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Abstract

This paper presents a system to reconstruct piecewise
planar and compact floorplans from images, which are then
converted to high quality texture-mapped models for free-
viewpoint visualization. There are two main challenges in
image-based floorplan reconstruction. The first is the lack
of 3D information that can be extracted from images by
Structure from Motion and Multi-View Stereo, as indoor
scenes abound with non-diffuse and homogeneous surfaces
plus clutter. The second challenge is the need of a sophisti-
cated regularization technique that enforces piecewise pla-
narity, to suppress clutter and yield high quality texture
mapped models. Our technical contributions are twofold.
First, we propose a novel structure classification technique
to classify each pixel to three regions (floor, ceiling, and
wall), which provide 3D cues even from a single image.
Second, we cast floorplan reconstruction as a shortest path
problem on a specially crafted graph, which enables us to
enforce piecewise planarity. Besides producing compact
piecewise planar models, this formulation allows us to di-
rectly control the number of vertices (i.e., density) of the
output mesh. We evaluate our system on real indoor scenes,
and show that our texture mapped mesh models provide
compelling free-viewpoint visualization experiences, when
compared against the state-of-the-art and ground truth.

1. Introduction
Automated reconstruction of accurate 3D models from

images has been one of the most fruitful outcomes of Com-
puter Vision. Several 3D reconstruction methods have sur-
faced [6, 19] whose accuracy compares to laser range sen-
sor systems at a fraction of the cost [17]. The emergence
of Kinect-style depth cameras has also been a revolution for
3D Computer Vision research in recent years. Although its
use is limited to short-range indoor scanning [8, 13, 20],
state-of-the-art systems using these cameras produce im-
pressive results, ranging from detailed 3D models of an of-
fice [8] to a building-scale reconstruction [20].

The majority of existing 3D reconstruction methods fo-
cus on producing more “accurate” and “dense” 3D models.

Figure 1. Our system reconstructs high quality texture mapped
mesh models of cluttered indoor scenes from panorama images.

Despite their immense improvement, perfect results are re-
stricted to objects or small-scale scenes, where many photos
can be acquired, and surfaces are well-textured and roughly
Lambertian [6, 19]. For indoor scenes, reconstructions be-
come incomparably challenging due to violations of these
conditions plus abundant clutter that is difficult to model
and render. In such scenarios, reconstructions seeking for
accuracy and density often yield unsatisfactory visualiza-
tion [11, 21], because models are never perfect, and com-
plex geometries induce more stitching seams, which trigger
noticeable high frequency rendering artifacts.

Our primary objective is visualization, so we propose
instead to seek for a 3D model that may lose certain ge-
ometric details but can provide better visualization experi-
ences. This idea resembles the Uncanny Valley hypothesis
for human face reconstruction, and agrees with observations
from existing image-based rendering work on challenging
scenes [11, 21]. 1 While it is generally not clear what kind
of 3D models yield better rendering while sacrificing ge-
ometric accuracy, for indoor scene visualization there is a
simple answer: piecewise planarity. The justification for
this assumption is twofold. First, the dominant structure is
the floorplan, which is usually piecewise planar; thus, en-
forcing piecewise planarity can suppress reconstructions of

1Our visualization application is free-viewpoint rendering for mapping
applications, which requires much higher quality and cleanness in the
3D model, as opposed to typical view-dependent texture mapping, whose
viewpoints are restricted, but works well even with corrupted geometry.
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clutters in a scene, which are typically the source of ren-
dering artifacts. Second, while regularized piecewise pla-
nar geometry also suffers from rendering artifacts, these are
texture distortions rather than stitching. Our visual system
is known to be very good at correcting such low-frequency
distortions, while high frequency stitching artifacts are no-
ticeable and unpleasant. Fig. 1 shows an example recon-
struction of our method on a location full of clutter with
challenging shapes and reflectance that are nearly impos-
sible to model perfectly. Yet, our piecewise planar model
visualizes the indoor scene effectively.

There are two challenges and technical contributions.
The first challenge is the lack of 3D information from Struc-
ture from Motion (SfM) and Multi-View Stereo (MVS) due
to the presence of non-diffuse and homogeneous surfaces
and poor image overlaps in a confined space. We propose a
structure classification technique to classify each pixel into
three structure regions, floor, ceiling or wall, which pro-
vides complementary 3D cues to stereo even from a single
image. We employ image segmentation and rely more on
geometric reasoning via calibrated panoramas to improve
classification, rather than resorting to appearance priors as
in prior art [9]. The second challenge is the need for a
sophisticated regularization technique to enforce piecewise
planarity. Unfortunately, this is not attainable with most ex-
isting techniques. For example, pairwise terms in Markov
Random Field (MRF) have only local influence. We cast
floorplan reconstruction as a shortest path problem on a spe-
cially crafted graph, whose construction allows us to glob-
ally enforce piecewise planarity. This formulation also en-
ables us to directly control the number of vertices in the
output mesh, while globally minimizing the same objective
function. Contrary to typical regularization control such as
a scalar weighing term in MRF, our work provides more in-
tuitive and powerful regularization scheme. As far as we
know, we are the first to propose such framework, since ex-
isting methods typically have no control over model com-
plexity, and are followed by a separate decimation stage.

2. Related Work
Indoor scanning has become increasingly popular in re-

cent years. Newcombe et al. presented a depth sensor based
3D reconstruction system, called KinectFusion, for a small-
scale object and a scene [13]. This work has been extended
for building-scale reconstructions [20]. Albeit dense, these
methods produce raw 3D measurements and are often not
suitable for applications such as visualization and mapping.

To obtain compact 3D models, researchers have ex-
ploited structural regularities such as planarity or orthogo-
nality as priors. Okorn et al. recovered floorplans by fitting
line segments to dense point clouds projected onto a ground
plane using Hough transforms [14]. Sanchez and Zakhor di-
rectly fit planes to 3D point clouds [15]. Despite their visual

appeal, these models do not output a mesh model but rather
a set of disconnected fragments obtained by greedy primi-
tive fitting. Xiao and Furukawa presented a system that fits
3D geometric primitives to laser scanned points to produce
a “water-tight” mesh [21]. However, it still relies on greedy
primitive fitting, which requires dense point clouds and is
often sensitive to termination conditions and early mistakes
in the processing. Pure image-based indoor reconstruction
systems also exist. Furukawa et al. use graph-cuts optimiza-
tion in a volumetric MRF formulation [5]. However, reg-
ularization in MRFs is only based on pairwise interaction
terms, and thus susceptible to noisy input data.

Interactive floorplan reconstruction has also been pop-
ular. Sankar et al. use smartphone sensors to reconstruct
a floorplan on site [16]. Kim et al. [10] presented a depth
camera based floorplan reconstruction system, but only han-
dled simple uncluttered scenes. These approaches require
manual input, while ours is fully automatic.

Our system makes use of structural cues directly ob-
tained from a single image. Geometric context learning
from appearance priors was proposed for outdoor scenes by
Hoiem et al. [9] and extended to indoor scenes in [7, 12, 22?
]. Xiong et al. [22] use patch similarities in images, but
they restrict classification to planar patches extracted from
dense laser scans. Hedau et al. [7] assumed a single box
layout and explicitly modeled objects to reason free-space
for an indoor scene. Lee et al. [12] proposed a line-feature
that generates a per-pixel surface normal map from line seg-
ments under a Manhattan world assumption. Flint et al. [4]
merged the above line-features with stereo cues and 3D
points into MAP optimization. These methods are typically
applied to uncluttered or single room box layouts, as op-
posed to the scenarios in this paper (see Fig. 1).

3. System Overview
The input to the system is a set of panorama images,

where we use a standard SfM algorithm that operates on
panorama images to estimate camera poses, and an MVS
algorithm [6] on the original unstitched images to recover
3D points (see Fig. 2). MVS matching is a challenging
problem in indoor scenes and tends to leave large recon-
struction holes. We propose a single-view structure classi-
fication technique that labels pixels into three classes (floor,
ceiling and wall). These can be converted into an additional
point cloud, by assuming that an indoor scene is composed
of vertical facades and horizontal floor and ceiling. Given
a 3D point cloud, we reconstruct a 2D floorplan by solving
a shortest path problem on a specially crafted graph. Fi-
nally, we extrude the estimated floorplan from the floor to
the ceiling to obtain the final mesh model, and map textures.

Our core reconstruction algorithm is agnostic to the
choice of 3D point acquisition technique, and depth cam-
eras can be used as a replacement for SfM and MVS. How-



Input panoramas

...
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Figure 2. Overview of the proposed indoor scene reconstruction algorithm.

ever, we make the system fully image-based for several rea-
sons. First, as a mapping application to visualize scenes,
the first priority is to display high quality images to users.
The minimal input for such an application is a sparse set
of high quality panorama images, unattainable by a depth
camera since its image quality is typically low. Second, a
simple acquisition setup is easy to deploy and maintain in a
production pipeline, particularly in emerging markets.

4. Preprocessing

This section provides preprocessing steps necessary for
the floorplan reconstruction and structure classification.

Coordinate frame: We rotate the coordinate frame so that
the XY axes are aligned with the horizontal Manhattan di-
rections. These are determined by a multi-view vanishing
point detection algorithm [18], operating on line segments
extracted by Hough Transform for panorama images [1].
The Z axis is aligned with the gravity direction from SFM.

Domain and 3D evidence: The domain of the floorplan
reconstruction is determined by the axis-aligned bounding
box of the 3D points projected onto a ground plane, plus a
constant margin of 2m. We discretize the domain by a grid
of cells, where the cell size τ is set to 0.15 times the average
distance of MVS points to their visible panorama centers.
We collect two kinds of 3D evidence at each cell cj . First,
the evidence EWj that cell j belongs to a wall is calculated
as the number of 3D points projected inside cj (Fig. 3, first
column). Second, the evidence EFj that cell j is in free-
space (i.e., space one can see through) is calculated as the
number of times cj is intersected by rays connecting MVS
points to their visible panoramas (Fig. 3, second column).

5. Floorplan Reconstruction as Shortest Path

Our approach is similar in spirit to typical reconstruction
techniques, which employ the weighted minimal surface
formulation with a graph embedded in the domain [6, 19].
The key differences are the topology of the graph and
the shortest path problem formulation to solve for a 2D
floorplan-path. These enable very compact reconstructions
through piecewise planarity enforcement and the ability to
control the number of vertices (i.e., density) of the output.
We also handle the shrinkage bias issue, common to most

Points from structure classification MVS points Camera centers
Start/end−line Core free−space Floorplan−path Anchor points
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Figure 3. Our reconstruction is based on two kinds of 3D evidence:
wall evidence from 3D points (first column) and free-space evi-
dence from their visibility (second column). Red, green and blue
illustrate high, medium and low confidence, respectively. Note
that 3D points from structure classification form chains and look
like orange lines in the figure. After identifying a high free-space
evidence region as core free-space (grey), a shortest path problem
is formulated to reconstruct a floorplan around it (third column).
We overcome shrinkage bias by re-solving the problem with an-
chor points (fourth column). Ground truth is obtained manually
by clicking room corners in images for comparison (fifth column).

reconstruction methods, by solving the shortest path prob-
lem twice, by imposing additional constraints the second
time to recover thin structures. Each step is detailed below.

5.1. Graph construction

Given a domain covered by a grid of cells, we know that
the floorplan-path should not go through regions with high
free-space evidence. We define this core free-space region



as: {cj |EFj ≥ δ1}, and generate a node of the graph for
each cell outside the core free-space in the domain.

Edge construction is the key of our algorithm, where an
edge is added for every pair of nodes as long as it does not
intersect with the core free-space. The graph has “long”
edges to allow a rectangular room to be modeled by only
four edges, for example. The edge weight is defined so that
the path prefers long edges with high wall-evidence:∑

j

ρ(EWj ) + α. (1)

The first term penalizes going through low wall-evidence
cells and is an accumulation of costs over cells along the
edge, where ρ(EWj ) is an indicator function that is 1 when
EWj < δ2 and 0 otherwise. The second term is a con-
stant model-complexity penalty, which biases our solution
towards paths with less edges. δ2 = 1 and α = 5 are used. 2

5.2. Initial floorplan-path computation

We seek for a floorplan-path that goes around core free-
space with minimum cost. This resembles a shortest path
problem, but with two problems. First, a path must be a
closed loop for the floor to be well-defined. Second, an
empty path with zero cost is a trivial solution. To avoid
the trivial solution, we extract a start/end-line from the core
free-space to the domain boundary (See red lines in Fig. 3,
third column), and remove edges along this line. A path
must start from one side and end in the other side of the
line. Since we do not know where on the line, a floorplan
passes through, we seek to identify such a point (dubbed
start/end-point) together with the start/end-line as follows,
from which a shortest path problem can be formulated.

Suppose we have a start/end-line, denoted as an array of
cells: {c1, · · · cj−1, cj , cj+1, · · · , cn}, where c1 touches the
core free-space, cn touches the domain boundary, and cj is
the cell containing the start/end-point. If this is the right
choice of line and point, then wall-evidence (1) should be
high only at cj . Therefore, the quality of the start/end-line
and point can be measured as the wall evidence at cj minus
the wall evidence in the other cells, as

EWj −
∑

|k−j|>δ3

EWk . (2)

We used δ3 = 5 in our experiments to exclude nearby cell
contributions for robustness. We limit the direction of the
line to be either horizontal or vertical (two Manhattan di-
rections) and exhaustively check all possible configurations
to find the optimal one according to (2). Given a start/end-
line and starting point, Dijkstra’s algorithm finds the opti-
mal path going around the core-freespace.

2Free-space evidence and surface normals associated with 3D points
can be also used to compute edge weights. We tried various combinations,
but this simple formulation produces comparable results.

Core free-space

3D point
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# of associated
3D points

Closest point on
the floorplan-path

Domain
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X

Figure 4. After the initial floorplan-path reconstruction, an anchor
point is inserted at the presence of “unexplained” 3D points to
avoid shrinkage bias. Start/end-line is not visualized for simplicity.

5.3. Handling shrinking bias with anchor points

The above problem formulation produces precise and
compact 3D models (see Fig. 3), but suffers from a shrink-
age bias as in many previous methods [6, 19]. Fig. 4 illus-
trates a typical scenario where a thin structure is missing.
However, the existence of many “unexplained” 3D points
far away from the path implies that the initial floorplan-path
missed some structure. Our strategy is to identify regions
with high unexplained wall-evidence and insert additional
“anchor points” there. Then, we compute the shortest path
between every pair of consecutive anchor points and con-
catenate these solutions to form a closed loop.

Let us denote the set of cells along the initial path as S.
For each 3D point, we assign it to its closest cell in S in a
geodesic sense through the solution space. We ignore points
with distances less than 20τ (τ is the cell size) from S. The
number of accumulated points along cells in S is evidence
of missing structure. After smoothing out counts along S by
a Gaussian with standard deviation of 6τ , we extract cells
with count larger than 40. For each extracted minima, we
identify its farthest associated 3D point as an anchor point.

5.4. Final floorplan-path computation

Given additional anchor points, we compute the short-
est path between every pair of consecutive anchor points
including the start/end-point, and concatenate them, where
anchor points are ordered in the same order as the corre-
sponding cells along the initial path. However, we would
like to also compute the optimal paths with different num-
bers of vertices to provide floorplans of varying com-
plexity, and take a different approach. More concretely,
for every pair of consecutive anchor points, a simple dy-
namic programming, instead of Dijkstra’s algorithm, is
used to compute the optimal paths with 1, 2, · · ·β edges
together with the costs. We then find the optimal combi-
nation/concatenation of these paths forming a loop with a
specific total number of edges by another dynamic program-
ming (See the supplementary material for the two dynamic
programming constructions, which are straightforward and
not new). β is not a sensitive parameter but should be large
for the initial floorplan-path and is set to 30.



(a) Superpixels (b) MVS evidence (c) Free space evidence (d) Geometry reasoning (e) Label order (f) Dynamic program. [3]

Figure 5. Structure classification, where we classify each pixel of an image into ceiling (blue), wall (green) or floor (red).

The floorplan is triangulated to generate a floor mesh,
and extruded from the floor to the ceiling to generate a fa-
cade consisting of quads. The floor and ceiling heights are
estimated by a plane-sweeping MVS (with a vertical sweep-
ing direction) by identifying the height below or above the
camera whose associated photo-consistency score (normal-
ized cross correlation) summed over the plane is maximum.
Texture image for each facade quad is simply projected
from the closest panorama without blending or stitching.
Since in the floor triangles may be badly shaped, we grab
pixel color at point-basis: for each point on the floor mesh,
identify the closest panorama and collect the pixel color.

5.5. Enhancement techniques

Graph optimization: The number of edges in our graph
could be potentially large, as we essentially connect every
pair of nodes. In practice, a scene has a few dominant direc-
tions, so we only connect edges along directions extracted
by the multi-view vanishing point detection described in
Sect. 4. The number of dominant horizontal directions are
typically 2, but we extract more for robustness (see Table 1).
Our experiments showed this approach achieves compara-
ble solutions to allowing all possible directions in the graph,
without the additional computation complexity.

Augmenting core free-space: Due to the scarcity of MVS
points, the core free-space may be defragmented into mul-
tiple components (See Fig. 3). While the floorplan-path
should circumnavigate all such components, some may
drop due to the shrinkage bias. Since all panorama centers
must be inside the floorplan-path, we construct a minimum
cost spanning tree of panorama centers, then add cells on
the tree as core free-space to guarantee the condition.

6. Structure Classification
Image-based indoor modeling is still a challenging prob-

lem for multi-view techniques, such as SfM and MVS. We
employ a single-view structure classification method to in-
fer 3D cues. As we only aim to classify underlying archi-
tecture, we only assign three structural labels (floor, ceiling,
and wall) to pixels in images (See Fig. 5). Similar to exist-
ing works [3, 4], we assume that scenes consist of vertical
walls with horizontal floor and ceiling. By estimating floor
and ceiling heights, the floor is related to the ceiling through
a homography, and the structure classification problem is
reduced to the estimation of the y-coordinate of the ceiling-
wall boundary in each image column [3, 4].

Our key technical contributions lie in the use of super-
pixels to exploit the texture homogeneity prevalent in in-
door scenes, and geometric reasoning to enforce a correct
label ordering in each image column: ceiling, wall and floor
from top to bottom. While lines are often effective features
for existing methods [4, 12], they are far less reliable in our
case due to clutter (see Figs. 1 and 6). Our classification
steps are illustrated in Fig. 5 and described below.
1. Images are segmented into superpixels [2] (Fig. 5(a)).
2. Wall and free-space evidence described in Sec. 4 are used
to obtain an initial set of labeled segments (Fig. 5(b,c)).3

3. The lower- and upper-bounds of the distance from a cam-
era to a wall at each image column are used to infer struc-
ture labels. The upper-bound is computed from the bound-
ing box of the domain, which gives the interval of pixels
that cannot be far away, and must be a wall. The lower-
bound is simply set to 0.3m, since cameras are never that
close. Similar reasoning is conducted to determine pixels
that must be floor or ceiling. Pixel-wise label assignments
are aggregated to superpixels by a majority vote (Fig. 5(d)).
4. Structure labels are propagated by enforcing the label or-
der (i.e., ceiling, wall and floor from top to bottom in each
column): Every pixel above (resp. below) the top-most ceil-
ing (resp. bottom-most floor) pixel is also labeled as ceiling
(resp. floor). Every pixel between the top-most and bottom-
most wall pixels is assigned a wall label. We also exploit the
homography mapping: For each pixel with a floor label, we
label the corresponding pixel through homography as ceil-
ing, if it does not already have a label. We alternate the
above procedure with superpixel-wise aggregation by ma-
jority vote to propagate structure labels until convergence
(Fig. 5(e)). Superpixels are eroded by 5 pixels to make this
propagation stage less susceptible to noise in their shapes.
5. We employ the dynamic programming technique of [3] to
globally optimize and regularize the label assignments for
an entire image, while using the current labels as data prior
(Fig. 5(f)). Given structure classification, we can generate a
3D point from the floor-wall boundary at each column of an
image by using the floor height. We deem this point visible
in the panorama that generates the point. 4

3We defer details to supplementary material, as this is similar to [4].
4Our datasets do not provide enough lines to distinguish two horizontal

manhattan directions. Thus, we distinguish only wall and floor, as opposed
to leftwall, rightwall, and floor [3]. The priors for the left/right walls are
computed from the same label. While [3] yields Manhattan directions for
wall pixels, we discard these since we only use the ceiling-wall boundary
for 3D point generation.



Figure 6. Sample input panoramas for American and Book Store.
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Figure 7. Input MVS point cloud (left), and comparison of 3D
volumetric graph-cuts [5] (middle) against our method (right).

7. Experimental Results and Discussions

The proposed system was evaluated on a dataset of seven
real locations, comprised of different kinds of restaurants
and stores. Whilst small, this dataset illustrates the com-
plexity and challenges in indoor reconstruction, as can be
seen in the sample input panoramas in Figs. 1 and 6. The
resolution of each panorama is 4096 × 2048. Statistics on
the dataset, as well as parameters and running times of our
algorithm are given in Table 1. This section is structured
into three experiments followed by discussion to conclude
the paper. First, we compare our reconstructions to state-
of-the-art [5], its variants, and ground truth. Second, we
illustrate the capability of our system to control the number
of vertices in the output. Finally, we compare our structure
classifcation technique to the line features used in [4, 12].

Comparison to ground truth and state-of-the-art: Fig. 7
shows the input MVS points at the left and our recon-
structed floorplan models at the right for five of our loca-
tions. The middle column shows the floorplan models by
the volumetric graph-cuts technique in [5], which extracts a
surface from an axis-aligned voxel grid with MVS points.
As shown, the input 3D points contain many holes. The
graph-cut regularization produces noisy 3D mesh models
and loses several rooms due to shrinkage bias. On the other
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Figure 8. Left: Comparison against the 2D version of the volumet-
ric graph-cuts [5] with several smoothness penalties. Middle: Our
results without the structure classification step. Right: Our results.

Figure 9. Final texture mapped models for American and Italian.

hand, our algorithm is able to produce extremely compact
and clean 3D models for the scenes. Note that in Chinese, a
non-Manhattan diagonal wall is cleanly reconstructed.

For fairness, we have also compared our floorplan shapes
against ground truth (Fig. 3, right) and the 2D version of
volumetric graph-cuts [5], using the same wall and free-
space evidence in the same domain and cells (left of Fig. 8).
Ground truth models are obtained by manually clicking
room corners in the images. For graph-cuts, simple mesh
simplification is applied to remove nodes on colinear seg-
ments to illustrate its effective resolution. The objective
in [5] is the sum of data and smoothness penalties, and we
varied the weight for the smoothness penalty and generated
multiple results for each location. Compared to graph-cuts,
our results are more compact yet capture floorplan struc-
ture accurately, in particular, thin walls and room dividers.
Compared to ground truth, our results miss certain details,
but mostly due to incomplete and noisy input 3D data.

One might argue we should compare against minimal-
path based methods such as [? ] instead of [5]. How-
ever, note that minimal-path (minimal-surface in 3D) meth-
ods are equivalent to graph-cuts formulations, as proven
by Boykov and Kolmogorov in [? ]. We have also con-
ducted a quantitative evaluation on the reconstructed floor-
plan shapes against ground truth by computing the ratio of
area incorrectly reconstructed (sum of both overestimated
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Figure 10. Left: Optimal floorplan-paths with different numbers of nodes, which are 14, 18, 20, 22 and 52 from left to right for American.
Right: The cost of the optimal floorplan-path as a function of the number of nodes. The cost for Italian is divided by 3 to fit in the scale.
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Figure 11. The left two columns show the extracted line segments (color represents the corresponding vanishing direction) and the structure
classification result based on the line feature [12]. The right three columns show our structure classification results after initialization by
MVS points, after initialization by free-space information, and the final result.

and underestimated areas) to the total ground truth area,
a metric used in [16]. For each dataset, we computed a
score for our algorithm, and scores for the 2D version of the
graph-cuts [5], with small and large smoothness weights.

Results in Table 1 seem to suggest that 2D graph-cuts
perform fairly well with a proper weight choice. However,
as can be qualitatively verified from Fig. 8, several points
are worth noting. First, when the smoothness weight is
small, floorplans obtained with graph-cuts contain details
but are extremely noisy. Furthermore, they fail to capture
thin structures due to shrinkage bias. Note that areas of
thin structures are very small, so these mistakes are not re-
flected well in the area metric. Neither is the noisiness in
the floorplan shapes. Second, increasing the smoothness
weight removes some noise but yields gross errors and ex-
acerbates shrinking bias in most cases: this illustrates the
limit of pairwise regularization terms in a typical MRF for-
mulation. Furthermore, it is far from intuitive to tune such
scaling parameter to control model shapes. This is opposed
to our approach, which regularizes the number of edges of
the model while enforcing piecewise linearity, and is able
to generate proper floorplan shapes and high quality texture
mapped models (Figs 1, 2 and 9) despite very noise input
data. Despite all these advantages and benefits of our ap-
proach not being reflected in the area metric, it is worth
noting that our scores are the best in nearly half the datasets
with much fewer number of vertices, and never the worst.

Regularization control: Fig. 10 demonstrates the ability of

our algorithm to control the number of vertices in the out-
put. The optimal floorplan shape produced by our algorithm
has 22 nodes in this case, but it can also generate the opti-
mal shape with a specific number of nodes. Our algorithm
succeeds in keeping proper floorplan structure even in the
case of extremely low polygon counts (e.g., only 14) by en-
forcing piecewise planarity, which is difficult with existing
methods. The cost of the floorplan-path (1) as a function of
the number nodes is given at the right. Observe that, at a
macro scale, each plot has one minimum. The zig-zag pat-
tern, at a micro scale, is explained by the necessity of two
nodes to create one “corner”: Adding a single node simply
ends up paying a model complexity penalty (α in (1)).

Structure classification: Fig. 11 provides a comparison of
our superpixel classification results against the line feature
of [12]. Our algorithm succeeds in generating complete
and accurate classification results, starting from the incom-
plete label assignments from MVS points. The figure also
shows the extracted line segments (straight in 3D but curved
in panorama images) and the structure classification results
based on the line feature of [12], a single-view structure
inference technique. This line feature failed in extracting
useful structure information, since it cannot deal with clut-
tered scenes. As a control experiment, we run our floorplan
reconstruction algorithm without using the structure classi-
fication step to illustrate its effectiveness: The middle col-
umn of Fig. 8 shows that structure classification allows for
recovery of thin walls and missing rooms, which would not



Table 1. Statistics of our datasets. Np, Nl, Nd, Ni and Nf are the number of input panoramas, the average number of extracted line
segments per panorama, the number of extracted horizontal dominant directions, the number of nodes in the initial floorplan-path, and the
number of nodes in the final floorplan-path, respectively. Rcell is the resolution of the cell grid covering the domain. δ1 is the threshold
to determine the core free-space in Sect. 5, where σ is the average free-space evidence over cells with non-zero values. Tpr , Tsc, and Tfp

are the running time for the preprocessing, structure classification and floorplan reconstruction steps, in minutes. egcut−s, egcut−l and
eours are the quantitative error measures of the reconstructed floorplan shapes [16], for the graph-cuts technique with the small and large
smoothness weights and our algorithm, respectively. The blue (resp. red) number is the minimum (resp. maximum) error for each dataset.

Np Nl Nd Ni Nf Rcell δ1 Tpr Tsc Tfp egcut−s egcut−l eours
American 5 59.7 2 10 22 720×732 0.25σ 9 7 2 0.058 0.086 0.027

Chinese 6 92.6 3 9 9 561×537 0.5σ 8 9 2 0.273 0.019 0.048
Book Store 7 145.0 2 22 36 543×1203 0.5σ 16 8 4 0.217 0.120 0.156

Mexican 8 108.4 2 8 14 516×777 0.5σ 12 12 3 0.003 0.011 0.006
Thai 10 82.2 2 8 27 525×1071 0.5σ 13 15 5 0.129 0.133 0.111

Wine Shop 16 140.6 2 14 18 753×1080 0.5σ 25 23 3 0.006 0.102 0.036
Italian 17 64.4 2 16 60 801×1845 0.5σ 18 23 81 0.241 0.487 0.125

Figure 12. A failure example due to the lack of enough 3D points.

be recovered had we used only evidence from MVS points.
Discussion: Indoor digital mapping is still in an early stage.
While computer vision techniques have been extensively
used for digital outdoor mapping in a global scale, most
indoor locations do not have photorealistic 3D models, let
alone floorplan data. Our system is a significant improve-
ment over the state-of-the-art, but it is by no means perfect.
Fig. 12 shows a typical failure example (not included in Ta-
ble 1) due to the lack of enough 3D points. This example
shows that compact but inaccurate reconstruction produces
unpleasing texture-mapped models, and that it is essential to
capture compact but also accurate 3D geometry. Our system
has several limitations. First, the floorplan reconstruction
algorithm assumes a fixed ring-topology and cannot handle
more complicated floorplan shapes, e.g., patios surrounded
by indoor areas. Second, we do not model objects present
in a scene, which could be important to describe and visu-
alize the space. Despite these shortcomings, we believe this
work is a foray into bringing computer vision technologies
to the ultimate goal of worldwide indoor digital mapping.
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