and 2) whereas [9]
focuses on annotation of deformable part models, we in-

troduce a more general approach that is applicable to other
alignment schemes, segmentations, and class labels. Fig. 3
shows a few examples of how a computer prediction can be
used to accelerate annotation of different types of data.

Our method can be viewed as an extension of transfer
learning and domain adaptation [4, 10, 24, 18] by adding
humans-in-the-loop. In domain adaptation, labeled exam-
ples in a source domain are transferred to a different but
related target domain. Besides incorporating human inter-
activity, our problem is different in that the observed images
are identical for both the source and target annotation rep-
resentations. In this way, our problem also has some simi-
larities to multi-task learning [13].

Contributions: Our main contributions are: 1) We develop
a general framework for learning a translation system from
one type of annotation that can be combined with com-
puter vision. We provide details to apply it to a wide vari-
ety of translation tasks including bounding boxes→ parts,
segmentation↔ parts, parts↔ parts, classes↔ attributes,
with a wide-variety of different possible ways of represent-
ing parts including points, bounding boxes, rotatable el-
lipses, mixture models, and 3D objects. 2) We show em-
pirically that our system is extremely effective at convert-
ing between different semantic part representations, yield-
ing a 3-20 times speedup in collecting part annotations on
the CUB-200-2011 and H3D datasets. We show that among
non-domain specific annotation representations, segmenta-
tions are more effective than bounding boxes

2. Problem Definition and Notation

Suppose we have a pre-existing dataset of images
{Xi}ni=1 and source annotations {Zi}ni=1. Our goal is to
augment the dataset with a new type of target annotation
{Yi}ni=1. For example, given a dataset with segmentations
{Zi}ni=1, one may wish to add additional annotations of se-
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Figure 3: Smart GUIs for interactive labeling/verification where a computer vi-
sion based structured predictor is used to accelerate annotation: (a) From [9], an
annotator interactively corrects a set of predicted part locations, (b) A computer vi-
sion predicted segmentation is interactively corrected using brush strokes, (c) Any
structured annotation can be preceded by a simple binary verification of a prediction,
which invokes a full manual annotation only if verification fails.

mantic part locations {Yi}ni=1. Here each annotation Z and
Y encapsulates some type of structured represention of an
image, according to families Z and Y , respectively.

An overview of our approach is summarized in Algo-
rithm 1. As we incrementally label new target annota-
tions Y , we progressively obtain more training data to learn
an annotation translator g : Z → Y and an automated
computer vision-based structured predictor f : X → Y .
Collectively, these are combined in a probabilistic model
p(Y |X,Z), where the goal is to compute the probability of
a target annotation given an image and source annotation.
This prediction probability is used to accelerate annotation
using smart GUIs (Fig 3).

In Section 2.1, we begin by introducing notation to
describe annotations such as bounding boxes, segmenta-
tions, semantic segmentations, class and attribute labels, de-
formable parts, 3D part models, and aspect mixture models.
In Section 3, we describe our model of p(Y |X,Z) and its
efficient computation by augmenting existing computer vi-
sion algorithms.

2.1. Representing Different Annotation Schemes
In this section we describe notation for representing a

variety of different possible annotation models.

1) Categorical Labels: Let Y be a binary vector of C pos-
sible class memberships that are used to tag an object or
image. An element Yc is 1 if the c-th category is present
and 0 otherwise. Note that this representation can be used
to encode both multiclass labels and non-mutually exclusive
categories such as attribute memberships.

2) Semantic Segmentations: Let X be a W × H image
and Y be an associated segmentation that assigns each pixel
to one of C possibe discrete classes. Let Yc be a binary
segmentation mask for the c-th category.

3) Alignment/Pose Annotations: A general family of
alignment annotations can be built using the following in-
gredients:

• Warping function: A spatial transformation function
v = PYp→I(V, Yp) that maps a point V in the refer-
ence system of the model to a point v in image coor-
dinates. Let V = P I→Yp(v, Yp) be the inverse func-

tion, transforming from image to model coordinates.
Let W I→Yp(X,Yp) denote the function that warps an
image X by applying P I→Yp(v, Yp) to each pixel co-
ordinate in X .
• Annotation GUI: A shape or a collection of vector

graphics (e.g., rectangles, ellipses, lines)G′, expressed
in model coordinates, that are use to display a visual-
ization of an annotation G = WYp→I(G′, Yp). A set
of controls that allows the annotator to explore all pos-
sible values of Yp ∈ Yp (e.g., by dragging/rotating a
rectangle or ellipse).
• Image Features: A pose-aligned feature extraction

function ψYp
(X ′p, Yp) (e.g., a HOG descriptor) oper-

ates on a normalized image X ′p = W I→Yp(X,Yp).
• Part sets: An annotation Y that is a col-

lection of P ≥ 1 parts Y = {Yp}Pp=1,
resulting in concatenated feature spaces
ψY(Y ) = [ψY1

(X ′1, Y1), ..., ψYP
(X ′P , YP )] and

ΦY(Y ) = [ΦY1
(Y1), ...,ΦYP

(YP )]

In the supplementary material, we give examples illustrat-
ing how annotation schemes based on bounding boxes, ro-
tatable ellipses, keypoint antotations, 3D shapes, and mix-
ture models can be expressed using this notation.

3. Annotation Translator
In this section, we define general and efficient proce-

dures to estimate maxY p(Y |X,Z), a probabilistic predic-
tion of a target annotation Y that combines computer vision
with additional information contained in a source annota-
tion Z. We model p(Y |X,Z) as

log p(Y |X,Z;w) ∝ Γ(Y ;X,α) + Ω(Y ;Z, β) (1)

where w = [α, β], and Γ(Y ;X,α) and Ω(Y ;Z, β) are po-
tential functions that are parameterized by learnable model
parameters α and β. Here, we have assumed that Z is con-
ditionally independent of X given Y . This is a reasonable
assumption in the setting that the target annotation Y is a
richer representation than the simpler source annotation Z
(which is primarily the setting that we are interested in) and
is an approximation otherwise.

The main benefit is that it allows for a decomposition
into terms Γ(Y ;X,α), which can be understood as a com-
puter vision score, and Ω(Y ;Z,α), a source-to-target trans-
lation score. We give their exact forms in Sections 3.1
and 3.2.
Prediction: Given parameters, α and β, we define the fol-
lowing prediction problems:

Computer Vision: Y cv = arg max
Y

Γ(Y ;X,α) (2)

Translation: Y tr = arg max
Y

Ω(Y ;Z, β) (3)

Combined: Y ∗ = arg max
Y

Γ(Y ;X,α) + Ω(Y ;Z, β) (4)



Algorithm 1 Active Dataset Translation
Input: Dataset of images {Xi}ni=1 and pre-existing source annotations {Zi}ni=1

Output: Human-Verified target annotations {Yi}ni=1 according to a new annotation scheme
Initialize: Labeled/unlabeled pools L← ∅, U ← {1, ..., n}, and weights w0 ← 0

1: for t = 1, 2, ..., until U = ∅ do
2: Define Y ∗i := argmaxY p(Y |Xi, Zi;wt−1), the most likely target label given an image and source label
3: Query human annotator(s) to verify/correct a batch B ⊆ U , outputing {Yi}i∈B given {Y ∗i }i∈B
4: Update labeled and unlabeled sets: U ← U \B, L← U ∪B
5: Update learning model to minimize new training loss: wt ← argminw

∑
i∈L `(Y ∗(Xi, Zi,w), Yi;w)

6: end for

where Y cv is the most likely prediction given just computer
vision, Y tr is the most likely prediction given just source
translation information, and Y ∗ is the most likely label us-
ing both sources of information.
Learning: Let ∆(Y, Yi) be an application specific loss
for predicting Y instead of groundtruth label Yi (e.g., the
number of incorrect part locations for part detection) and
`(Y ∗;w) be a convex upper bound on ∆(Y ∗, Yi) We con-
sider two possible learning methods in our experimental re-
sults. The first learns parameters α and β jointly and dis-
criminatively to minimize loss on a training set L of triplets
{(Xi, Yi, Zi)}i∈L:

Joint: w∗ ← arg min
α,β

∑
i∈L

`(Y ∗(Xi, Zi, α, β), Yi;α, β)(5)

where with some abuse of notation Y cv(X,α), Y tr(Z, β),
and Y ∗(X,Z, α, β) denote the solutions to Eq 2-4 with
the applicable parameters. The second method learns pa-
rameters α∗ for computer vision and translation β∗ inde-
pendently and then combines them using piecewise scal-
ing [27, 26] on a validation set {(Xi, Yi, Zi)}i∈V :

CV: α∗ ← arg min
α

∑
i∈L

`(Y cv(Xi, α), Yi;α) (6)

Tr: β∗ ← arg min
β

∑
i∈L

`(Y tr(Zi, β), Yi;β) (7)

PW: γ∗ ← arg min
γ

∑
i∈V

∆(Y ∗(Xi, Zi, α
∗, γβ∗), Yi) (8)

Here piecewise scaling learns a weighted combination of
Γ and Ω via a scalar γ. In practice we found that both joint
learning and piecewise scaling gave similar results, and thus
joint learning is preferred (no validation set is required).

In all cases, we solve Eq 5-7 using a structured SVM [28,
30], where `() is a variant of hinge loss. We use the
solver from [8], which provides a network-based interface
for adding new examples in online fashion that can be in-
voked by web-based GUIs. In the next section, we give ex-
amples of existing computer vision algorithms for solving
Eq 2 and how they can be altered to solve Eq 3-4.

3.1. Augmenting Computer Vision Algorithms With
a Translation Prior

In this section, we describe how many popular com-
puter vision algorithms can be interpreted as predict-
ing a label Y cv that optimizes a score function Y cv =
arg maxY Γ(Y ;X,α) (exactly or approximately). For each
such algorithm, we define how additional energy terms
Ωc(Yc;Z) can be incorporated as prior terms at prediction
time with a neglible increase in computational cost. The
main requirement is that when Y ∈ Y is some multivari-
ate representation and Γ(Y ;X,α) =

∑
c Γc(Yc;X,α) is

decomposed into energy terms over cliques of variables
Yc ∈ Yc, then prior terms Ω(Y ;X,α) =

∑
c Ωc(Yc;Z)

should respect the same clique structure. In Section 3.2, we
will define terms Ωc(Yc;Z) for different possible applica-
tions, such that we can implement efficient solvers for Y ∗

(Eq 4).

3.1.1 Detection Algorithms
Pictorial structure methods (e.g., constellation mod-
els [35] and deformable part models [15]) define predic-
tion scores as a sum over per-part unary detection scores
Γp(Yp;X,αp) and spatial scores Γpq(Yp, Yq;X,αpq) be-
tween pairs of parts:

Γdpm(Y ;X,α)

=
P∑
p=1

Γdpm
p (Yp;X,αp) +

∑
(p,q)∈E

Γdpm
pq (Yp, Yq;αpq)

(9)
Our implementation of part-based methods is based on [9];
we represent each part by a mixture of bounding boxes of
fixed aspect ratio Yp = {cx, cy, w, a}, using sliding window
scores for each aspect j

Γdpm
p,j (Yp;X,αpj) = αp,j · ψYp

(X ′p, Yp) (10)

that are the dot product of part-localized HOG features
ψYp(X ′p, Yp) and templates αp,j , with Γdpm

p (Yp;X,αp) =

Γdpm
p,Yp(a)

(Yp;X,αp,Yp(a)). Spatial scores are quadratic
spring costs that are defined over a pre-defined tree of parts

Γdpm
pq,j (Yp, Yq) = αpq,j · [1, δ(Yq, Yp), δ(Yq, Yp)2] (11)



with Γdpm
pq (Yp, Yq) = Γdpm

pq,Yp(a)
(Yp, Yq). Here, δ(Yq, Yp) is

the location of child q in the reference system of its part p:

δ(Yq, Yp) = PYq→Yp(Yq, Yp) (12)

Fast algorithms for prediction (maximizing Eq 9 with re-
spect to Y using dynamic programming) and learning α are
available in publicly available software packages [8, 37]. In
Section 3.2, we will define energy terms Ωdpm

p,j (Yp;Z) that
induce a prior on the location of part p given source annota-
tion Z. These can simply be added into the detection scores
Γdpm
p,j (Yp;X,αpj) at prediction time.

3.1.2 Segmentation Algorithms
Let Y (i) ∈ 1...C indicate the class label of the i-th pixel of
a semantic segmentation. A popular CRF-based segmenta-
tion model [6, 26] optimizes a score function that is a sum
over unary and pairwise potentials:

Γseg(Y ;X,α) =
∑
i∈V

Γu
i (Y (i);X)+

∑
j∈Ni

Γp
ij(Y (i), Y (j);X)

(13)
where Ni defines a neighborhood of pixels (e.g., the 4
neighboring pixels of i), Γu

i (Y (i);X) is a unary potential
at the i-th pixel (often a per-pixel classifier that applies per-
class weights αY (i) to image features around a patch cen-
tered at i), and Γp

ij(Y (i), Y (j);X) is a pairwise potential
that favors labeling neighboring pixels with similar color as
the same class (e.g.,−1Y (i)6=Y (j) exp{−‖X(i)−X(j)‖2}).
The most likely segmentation Y cv that maximizes Eq 13 is
solvable using a graph cuts algorithm [6] that is optimal for
binary segmentation and has approximation guarantees for
C > 2. We can incorporate prior information from a source
annotation Z via a unary potential Ωui (Y (i);Z) (see Sec-
tion 3.2) that can simply be added into Γu

i (Y (i);X).

3.2. Translating Source to Target Annotations
In the previous section, we described how different com-

puter vision algorithms can be augmented to incorporate
prior terms Ωi(Yi;Z). In this section, we define the form
of these prior terms and describe a general model for learn-
ing a source-to-target predictor Y tr = arg maxY Ω(Y ;Z).
We define the translation score as

Ω(Y ;Z) = βTΦYZ(Y, Z) (14)

for some arbitrary application-specific feature function
ΦYZ(Y,Z) that models the joint likelihood of source-target
pairs Y and Z. We give the form of ΦYZ(Y,Z) and pro-
vide details for implementing solvers for Y tr and Y ∗ for
different types of annotation schemes for Y and Z below:
Parts → Parts: Let Y and Z denote different families of
part-based representations that are composed of PY and PZ
parts, respectively. For example, this could be useful for

translating from a 2D annotation to a 3D annotation or ex-
ploring the space of different 2D part-based representations
(e.g., adding a new part or mixture model). Our choice of
ΦYZ(Y,Z) is motivated by the belief that different part lo-
cations should be at predictable offsets from one another
when normalized in the coordinate system of the closest
part, with Gaussian-like noise when parts Yp and Zq the
alignment schemes are inprecise:

Ω(Y ;Z) =
∑

p,q,j∈Ap

βpqj · Φpqj(Yp;Zq) (15)

Φpqj(Yp;Zq) = [1, δ(Zq, Yp), δ(Zq, Yp)
2]1Yp(a)=j (16)

where δ(Zq, Yp) is the location of part Zq in the reference
system of part Yp (defined in Eq 12), and Yp(a) is the aspect
label of part p. Here, each part q in Z votes for the location
of each part p in Y , with a learnable offset and variance (due
to the quadratic cost) and a different offset/variance based
on the aspect label of Y . To solve for Y ∗, this results in a
simple additive term that can be incorporated into existing
part-based solvers (see Section 3.1.1).

Ωdpm
pj (Yp;Z) =

∑
q

βpqj · Φpqj(Yp;Zq) (17)

Bounding Box → Parts: This is a special case of a Parts
→ Parts translation problem, with PZ = 1. However, we
additionally prevent part predictions outside the bounding
box by incorporating an additional energy −∞.

Semantic Segmentation → Parts: Let Y be a part-based
annotation and Z be a semantic segmentation, where Zc is
a W × H binary segmentation map that is 1 if a pixel is
labeled as class c and 0 otherwise. We choose translation
feature vectors ΦYZ(Y,Z) = [Φcpj(Yp, Zc)]c,p,j that con-
catenate vectors Φcpj(Yp, Z) for all possible combinations
of class c, part p, and aspect j

Φcpj(Y,Z) = 1Yp(a)=jW
I→Yp(Zc, Yp) (18)

This transformation warps segmentation Zc from image co-
ordinates into the model coordinates of part p. We can in-
tuitively think of the corresponding model parameters βcpj
as a likelihood map expressing how likely each pixel loca-
tion, represented in model coordinates of part p, belongs to
class c. To compute Y ∗ = arg max p(Y |X,Z), the above
transformation induces a score map for part p and aspect j

Ωdpm
pj (Yp;Z) =

∑
c

βTcpjΦcpj(Zc, Yp) (19)

Parts → Semantic Segmentation: Let Y be a semantic
segmentation and Z be a part-based annotation. We use the
same basic model, with ΦYZ(Y,Z) = [Φcpj(Yc, Zp)]c,p,j ,
and the same intuition of βcpj , swapping Y and Z:

Φcpj(Yc, Zp) = 1Zp(a)=jW
I→Zp(Yc, Zp) (20)



Source Anno. Z CV Pred. Ycv Translation Pred. Ytr Cv+Tr Pred. Y*Target Anno. Y

Figure 4: 2 Parts→ 15 Parts: Source annotations of 2 parts (beak and tail) are used to speedup collection of 15 semantic parts. The last 3 columns show predictions when
labeling the 31st training example (see Fig 5d) using just computer vision, just translation, and both. Computer vision alone (3rd column) confuses the bird with background
clutter, while the translation predictor (4th column) cannot infer the bird’s pose from just 2 points due to an abnormally turned head. The combined prediction (5th column)
correctly predicts the location of most parts.

To compute Y ∗ = arg max p(Y |X,Z), we warp likeli-
hood maps to image coordinates and use that to induce a
unary potential for a graph-cuts-based segmentation algo-
rithm (see Section 3.1.2):

Uc =
∑
p,j

WZp→I(βTcpjΦcpj(Yc, Zp), Zp) (21)

where Ωu
i (Y (i);Z) = UY (i)(i) is the likelihood that the

i-th pixel has label c given observed part locations Z.

Classes→ Attributes: See supplementary material.

4. Experiments
Datasets: To demonstrate the effectiveness of our method,
we perform experiments on two datasets: CUB-200-
2011 [34]–a dataset of 11,788 images of birds that are anno-
tated by bounding boxes, segmentations [14], and locations
of 15 semantic parts (e.g., beak, belly, crown, etc.)–, and
H3D [5]–a dataset of 521 images of humans with locations
of 20 semantic parts (e.g., left ankle, right hip, nose, etc.) as
well as segmentations of 19 different semantic regions (e.g.,
sunglasses, hair, dress, etc.). We concentrate experiments
on the application of part location prediction (where the tar-
get annotation is the 15 part locations for CUB-200-2011 or
20 part locations for H3D). This concentration allows us to
establish a common benchmark to analyze the relative util-
ity of different types of source annotations toward reducing
annotation time, including bounding boxes, segmentations,
and different types of part representations.
Measuring Performance: To avoid the expense of running
human experiments each time we change source annota-
tions or parameter settings, we simulate human interaction
from ground truth labels using the same method as [9]: 1)
The computer displays its prediction of the most likely part
locations Y ∗ 2) The simulated user selects and drags the
part with maximum distance to his/her click response (nor-
malized by a per part standard deviation) 3) If all part pre-
dictions are within 1.5 standard deviations from groundtruth
(measured using multiple MTurk responses), the session
ends. Otherwise, steps 1-2 are repeated.

We record the total elapsed time to annotate an image
as the sum of MTurk response times (available with the

CUB-200-2011 dataset) for each dragged part. Although
this simulated interface may not exactly match human users,
it provides a means to directly compare performance to [9]–
which is equivalent to our method using just computer vi-
sion and no source annotations (Y cv in place of Y ∗).
Baselines and Variants of Our Algorithms: For each type
of source annotation, we measure performance of 4 differ-
ent variations of our algorithm: 1) Using just computer vi-
sion and no source annotation [9] (CV curves in each ta-
ble/plot), where prediction and learning occur using Eq 2
and Eq 6, 2) Using just source annotations and no com-
puter vision (Tr curves in each table/plot), Eq 3 and Eq 7, 3)
Combining computer vision and source annotations while
jointly learning their parameters (CV+Tr+J curves in each
table/plot), Eq 4 and Eq 5, 4) Combining computer vision
and source annotations using piecewise scaling (CV+Tr
curves in each table/plot), Eq 4 and Eq 8.
Implementation Details: For both datasets, we use part
detection based on deformable part models from the imple-
mentation of [8], with 7×7 HOG templates for each part, 15
mixture components (including visibility) per part, and 100
mixture components for the root part. For CUB-200-2011,
we restricted attention to a random 1000 image subset, be-
cause we observed performance was already roughly satu-
rated. For the H3D dataset, since we don’t have statistics
for MTurk users, we assumed each part correction action
took 2.6 seconds (the median response time for CUB-200-
2011) and a standard deviation of 16 pixels normalized by
the object scale. To avoid ambiguity of which person to
label for images with multiple people, we restricted atten-
tion to cropped bounding boxes for the H3D dataset, and
focused on a random 500-person subset.

4.1. Parts→ Parts
We consider a couple of different scenarios where one

may wish to convert one part representation to another.
Simple-to-Detailed Representation: For both datasets, we
choose source annotations consisting of two part locations
(beak and tail for birds, right shoulder and left hip for H3D),
and use those to help infer target annotations consisting of
all parts. Fig 4 and Fig 5d,5f show qualitative and quan-
titative results on the CUB-200-2011 dataset. We see that
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(c) Segmentation (Z)
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(d) 2 Parts (beak+tail) (Z)
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(e) 13 Part (no belly/crown)

Source Anno. Manual CV [9] Tr CV+Tr CV+Tr+J
Bounding Box 10.8hr 4.13hr 8.34hr 3.18hr 3.32hr
Segmentation 10.8hr 4.13hr 3.0hr 2.40hr 2.29hr
2 parts 9.39hr 3.51hr 3.0hr 1.80hr 1.62hr
13 parts 1.44hr 0.62hr 0.38hr 0.31hr 0.23hr

(f) Time to annotate 1000 image bird dataset with 15 parts
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(g) Annotation time for CV+Tr+J methods

Figure 5: CUB-200-2011 part annotation results: (a) The goal was to annotate a 1000 image bird datset with 15 semantic parts. Different types of source annotation were
tested, including: (b) bounding boxes, (c) segmentations, (d) 2 part locations (beak and tail), (e) 13 part locations (everything except the belly and crown). For each method, we
incrementally trained a computer vision predictor (CV curves), source→target translation predictor (Tr curves), and combined predictor (CV+Tr+J curves), which were used to
speedup annotation via interactive labeling. (f) Summary of the amount of human time needed to label the dataset. Each row shows a different type of source annotation and each
column shows different crippled versions of our algorithms. We see that 1) all sources speedup annotation by at least a factor of 3, 2) segmentations and part source annotations
further speedup annotation by an additional factor of at least 1.7, whereas bounding box annotations were less useful, 3) combining computer vision and source annotations yielded
significant gains for all methods. (g) Combined plot of CV+Tr+J methods for each type of source annotation.

computer vision reduces the time to annotate the 1000 im-
age bird dataset from 9.39 hours (traditional manual label-
ing) to 4.13 hours (this corresponds to the method of [9]),
while incorporating these 2 part source annotations yields a
significant further reduction to 1.62 hours. Fig 6c shows re-
sults on the H3D dataset, where total annotation time is re-
duced from 6.86 hours (traditional manual labeling) to 2.44
hours (CV+Tr).
Part Augmentation: This simulates the scenario in which
one interactively defines a part model; after collecting initial
annotations according to one part-based representation, one
identifies some deficiency and wishes to add a new part.
We perform this experiment on the CUB-200-2011 dataset,
where we begin with source annotations of 13 parts and then
add 2 new parts (belly and crown). We see that collecting
new annotations for the 1000 image dataset takes only 0.23
hours, suggesting that interactively augmenting an existing
part model is practical.

4.2. Bounding Box→ Parts
We begin with source annotations of bird object-level

bounding boxes and use that to accelerate collection of 15
part locations. Results are shown in Fig 5b,5f. Bound-
ing boxes yield an expectedly modest reduction in anno-
tation time, from 4.13 hours using just computer vision to
3.18 hours using computer vision and bounding boxes. The
amount of gain is small because bounding boxes provide lit-
tle information about the pose of the bird; they are mostly
only useful for removing predictions in background clutter.

4.3. Segmentation→ Parts
We begin with source annotations of object-level bird

segmentations and use those to predict 15 part locations.
We see that segmentations reduce annotation time from

4.13 hours using just computer vision to 2.29 hours us-
ing computer vision and segmentations. Additionally, us-
ing just segmentations and no computer vision requires
3.0 hours (outperforming computer vision by itself). At
the same time, segmentations and computer vision are
complementary–see the supplementary material for quali-
tative examples. The segmentation-based predictor tends to
be better at localizing the rough pose of the bird, while the
computer vision predictor is better at more finely localizing
parts (especially parts internal to the bird contour).

We also run a Segmentation → 20 Parts experiment on
the H3D dataset, where we begin with 19-class seman-
tic segmentations (see Fig 6d). Note that although these
semantic segmentations provide part-level region informa-
tion, they correspond to an entirely different set of parts (of-
ten articles of clothing or accessories). Segmentations help
reduce annotation time from 3.7 hours (just computer vi-
sion) to 2.46 hours.

4.4. Relative Utility of Different Source Annotations
Fig 5f analyzes the relative utility of different types of

source annotations (bounding boxes, segmentation, parts).
We see that part annotations are most effective; however,
they require domain-specific knowledge (one must define a
part model for each application). Among non-domain spe-
cific representations (bounding boxes and segmentations),
segmentations are most useful. This suggests a possible
scenario where one first obtains annotations according to
some universal representation like segmentations (due to
not knowing what representation to use), and later translates
these to some domain specific representation (which maybe
more applicable to a specific application, and because part-
level annotations tend to be more effective as direct inputs
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(c) Source: Right Shoulder + Left Hip
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(d) Source: Segmentation

Source Segm. 2 parts
Manual 6.86hr 6.86hr
CV [9] 3.70hr 3.70hr
Tr 2.66hr 2.83hr
CV+Tr 2.51hr 2.44hr
CV+Tr+J 2.46hr 2.49hr

(e) Time to annotate H3D

Figure 6: H3D Part annotation results: (a) The goal was to label a 500 image dataset with 20 part locations. (b) Computer vision prediction Y cv for a qualitative example. (c)
Results when using labeled right shoulder and left hip locations as a source annotation. (d) Results when using semantic segmentations as a source annotation. (e) Total annotation
time on the H3D dataset. The 5 rows show the average annotation time when using i) traditional non-accelerated annotation, ii) just computer vision, iii) just source annotations,
and iv-v) two different methods for combining computer vision and source annotations.

to detection/categorization learning algorithms).

5. Conclusion
We introduced a framework for quickly augmenting a

dataset with one type of source annotation to a new type
of target annotation. We introduced a human-in-the-loop
method to translate between a wide variety of annotation
types, including bounding boxes, segmentations, 2D and 3D
part-based systems, and class and attribute labels. Our re-
sults show that 1) our method can be used to accelerate col-
lection of part annotations by a factor of 3-20 on the CUB-
200-2011 and H3D datasets, and 2) segmentations are a
more useful for translating to different representations than
bounding boxes, 3) simple part-based representations can
be effectively translated into more complicated representa-
tions. In future work, we hope to run experiments apply-
ing our method to translate from parts to segmentations and
class labels to attribute labels. Additionally, we hope to use
our method in conjunction with an interactive algorithm for
evolving definitions of part and attribute vocabularies.
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