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Abstract

We present an approach MSIL-CRF that incorporates
multiple instance learning (MIL) into conditional random
fields (CRFs). It can generalize CRFs to work on training
data with uncertain labels by the principle of MIL. In this
work, it is applied to saving manual efforts on annotating
training data for semantic segmentation. Specifically, we
consider the setting in which the training dataset for seman-
tic segmentation is a mixture of a few object segments and
an abundant set of objects’ bounding boxes. Our goal is to
infer the unknown object segments enclosed by the bound-
ing boxes so that they can serve as training data for seman-
tic segmentation. To this end, we generate multiple segment
hypotheses for each bounding box with the assumption that
at least one hypothesis is close to the ground truth. By treat-
ing a bounding box as a bag with its segment hypotheses as
structured instances, MSIL-CRF selects the most likely seg-
ment hypotheses by leveraging the knowledge derived from
both the labeled and uncertain training data. The experi-
mental results on the Pascal VOC segmentation task demon-
strate that MSIL-CRF can provide effective alternatives to
manually labeled segments for semantic segmentation.

1. Introduction
Semantic segmentation [1, 3, 12, 15, 18, 20, 24, 27, 29]

aims to assign one of predefined object classes or back-
ground to each pixel in an image. Distinct from the con-
ventional image segmentation task, e.g., [2, 7, 22, 23], se-
mantic segmentation not only determines the shapes of ob-
jects of interest but also identifies their categories. As a
key component of image analysis, semantic segmentation is
essential to widespread applications, such as scene under-
standing, object recognition, and image/video editing.

Recent research efforts have advanced semantic segmen-
tation in many aspects, such as more powerful features [24],
combination of information derived from different levels of
image quantization [12, 15], and exploration of contextual
relations among object classes [1, 15]. These approaches
are often built on graphical models such as conditional ran-

dom fields (CRFs) [25] for their merits in fusing diverse evi-
dences and ensuring spatial consistency. However, learning
graphical models for complex semantic segmentation tasks,
e.g., Pascal VOC [11], usually requires sufficient training
data in form of object segments, i.e., pixel-wise annotation.
The heavy annotation cost hinders the advances in semantic
segmentation.

In this work, we aim at reducing annotation cost in se-
mantic segmentation, and consider that a few object seg-
ments and a set of objects’ bounding boxes are given. We
focus on inferring unknown object segments in the bound-
ing boxes, and use the inferred segments as the training data
for semantic segmentation. Since labeling a bounding box
of an object takes only four clicks, replacing object seg-
ments with bounding boxes reveals the potential of reduc-
ing the annotation cost. Figure 1 gives an overview of the
proposed framework.

Motivated by the capacity of multiple image segmenta-
tions [4, 10] for inferring object segments, we first gen-
erate multiple object segment hypotheses for each bound-
ing box. By assuming that at least one segment hypoth-
esis is close to the ground truth, the inference of the ob-
ject segment in a bounding box can be achieved by picking
the best hypothesis. It can be observed that the bounding
boxes and their segment hypotheses here match the two-
layer structure, bags and instances, in multiple instance
learning (MIL) [9]. Namely, each bounding box can be
regarded as a positive bag with its segment hypotheses as
instances, and the hypothesis closest to the ground truth cor-
responds to the positive instance. Beyond MIL, each seg-
ment hypothesis is composed of superpixels. Exploring the
structural information among superpixels generally facili-
tates ranking the hypotheses. Therefore, we cast the infer-
ence of the object segments in the bounding boxes as an in-
stance of the multiple structured-instance learning (MSIL)
problem.

We develop an algorithm, called MSIL-CRF, which
solves the task of MSIL upon CRFs. It uses the principle
of MIL to deal with our uncertainty of the segment ground
truth, and leverages the formulation of CRFs to model the
structural information. Moreover, it can jointly consider

1



Object  

Segments 
 

Objects’ 
Bounding  

Boxes 

Multiple 

Segment  

Hypotheses  

  Generation  

 

MSIL-CRF  
 

Selected  

Segment 

Hypotheses 

 

Figure 1. Given a few object segments and a set of bounding boxes of objects, our approach is designed to infer the unknown object
segments in the bounding boxes by taking both the labeled data (object segments) and uncertain data (bounding boxes) into account jointly.

both the labeled data (manually labeled object segments)
and the uncertain data (objects’ bounding boxes), and es-
tablish more accurate models for segment inference. After
completing the optimization, the most plausible object seg-
ment of each bounding box is determined. Any off-the-shelf
approach to semantic segmentation can then be adopted and
trained with the inferred object segments.

The main contribution of this work is the development of
MSIL-CRF. On the one hand, it generalizes CRFs to work
on training data with uncertain labels. On the other hand, it
provides a way of dealing with structured instances in MIL.
Technically, it adopts the smooth maximum function [26] to
express our belief over the instances in each bag. The re-
sulting objective function is differentiable with respect to
the variables to be optimized. It follows that MSIL-CRF,
like CRFs, can be optimized by efficient solvers, such as
L-BFGS [17]. With the application to reducing the annota-
tion cost in semantic segmentation, we demonstrate that the
estimated object segments by MSIL-CRF are of high qual-
ity, and can replace the manually labeled segments even in
challenging segmentation tasks such as Pascal VOC [11].

2. Related Work
We review some relevant research topics in this section.

Semantic Segmentation. Methods of this category,
e.g., [1, 3, 12, 15, 18, 20, 24, 27, 29], aim to identify objects
of interest and segment them out at the same time. Owing
to the high flexibility in modeling the dependencies among
variables and observations, CRFs have been widely adopted
in the task. For instance, Shotton et al. [24] presented an
abundant set of features for predicting object classes in the
level of pixels, and used CRFs to combine these features.
Various high order potential functions for CRFs have been
introduced in [1, 15] for expressing the contextual infor-
mation among object classes. Despite the effectiveness,
training CRFs for semantic segmentation usually requires
a vast amount of manual efforts on labeling training images

in form of object segments.

Multiple Image Segmentations. Although algorithms
for image driven segmentation [2, 7, 23] or figure-ground
separation [5, 14, 22] are developed with theoretic merits,
no universal algorithm or parameter setting can segment all
objects with adequate results. This phenomenon has been
pointed out in [28]. To alleviate this problem, the strategy of
multiple segmentations, e.g., [4, 6, 10], attempts to produce
a set of segmentation hypotheses by distinct segmentation
algorithms, parameters, or seeding methods. Our approach
is relevant to [4, 6, 10], which assume the unknown object
contour can be discovered by at least one segment hypothe-
sis.

Segmentation with Low Labeling Cost. Recent research
efforts have been made on reducing the labeling cost for
object segmentation. Weakly supervised methods or co-
segmentation, e.g., [13, 18, 29], support training data la-
beled in the levels of images or bounding boxes, instead of
object maps. As information regarding object classes has
been annotated, the class-specific clues were extracted in
these methods to enhance object segmentation. However,
weakly supervised labeling is susceptible to large intra-class
variations, which obstruct the discovery of the latent object
contours. Another type of methods, e.g., [5, 14, 16, 22],
for saving manual labeling is interactive segmentation, in
which the segmentation process is guided by user input.
Distinct from these approaches, our approach adopts MIL
to handle the lack of ground truth, and infers the object
segments in the bounding boxes by leveraging knowledge
transferred from a few manually labeled object contours.

It is worth noting that the MI-CRF (conditional random
field for multiple instance learning) [8] and the proposed
MSIL-CRF are similar in their abbreviations, but they ad-
dress different problems. MI-CRF deals with an MIL task
over the formulation of CRFs. It models bags as nodes in
CRFs with instances as their states. The mi-Graph [31] and
the MILSD [30] are two MIL algorithms that further ex-



Figure 2. A bounding box and some generated tight segments.

plore the relationships among instances in the same bag. All
the aforementioned approaches to MIL work on instances in
form of feature vectors. Besides, the HCRFs (hidden-state
conditional random fields) [21] augment intermediate hid-
den variables to model the latent structure of the observa-
tion. Unlike the foregoing approaches, our approach intro-
duces MIL for addressing the problem caused by the lack of
ground truth in learning CRFs. From another perspective,
it works on structured instances in MIL. Specifically, an in-
stance in our case corresponds to the graph structure over
the superpixels in an object’s bounding box. To the best of
our knowledge, such a generalization of multiple instance
learning is novel.

3. Multiple Tight Segment Generation

A set of object segment hypotheses is required for each
bounding box to serve as the input to MSIL-CRF. In this
work, we adopt the algorithm in [6] to compile multiple
tight segments for each bounding box. The tight segments
are used as the segment hypotheses. A segment is tight with
respect to a bounding box if it touches all the four sides of
the bounding box. The reason of using tight segments is
that the bounding box is the smallest rectangle covering the
real object segment, which must be tight. The approach
in [6] integrates bounding box prior [16] to yield multiple
tight segments for a bounding box. More importantly, the
approach in [6] makes it more likely that at least one tight
segment is close to the real object segment. This property
supports the use of MIL in the framework. An example of
the bounding box of an object and some of the yielded tight
segments is shown in Figure 2.

4. Our Approach

We define the notations, give a brief review of CRFs, and
introduce the proposed MSIL-CRF in this section.

4.1. Notation

Suppose a few object segments as well as objects’
bounding boxes are annotated in images of an object class,
say horse in Figure 1. We crop the ROIs in the images,
and partition each ROI into superpixels by mean-shift algo-
rithm [7]. For ROIs of the annotated object segments, we
denote them by L = {(xi,yi)}`i=1, where ` is the num-
ber of the segments and xi is the feature representation or
observation. Vector yi = [yi(p)] ∈ {0, 1}ni is the label,
where ni is the number of superpixels. yi(p) takes value 1
if superpixel p belongs to foreground, and 0 otherwise.

As for ROIs of the annotated bounding boxes, we have
U = {(xi, {yij}Ti

j=1)}
`+u
i=`+1, where u is the number of

the bounding boxes, and Ti is the number of the generated
tight segments in bounding box i. Note that the segment
ground truth in the bounding boxes is unknown. Here, we
use the generated tight segments as the candidates. Namely,
each bounding box i consists of multiple label vectors, and
yij = [yij(p)] ∈ {0, 1}ni is the segment hypothesis in-
duced by its jth tight segment. Our goal is to leverage in-
formation available in L ∪ U , and select the most plausible
tight segment for each bounding box. Then, the selected
tight segments are used as training data for any of off-the-
shelf approaches to semantic segmentation.

4.2. Conditional random fields

For a given ROI x of n superpixels, each superpixel is
associated with a variable node with two states, i.e., fore-
ground and background, while an edge is added between
two nodes if their corresponding superpixels are adjacent.
The conditional random fields (CRFs) [25] model the con-
ditional distribution of the figure-ground configurations by
P (y|x,θ), where y ∈ Y = {0, 1}n and θ is the set of the
model parameters. The posterior distribution P (y|x,θ) of
CRFs is a Gibbs distribution, and is written as

P (y|x,θ) = 1

Zx
exp (−E(y,x)), (1)

where energy function E(y,x) and partition function Zx

for normalization are defined as

E(y,x) =
∑
m

λmfm(y,x), and (2)

Zx =
∑
y′∈Y

exp (−E(y′,x)). (3)

The energy function is composed of feature functions {fm}
as well as feature weights θ = {λm}. For the sake of clear-
ness, the adopted feature functions are described later.

With training data L = {(xi,yi)}`i=1, parameters θ in
CRFs can be estimated by maximizing likelihood, i.e.,

θ∗ = argmax
θ

∏̀
i=1

P (yi|xi,θ) (4)



For numerical consideration, θ is typically derived by max-
imizing the log likelihood function

J(θ) =
∑̀
i=1

−E(yi,xi)− logZxi . (5)

J(θ) in general cannot be optimized in closed form.
Thus, methods based on gradient ascent are often used to
solve (5) with partial derivative

∂J(θ)

∂λm
=

∑̀
i=1

{−fm(yi,xi) +
∑

y′
i∈Yi

P (y′i|xi,θ)fm(y′i,xi)}.

(6)
The partial derivative in (6) has an intuitive meaning. Its

first term is the empirical value of function fm, while the
second term is the expectation of fm under the current
model θ. λm is optimized by minimizing their difference.

4.3. The proposed MSIL-CRF

Parameter set θ in CRFs is learned with few labeled
training data L = {(xi,yi)}`i=1 in our case. Estimating pa-
rameters is hence at a high risk of overfitting. Besides, the
learned θ may not well predict U = {(xi, {yij}Ti

j=1)}
`+u
i=`+1

owing to the large intra-class variations. We address the
two problems by including U in training. In this way, abun-
dant information in U can regularize the estimation of pa-
rameters, and all the data to be predicted are covered in
training. Thus, the two problems can be alleviated.

As mentioned in Section 3, one important property about
U is that at least one tight segment in each bounding box is
close to the ground truth. The maximum likelihood solution
of the proposed MSIL-CRF can be accordingly defined as

θ∗ = argmax
θ

∏̀
i=1

P (yi|xi,θ)

`+u∏
i=`+1

max
j
P (yij |xi,θ). (7)

Implied by (7), the mode of seeking the positive in-
stances in MIL is included to deal with the uncertainty in
data labeling. The corresponding log likelihood function is

J(θ) =
∑̀
i=1

−E(yi,xi)− logZxi

+

`+u∑
i=`+1

max
j

(−E(yij ,xi))− logZxi . (8)

The max operation in (8) has made J(θ) no longer differen-
tiable. We introduce the smooth maximum function [26] (or
the log-sum-exp trick) to overcome this problem. It gives
the differentiable approximation of max operation by

max
j

(−E(yij ,xi)) '
1

γ
log(

Ti∑
j=1

exp (−γE(yij ,xi))), (9)

where γ is a positive constant, and is used to control the
degree of precision in approximation. We empirically set

γ = 24 in this work. It gives a good surrogate for the max
function.

By substituting (9) into (8), it can be verified that the
partial derivative of the log likelihood function with respect
to each feature weight λm is

∂J(θ)

∂λm
=

∑̀
i=1

{−fm(yi,xi) +
∑

y′
i∈Yi

P (y′i|xi,θ)fm(y′i,xi)}

+

`+u∑
i=`+1

{
Ti∑
j=1

−κijfm(yij ,xi) +
∑

y′
i∈Yi

P (y′i|xi,θ)fm(y′i,xi)},

(10)

where κij =
exp (−γE(yij ,xi))∑Ti

j′=1 exp (−γE(yij′ ,xi))
. (11)

The partial derivative in (10) also has intuitive justifica-
tion. By comparing (10) with (6), the part of derivative con-
tributed by data in L is exactly the same. As for the part by
data in U , it can be checked that κij in (11) is non-negative,
and

∑Ti

j=1 κij = 1. The distribution of {κij}Ti
j=1 repre-

sents our belief over all the tight segments of bounding box
i. The less the energy, the larger the belief. Therefore, the
empirical value of function fm in this part is a weighted
combination of those induced by the guessed labels.

The log likelihood function of MSIL-CRF, J(θ) in (8),
is differentiable. The efficient method L-BFGS is adopted
to solve the optimization problem in our implementation.

4.4. Tight segment selection

After the optimized parameters θ∗ of MSIL-CRF in (8)
are obtained, we infer the most plausible tight segment for
each bounding box. Specifically, for each bounding box i in
U = {(xi, {yij}Ti

j=1)}
`+u
i=`+1, we pick its πith tight segment

with
πi = argmax

j
P (yij |xi,θ∗). (12)

We collect the set of training data D = L ∪ Ũ in form
of object segments, where Ũ = {(xi,yiπi

)}`+ui=`+1. D can
then be used as the input to any of the off-the-shelf semantic
segmentation methods, e.g., [12, 27] in our experiments.

4.5. Implementation details

As implied in (8), a training instance induced by an ob-
ject segment is treated as importantly as that by a bound-
ing box. For better performance, one tunable parameter is
introduced for reweighting instances induced by bounding
boxes. In addition, we use a regularization term to penalize
parameter set whose norm, ‖θ‖, is too large. It makes the
learned model more stable and effective. The values of the
two parameters for reweighting and regularization are de-
termined by cross validation, in which the performance is
measured on the labeled training set L. Note that J(θ) in
(8) is nonconcave in general, and a local optimum is reached



in practice. We set all the optimization variables as zero in
initialization in the experiments.

5. The Energy Function
We describe the adopted energy function (2) in this work.

It is composed of three types of energy. For an ROI x with
n superpixels, let y = [y(p)] ∈ {0, 1}n, V , and E respec-
tively denote the labeling, the set of superpixels, and the
set of edges that connect adjacent superpixels. The energy
function is designed as

E(y,x) =
∑
p∈V

φ(y(p),x) +
∑
p∈V

ψ(y(p),x)

+
∑

(p,q)∈E

ϕ(y(p),y(q),x), (13)

where φ, ψ, and ϕ are the instance-specific unary energy,
the class-consistent unary energy, and the pairwise energy,
respectively.

On Designing φ. Energy φ encodes the negative log prob-
abilities of each superpixel belonging to foreground and
background by considering the features extracted from this
ROI. Following [16], we fit a GMM (Gaussian mixture
model) to the RGB color vectors in the strip of 10 pixels
around the ROI, and sort pixels inside the ROI according
to their probabilities measured by the GMM. Two GMMs
f and b are learned with the last 33% and the first 33% of
the sorted pixels respectively. The probability of each pixel
belonging to foreground (background) can be estimated by
f (b). Since φ is applied to superpixels, we simply aver-
age the probabilities of pixels falling into each superpixel.
Besides, we generalize this energy by replacing the RGB
feature with SIFT [19] and texton [24], respectively. Thus,
energy φ is composed of three feature functions.

On Designing ψ. Energy ψ encodes the negative log
probabilities of each superpixel according to features ex-
tracted from ROIs of the same class. Specifically, we gen-
erate tight segments for each ROI in L. Following [4], each
segment is characterized by the mid-level features, and its
accuracy, in [0, 1], w.r.t. the ground truth. With the fea-
tures and accuracy rates (target values) of these segments,
a regressor is learned to rank tight segments. For ROI x,
suppose its first tight segment is predicted by the learned re-
gressor and with regression value r. The superpixels inside
the tight segment are accumulated with r, while the rest are
with 1−r. The procedure is repeated for each tight segment
of x. Then, the probability of each superpixel belonging to
foreground can be estimated. As suggested in [4], we di-
vide the mid-level features into three groups, with each of
which a regressor is learned. Hence, ψ is composed of three
feature functions.

On Designing ϕ. We adopt the Potts model here.

6. Experimental Results
In this section, we assess the performance of our ap-

proach by conducting two sets of experiments in Pascal
VOC segmentation task. First, the quality of the tight seg-
ments picked by MSIL-CRF is measured. It tests whether
MSIL-CRF works well on training data with uncertain la-
bels. Second, the efficacy of using the picked tight seg-
ments for semantic segmentation is evaluated. It checks if
the picked tight segments by MSIL-CRF can replace the
manually labeled segments in semantic segmentation, the
underlying goal of this work.

6.1. Pascal VOC 2007 dataset

The Pascal VOC 2007 segmentation dataset [11] con-
tains 20 object classes and one additional category of back-
ground. Each object class consists of 30 ∼ 100 annotated
object segments except for class person, which has 345
ones. The dataset consists of highly deformable objects, and
results in substantial annotation costs for manually labeling
object segments. Nevertheless, it serves as an appropriate
test bed to verify the effectiveness of our approach.

For each annotated object segment, we set its bounding
box as the ROI, and crop it from the image. In addition, the
resolutions of objects in the dataset are different. Most seg-
mentation algorithms are sensitive to resolutions. Thus, we
resize each ROI to around 80, 000 pixels, without changing
their aspect ratios.

6.2. Baselines

MSIL-CRF infers the object segments enclosed by a
bounding box. For performance comparison, we imple-
mented seven baselines of the following two categories.
Single image figure-ground segmentation. Methods in
this category perform figure-ground segmentation by con-
sidering a bounding box at a time. Specifically, we adopted
the following four approaches, each of which is denoted be-
low in bold and in abbreviation:
• GrabCut [22]: It works with initial foreground and

background models. The foreground model is initial-
ized with the whole bounding box, while the back-
ground model is fitted to the outside region.
• TS (tight segment) [16]: Bounding box prior is inte-

grated into figure-ground segmentation. It further en-
sures that the resulting foreground segment is tight.
• OP (object proposal) [10]: It produces a set of object

proposals. A pretrained regressor is used to rank these
proposals and pick the best one.
• FG (F-G classification) [5]: It compiles various fore-

ground priors and one common background prior.
Multiple segment hypotheses are generated with dif-
ferent foreground priors. The one that maximizes the
score of segmentation quality is selected.



method GrabCut [22] TS [16] OP [10] FG [5] DCCoSeg [13] CRFs SSSVR [6] Ours
median 74.03 68.61 64.97 72.67 62.93 78.19 77.78 81.63
mean 71.90 67.34 61.58 70.60 65.90 74.76 74.33 77.78

Table 1. The accuracies (%) of various figure-ground segmentation methods in Train+Val set of Pascal VOC 2007.
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Figure 3. The accuracy distributions of our approach on the 20 object classes. The edges of each blue box are the 25th and 75th percentiles,
while the red line indicates the median. The accuracy rates of the seven baselines and the upper bound of our approach are also given.

Class-based figure-ground segmentation. Methods of
this category work by considering all the bounding boxes
of an object class jointly. Thus, the class-specific knowl-
edge can be derived to benefit figure-ground segmentation.
We adopted the following three approaches:
• DCCoSeg (discriminative clustering for co-

segmentation) [13]: It utilizes a discriminative
clustering algorithm to jointly segment out the objects
enclosed by the bounding boxes.
• CRFs: We learn the CRFs model by using the same

setting as that of MSIL-CRF. The only difference is
that the CRFs model is learned in (4) with labeled
object segments, whereas MSIL-CRF in (7) consid-
ers both the labeled segments and the bounding boxes.
Comparing MSIL-CRF to the baseline shows the ad-
vantage of including bounding boxes in training.
• SSSVR (semi-supervised support vector regres-

sion) [6]: It learns a semi-supervised SVR regressor by
considering both the object segments and the bound-
ing boxes at the same time. It represents each tight
segment as a feature vector, while MSIL-CRF treats a
tight segment as a structured instance. This baseline is
useful to measure the benefit of respecting structured
information in segmentation.

6.3. On figure-ground segmentation
We assess the qualities of inferred object segments by

comparing them with the ground truth. For a segment `,
its accuracy is computed by 1− XOR(R(`),GT )

#pixel , where GT
is the ground truth, XOR is the function of exclusive or,
and R(`) is a binary vector that indicates each pixel in `
assigned to either foreground or background.

The four baselines [22, 16, 10, 5] in the first category
infer the object contour in a bounding box at a time. Base-
line DCCoSeg jointly segments out the common objects in

the bounding boxes of the same class. CRFs, SSSVR, and
MSIL-CRF require a few labeled object segments to learn
their models. Thus, we randomly select 10% of bound-
ing boxes coming with the ground truth, i.e., L, while the
rest are treated as bounding boxes, U , and their object seg-
ments are assumed to be unknown. Actually, we analyzed
the qualities of the inferred object segments of U with dif-
ferent sizes of L, including {5%, 10%, 15%, ..., 35%}, and
found that the average performance converges when L con-
tains about 10% of bounding boxes. MSIL-CRF picks one
tight segment for each bounding box, so the accuracy of the
best tight segment is its performance upper bound. The per-
formances of our approach and the baselines are evaluated
on U . We first compute the median and mean accuracies
over data of each class. The accuracies in median of all the
approaches are shown in Figure 3. The average accuracies
across the 20 classes are reported in Table 1.

It can be observed in Table 1 that GrabCut, TS, OP, and
FG work on a single bounding box where only restricted
information is accessible, they often result in suboptimal
performance. DCCoSeg seeks object segments with com-
mon appearance. However, this assumption may not hold,
since there exist large intra-class variations in Pascal VOC.
CRFs and SSSVR achieve similar average accuracies, but
their class-wise accuracies, shown in Figure 3, are differ-
ently distributed. It reveals that the structural clues used in
CRFs and the unlabeled data used in SSSVR are comple-
mentary. The proposed MSIL-CRF is consistently superior
to CRFs and SSSVR. It indicates that MSIL-CRF can ef-
fectively make the most of both types of information, lead-
ing to promising accuracies. We regard that MSIL-CRF re-
markably outperforms all the baselines, since the space for
accuracy improvement is limited in Pascal VOC. As shown
in Figure 3, each object class consists of several outliers,
i.e., bounding boxes with low segmentation accuracies. The



Moto. GT 87.69 82.79 79.50 88.96 94.93

Cat GT 78.21 49.12 94.38 76.86 94.38

Horse GT 75.49 70.87 50.65 69.51 89.33

(a) (b) (c) (d) (e) (f) (g)

Figure 4. Inferred object segments by various approaches, together with the accuracies (%) shown above. (a) Bounding box. (b) Ground
truth. (c) GrabCut [22]. (d) OP [10]. (e) CRFs. (f) SSSVR [6]. (g) Ours.

appearances of these outliers are often far different from
those of the rest data. It is difficult to well segment these
outliers by existing image descriptors.

In Figure 3, we see that MSIL-CRF works best in most
classes. Aside from dealing with the simpler objects with
convex shapes like Bus and TV, MSIL-CRF can also con-
quer the highly deformable objects, such as Bird and Cat.
The performance of our approach is bounded by the qual-
ity of tight segments generated by the method [6]. Our ap-
proach does not perform well when none of the tight seg-
ments are close to the ground truth. This phenomenon is
found in class Bike. The worst performance of our ap-
proach occurs in class Chair. It results from the large
intra-class variations presented in this class. The training
and inference time of our approach is within two minutes
for each of the twenty classes, except for class person.
Like CRFs, calculating marginal probabilities is the most
time-consuming step in our approach.

To gain insight into the quantitative results, several in-
ferred object segments by different approaches are shown in
Figure 4. In the first example Moto., MSIL-CRF success-
fully discovers object segments despite the complex color
or texture distributions within the objects, and is superior to
other baselines. In the highly deformable objects, e.g., Cat,
both MSIL-CRF and CRFs surpass SSSVR. The two exam-
ples reveal the advantages of using structured information to
preserve local consistency. MSIL-CRF significantly outper-
forms CRFs in the last example horse owing to including
U in training, since the background in this bounding box is
much different from those in L.

6.4. On semantic segmentation

The second experiment aims to corroborate the effective-
ness of MSIL-CRF in annotating training data for semantic

segmentation. To this end, the ground truth (GT) and the
object segments inferred by MSIL-CRF and the seven base-
lines are respectively used as training data for two state-of-
the-art semantic segmentation algorithms [12, 27]. That is,
we replace the manually labeled GT by automatically in-
ferred object segments. The semantic segmentation meth-
ods [12, 27] learned with the eight (our approach as well
as the seven baselines) distinct annotated training data are
evaluated on the testing dataset, test, in the Pascal VOC
2007 segmentation task.

The quantitative results of the semantic segmentation al-
gorithm [12] w.r.t. the eight copies of training data and the
ground truth are reported in Table 2. Table 3 shows the re-
sults for another semantic segmentation method [27]. It can
be observed that compared with the eight baselines, train-
ing with MSIL-CRF’s results gives the best performance in
semantic segmentation. Our approach also achieves similar
performance to training with GT, i.e., 26.01 vs. 25.51 us-
ing [12] or 18.99 vs. 19.01 using [27]. It shows that MSIL-
CRF can automatically infer object segments in bounding
boxes with sufficient quality, and be an effective alternate
for the manually drawn GT in semantic segmentation.

It is worth mentioning that the accuracy by MSIL-CRF
is slightly higher than that by ground truth in Table 2. It
may be because the method [12] tends to overfit the difficult
data provided by precise annotations of manual drawings.
Our approach annotates training data by leveraging class-
specific knowledge, including object contours and bound-
ing boxes. Since the difficult data are relatively sparse, our
approach tends to ignore these data due to their inconsis-
tency with the whole class. Vague annotations resulted from
our method may instead lower down the importance of this
kinds of difficult training data, and lead to a better perfor-
mance.



avg. A.P. Bike. Bird Boat Bottle. Bus Car Cat Chair Cow D.T. Dog Horse M.B. P.S. P.P. Sheep Sofa Train Tv
GT 25.51 4.01 11.27 0.41 0.03 5.70 25.81 37.79 52.15 12.73 3.30 12.80 33.67 19.35 62.09 59.31 11.89 22.02 7.71 44.88 36.00

GrabCut [22] 24.12 5.82 5.44 10.82 4.08 0.73 23.50 39.91 52.42 13.21 5.41 6.75 24.70 28.24 65.84 59.42 10.40 13.64 7.73 41.02 28.81
TS [16] 24.95 12.08 13.93 17.66 3.60 1.41 29.41 36.81 49.98 10.61 2.28 7.56 33.94 16.95 54.73 63.86 12.34 13.78 7.84 35.10 34.55
OP [10] 21.85 13.92 1.93 13.75 4.38 4.01 18.11 37.02 37.43 15.91 3.76 10.79 32.84 12.06 36.69 59.33 7.20 13.02 7.52 38.00 23.47
FG [5] 24.18 2.90 24.25 1.64 1.59 0.36 19.57 39.47 62.24 15.09 0.67 7.26 31.48 19.92 59.90 61.45 6.90 15.77 7.76 34.13 27.48

DCCoSeg [13] 23.14 18.27 12.59 8.74 15.04 7.14 23.12 33.79 45.88 20.07 7.90 31.36 30.89 27.20 45.86 20.32 11.26 16.26 9.61 31.43 31.75
CRFs 24.36 6.15 9.29 18.53 2.13 1.02 21.37 39.55 54.94 13.39 2.99 10.61 21.81 22.77 63.16 61.81 8.86 16.06 7.18 39.56 26.68

SSSVR [6] 25.03 11.69 1.10 6.08 1.87 2.00 39.75 39.44 62.13 6.92 7.51 37.56 20.92 11.31 64.04 50.55 9.41 20.67 8.30 39.43 22.80
Ours 26.01 2.90 16.12 23.43 2.12 1.62 20.66 37.54 56.62 15.45 3.51 14.90 29.60 24.16 60.27 54.67 12.03 15.10 7.52 46.68 37.44

-
Table 2. Performance of [12] on Pascal VOC segmentation task w.r.t. various annotated training data by different approaches.

method GT [22] [16] [10] [5] [13] CRFs [6] Ours

avg. 19.01 18.33 17.60 17.12 17.70 17.74 18.21 18.11 18.99

Table 3. Average accuracies of [27] on Pascal VOC segmentation
task with training data generated by various approaches.

7. Conclusions
We have presented an approach, called MSIL-CRF,

which adopts the principle of MIL to learn CRFs with train-
ing data with uncertainty in labels. On the other hand, it
utilizes the expressive power of CRFs to enhance the per-
formance of MIL by taking structured information into ac-
count. In the paper, our approach is applied to inferring ob-
ject segments enclosed by bounding boxes, and is evaluated
on Pascal VOC segmentation task. The promising results
demonstrate that the inferred segments are good enough to
replace the manually labeled training data in semantic seg-
mentation. In addition, it is developed with theoretic mer-
its: With the differentiable objective function, it can be op-
timized efficiently by gradient ascent methods, such as L-
BFGS. For future work, we aim to generalize MSIL-CRF
to handle negative bags, and test it with the applications in
which structured information is appreciated, such as image
parsing and contextual object recognition.
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