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Abstract

Expression and pose variations are major challenges for
reliable face recognition (FR) in 2D. In this paper, we aim
to endow state of the art face recognition SDKs with ro-
bustness to simultaneous facial expression variations and
pose changes by using an extended 3D Morphable Model
(3DMM) which isolates identity variations from those due
to facial expressions. Specifically, given a probe with ex-
pression, a novel view of the face is generated where the
pose is rectified and the expression neutralized. We present
two methods of expression neutralization. The first one
uses prior knowledge to infer the neutral expression im-
age from an input image. The second method, specifically
designed for verification, is based on the transfer of the
gallery face expression to the probe. Experiments using rec-
tified and neutralized view with a standard commercial FR
SDK on two 2D face databases, namely Multi-PIE and AR,
show significant performance improvement of the commer-
cial SDK to deal with expression and pose variations and
demonstrates the effectiveness of the proposed approach.

1. Introduction

The last evaluation of face recognition algorithms per-
formed by the NIST in 2010, MBE [11], showed that high
accuracy can be obtained on frontal face images : a veri-
fication rate higher than 95% is obtained for a false alarm
rate of 0.1%. However, when one of the images to compare
is non-frontal, this verification rate drops to 20% and the
2009 NIST MBGC report [16] concludes that : ”Cross pose
matching is still very difficult.”

These evaluations do not report results when the ex-
pression of the subjects changes. Independent assessment
of face recognition softwares under systematic expression

variations is lacking. However, recently, expression robust
face recognition has been attracting more and more the at-
tention of the academic world [8] [9] [13] [20] [23] [26].
This is owing to the availability of face database with sys-
tematic expression variations such as the AR dataset [14],
PIE [19] and Multi-PIE [10].

Interestingly, the PIE dataset, and even more so, Multi-
PIE, provide face images with combined variations of ex-
pression and pose. However, despite the availability of these
datasets since ten years now, the problem of robustness of
face recognition towards combined variations of pose and
expression has been left untouched. The aim of this paper
is to present a method able to compensate for expression
and pose variations. We present also the first results, to the
best of our knowledge, on the non-frontal and non-neutral
portion of Multi-PIE dataset.

Another lesson of the latest NIST evaluations, MBE and
MBGC, is the fact that the highest accuracy on frontal and
neutral face recognition has been obtained by commercial
SDKs [11]. Hence, to construct our pose and expression
tolerant face recognition system, it would be interesting to
leverage these results. Therefore, we address this problem
as a pre-processing : how to modify the pose and the ex-
pression of a face image, such that it can then be used by a
commercial SDK ?

The pose normalisation of an input face image is usually
done by synthesizing the face at a reference pose [5]. This
reference pose needs to be the same for all face images. A
natural choice is the frontal pose, as the face recognition
algorithms are tuned to work at this pose. Similarly, they
expect expressionless face images, i.e. neutral faces. But,
what is the definition of a neutral face ? How to modify a
face image such as it is neutral ? Naturally these pose and
expression ”modifications” need to leave the identity part
of the person intact. In this paper, we propose two meth-
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ods to perform these modifications. The first method, ”ex-
pression neutralization”, can be used in any recognition sce-
nario but assumes that, given enough generic prior knowl-
edge, one example of an input face image is sufficient to
infer its expression deformations (i.e. given enough generic
prior knowledge, the shape of an individual is sufficient to
estimate the shape of this person for any expression). The
second method, ”expression transfer”, is only applicable in
a verification scenario but its assumption is less restrictive :
it assumes that the deformations due to expressions, for an
ensemble of individuals, lie on a linear subspace.

The pose normalisation is usually addressed by a warp-
ing [6] [12] [2] [3] that utilizes the input image as a texture
map. This warping can be done in 2D or 3D. Owing to the
fact that a human head is a 3D object, we believe that it is
easier to model the variation of its shape (for an ensemble
of individuals) and of its pose in 3D, free of planar pro-
jection non-linearities (leaving the resolution of these non-
linearities when fitting an input image). One of the most
successful method for 3D face modelling method is the 3D
Morphable Model [6]. As it happens, this model has been
extended with expression variations [4]. Here, we revisit
this method, and show how it can be applied to face recog-
nition robust to pose and expression changes. After the re-
view of the state of the art, Section 2 briefly describes how
the Expression 3D Morphable Model was constructed and
how it is used to estimate the 3D shape and the pose of an
input face image. The ”expression neutralization” and the
”expression transfer” methods are then described in Sec-
tion 3. These methods are then empirically compared to
each other and to the state of the art on the Multi-PIE and
AR datasets in Section 4.

1.1. Related work

As mentioned earlier, there is little state of the art on
combined pose and expression normalisation for face recog-
nition. One of the notable recent approach is the one of
Berg et al. [3]. Similarly to the method presented here, it
aims to warp a face image to a novel view that is frontal
and neutral without loosing the identity information. This
is done by locating as many as 95 feature points in the in-
put image. Then, for each individual of a training set, the
closest set of feature points are searched across pose and ex-
pression variations. These feature points positions are then
averaged across training individuals, thereby finding the lo-
cation of the feature points of an ”average person” with the
same pose and expression as the ones of the input image.
A new image is then obtained by warping the positions of
these points to the canonical positions of an average indi-
vidual at a frontal pose and neutral expression. Hence, if
the input image shows a person with a fat nose, it will still
have a fat nose after warping. As it is a 2D warping method,
it copes with moderate pose variations.

Other methods have been designed to deal either with
pose or expression variations. As far as pose is concerned,
pose rectification is usually treated as an alignment pre-
processing : Blanz et al. [5] use a 3DMM to generate a
frontal view from an input image. This pre-processing was
tested in conjunction with off the shelf commercial face
recognition systems during the NIST FRVT-2002. The con-
clusion is that it was effective in compensating for pose :
Matching 45◦ views with frontal views increased the veri-
fication rate for 1% false alarm from 17% to 79%. As this
method is difficult to implement, due to the fact that it re-
quires a large set of training 3D scans that are registered
and its usage on an input image is computationally expen-
sive, researchers proposed simpler 2D methods : Huang et
al. [12] perform an in-plane alignment using a small 2D
training set by minimizing entropy. Asthana et al. [2] use a
feature point detector to locate a dozen landmark points and
estimate 3D pose by fitting an average 3D face. The novel
view is then obtained by using the input image as a texture
map and the 3D shape of the average face.

On the other hand, methods designed to address the ex-
pression variability of FR systems, usually, incorporate the
expression robustness directly in the FR algorithm and do
not treat it as a pre-processing. For instance, they assume
that the expression variations are localized and these regions
are treated as outliers and are hence not used in the compar-
ison [20] [23] [26].

2. 3D face morphable model
3D Morphable Model, proposed by Blanz et al. [6], is

one of the most successful methods to represent the space
of human faces. Learned from 3D scans, a 3DMM proposes
to approximate any individual face using a linear combina-
tion of limited modes. Thanks to the third dimension, the
3DMM is much more accurate with respect to its 2D coun-
terpart and can deal with out-plane pose variations, e.g.,
yaw or pitch rotations. Given an input face image in 2D,
the 3DMM fitting algorithm estimates the shape deforma-
tion coefficients, as well as those for the pose and the tex-
ture. A novel view of the input 2D face image can then be
generated where the pose is rectified. A standard FR SDK
can then be invoked, thereby making it capable to deal with
pose changes.

In this section, we briefly describe an extension of 3D
morphable model with expression variations as proposed by
[4]. An expression neutralization can thus be performed
by modifying the expression coefficients while keeping the
identity coefficients.

2.1. Training set

The construction of a 3D morphable model is based on a
statistical analysis of 3D face scans in full correspondence.
There exists several public 3D face datasets with expression



variations, e.g. BU-3DFE [28], Bosphorus [18] or D3DFacs
[7].

Given its significant set of expressive scans, the BU-
3DFE database has been chosen as training database of our
morphable model. In this database, 100 individuals are
available. Each of the 100 individuals in the dataset was
asked to perform the six universal expressions in addition
to the neutral one : Angry, Happy, Fear, Disgust, Sad and
Surprise. For the six non-neutral expressions, four stages of
intensity were recorded. In this work, we use the highest in-
tensity expression scans. Then, our training dataset contains
700 3D face scans.

Figure 1. Angry, neutral and surprise scans from the BU-3DFE
database

2.2. Modelling identity and expression variations

Before any statistical analysis, a registration step, as pro-
posed by Amberg [1], is performed. Once densely aligned,
principal component analysis (PCA) can then be applied to
those registered 3D face scans to extract the principal modes
of variation.

Each 3D face shape (with nvert vertex) is repre-
sented by a 3nvert × 1 dimensional vector, Si,e =
(X1, Y1, Z1, X2, ..., Ynvert

, Znvert
), where e refers to a

given expression (0 for neutral and 1-6 for expressions)
whereas i in 0...nid − 1 is the identity index. First, each
face is translated by removing the mean shape S. We sepa-
rate the subset into two subsets (one with neutral faces and
the second for the expressive scans). Two PCA are thus
computed (one on each set).

The first one, computed on neutral scans Si,0, gives an
identity morphable model whose principal axis of variations
are in the matrix Aid. New neutral faces can be generated
by varying the identity coefficient vector αid : (nid−1)×1

S = S +Aidαid (1)

The second PCA models the deformations due to expres-
sions. A PCA is thus performed on the offsets between ex-
pressive scans and neutral scans : ∆Si,e = Si,e − Si,0 for
e=1..6 yielding the axis of deformations due to expression
in Aexp. Face deformations due to expressions can hence
be generated by varying the expression coefficients vector
αexp : (6nid − 1)× 1

∆exp = Aexpαexp (2)

Combining equation (1) and (2), we can generate any
face with identity and expression variations :

S = S +
[
Aid Aexp

] [ αid

αexp

]
(3)

Some examples of face generated using this morphable
model are shown in Figure 2.

Figure 2. Faces generated with identity and expression variations

2.3. Fitting the morphable model to a 2D face image

This 3D morphable model can be fitted to a 2D image as
proposed by Matthews in [15]. The coefficients of the mor-
phable model are computed to minimize the distance be-
tween the 2D image and the projection of the 3D face. The
fitting process is initialized using the texture information of
the input 2D face image, e.g., contour, feature points (as de-
fined in the mpeg4 norm [17]) and the silhouette. Then, the
Levenberg-Marquart method is used to solve the minimiza-
tion problem.

Given a 2D image, the fitting computes the different
model parameters : Identity parameters (αid ∈ Rnid−1),
expression parameters (αexp ∈ Rnexp−1) and pose parame-
ters (αpose ∈ R6).

Figure 3. 3DMM fitting on face images with expression

3. Expression neutralization
Expression variations are sources of non-rigid deforma-

tions of facial shapes, causing changes in the appearance of
faces both in 2D and 3D. These appearance changes are ma-
jor sources of the FR accuracy drop for standard FR SDKs
mostly optimized for frontal and neutral 2D face images.



The method presented in this paper is based on synthe-
sizing of a novel view with a neutral expression while pre-
serving the identity. Specifically, a novel frontalized and
neutralized view of an input probe is generated using the
3D morphable model previously presented. Given a 2D face
image, this novel view is synthesized using the framework
described in Figure 4.

Figure 4. The framework for synthesizing a novel view

To generate a frontal view, Blanz et al. [5] extracts the
parameters of the 3D morphable model (Texture map, iden-
tity coefficients and pose parameters) and perform a render-
ing with new pose parameters. In this work, we make use
of the previously introduced extended 3D morphable model
which isolates the identity variations from those due to the
expression changes. Thus, the fitting of the 3DMM leads
to a set of expression coefficients in addition to the param-
eters in a standard 3DMM, i.e., identity, pose. A rendering
can then be performed by changing the expression coeffi-
cients and the pose parameters to generate a frontalized and
neutralized view of the face.

In this section, we present two methods to choose the
expression coefficients for synthesizing neutralized face im-
ages. The first one is based on a mean expression extracted
from neutral images. Then, a second method is proposed
to render an image with an expression closest to the gallery
one while keeping a same set of identity coefficients. This
method is based on a expression transfer : The expression
computed on the gallery image is transferred to the probe
image.

3.1. Mean neutral expression

The 3DMM presented in the previous section can gen-
erate any individual face with any expression. A standard
neutral expression can be used to render all faces with the
same neutral expression.

We determine this neutral expression on a training set of
N neutral images. The 3DMM is fitted to the ith neutral im-
age of the training set. Expression coefficients αi

exp corre-
sponding to this image can thus be extracted.The mean neu-
tral expression coefficients are then computed as the mean
of all extracted expression coefficients on the neutral train-
ing set.

αexp neutral =
1

N

N∑
i=1

αi
exp

Given these coefficients, a novel view of the probe image
can be generated with the mean neutral expression.

Specifically, the 3DMM is fitted to an input 2D face im-
age to compute the identity coefficients, the expression co-
efficients and the pose parameters. A novel mean neutral
view is then generated using the same identity coefficients
but with the mean neutral expression coefficients and the
input image as texture map (Figure 6).

Figure 6. Expression neutralization framework

With this method, each face image is neutralized with the
same mean neutral expression.

In this method, each face image is processed indepen-
dently. This process can thus be performed during the en-
rolment. The main drawback of this method is that the sep-
aration of identity and expression may be inaccurate. Facial
deformations related to expression can be assigned to iden-
tity part or the other way round. In the next section, we
propose a method where the 3DMM is simultaneously fit-
ted to a gallery and a probe pair to better separate identity
and expression.

3.2. Expression transfer for verification context

This method is specifically designed for verification
(”Am I the person I claim to be ?” ). In this context, both the
probe and gallery faces are available during the matching
process. In making the assumption that the two face images
are of the same identity, their appearance difference under
the same pose and roughly the same lighting conditions is
thus mainly due to the facial expression variations. Under
such a hypothesis, the 3DMM can be simultaneously fitted
to the probe image and the gallery image, using a same set
of identity parameters and two different sets of expression
coefficients.

Specifically, a unique set of identity coefficients is com-
puted on the two images along with two sets of expression
parameters (one for each image). The probe image is then
used as texture map (Figure 7).
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Figure 5. Examples of expression neutralization on the CMU MultiPIE database. Each row contains the gallery image (a), the probe image
(b), the result of the expression neutralization using the mean neutral expression (c) and the result of the expression transfer from the gallery
to the probe (d).

Figure 7. Expression transfer framework

Then, the novel view rendering is performed using the
identity coefficients, the expression coefficients extracted
from the gallery image and the texture map extracted from
the probe.

The key points of this method are this simultaneous fit-
ting of the identity coefficients and the transfer of the gallery
expression to the probe. Thanks to this simultaneous fit-
ting, deformations of the face are better separated between
identity and expression. Furthermore, compared with the
previous mean neutral expression method, expression trans-
fer generates a novel view of the probe with an expression
which is the closest to the gallery one. However, given the
simultaneous fitting of the 3DMM to the probe and the gal-
ley faces, expression transfer cannot be computed offline.
As a result, verification is the most suitable applicative sce-
nario of this method.

4. Experimental evaluations

In this section, we demonstrate the robustness of our two
methods to expression variations and pose changes using
two popular face databases, namely Multie-PIE [10] and
AR [14]. For these experiments, mug-shot images are used
as reference whereas images with variations in expression,
illumination and pose as probe. Results are shown in rank-1
recognition accuracy.

As presented in section 2.3, the fitting of the extended

3D morphable model is initialized using the texture infor-
mation. To concentrate on the effectiveness of the proposed
approach, manually labeled images are used at the initial-
ization step to exclude possible disturbances due to inaccu-
rate landmarks.

To evaluate our work, we use a commercial FR SDK.
Different pre-processing configurations are tested. First,
the SDK is used without pre-processing. Secondly, we pre-
process each probe image using the mean neutral expression
method. Finally, the expression transfer method is evaluated
: for each query, the expression of the gallery face is trans-
ferred to the probe both for matching and non-matching
pairs (Figure 8).

Figure 8. Expression transfer with different gallery identities

4.1. CMU-Multi PIE

The CMU Multi-PIE database [10] contains more than
750000 images with variations in pose, illumination and ex-
pression of 337 people. Each subject depicts various facial
expressions (Smile, surprise, squint, disgust and scream),
and 15 poses under 19 illuminations.

Expression variations As reference, neutral faces with
ambient illumination and frontal pose are used. To evalu-
ate our work, we use four subsets of this database. As in
[26], each subset is related to a specific expression (Smile
in session 1, squint and surprise in session 2 and smile in
session 3) with frontal pose and different illumination con-
ditions {0,2,7,13} for a more challenging recognition.

Table 1 shows the recognition rates for each subsets.
We can see that the mean neutral expression method im-



Sur-S2 Sqi-S2 Smi-S1 Smi-S3 Average Standard deviation

SRC[25] 51.4% 58.1% 93.7% 60.3% 65.9% 18.9
LLC[22] 52.3% 64.0% 95.6% 62.5% 68.6% 18.7
RRC L2[27] 59.2% 58.1% 96.1% 70.2% 70.9% 17.7
RRC L1[27] 68.8% 65.8% 97.8% 76.0% 77.1% 14.4
No pre-processing with the commercial SDK 83.7% 89.4% 94.6% 91.5% 89.8% 4.6
Mean neutral expression with the commercial SDK 89.4% 87.0% 94.2% 92.5% 90.8% 3.2
Expression transfer with the commercial SDK 99.1% 95.9% 97.8% 98.6% 97.9% 1.4

Table 1. Recognition rates on the CMU MultiPIE database on different expression subsets with illuminations variations.

Commercial SDK with
No pre-processing Mean neutral expression Expression transfer

camera Sur-S2 Sqi-S2 Smi-S1 Smi-S3 Sur-S2 Sqi-S2 Smi-S1 Smi-S3 Sur-S2 Sqi-S2 Smi-S1 Smi-S3

13 0 (30◦) 46.6% 58.7% 73.3% 58.7% 62.0% 52.2% 73.5% 66.1% 82.3% 71.9% 90.8% 86.1%
14 0 (15◦) 66.5% 79.5% 89.5% 79.5% 86.7% 75.1% 90.7% 85.8% 95.6% 89.2% 97.2% 98.7%
05 1 (0◦ ) 85.0% 89.7% 94.3% 89.7% 93.5% 87.7% 94.8% 89.4% 99.5% 96.6% 99.2% 97.8%

Table 2. Recognition rates on CMU MultiPIE with combined pose and expression variations. To the best of our knowledge, there is no
results in the state-of-the-art on these subsets.

proves the overall recognition accuracy of the commercial
FR SDK, in particular with the subsets with strong expres-
sion deformations (Smile-S3, Surprise-S2). In the two other
subsets, this method slightly decreases the performance of
the commercial FR SDK. In Squint-S2, the main deforma-
tions of the faces are related to the closed eyes and it is hard
to the fitting algorithm to affect these deformations to the
expression part (closed eyes) or to the identity part (epican-
thal fold).
The last row of the table shows the results with the expres-
sion transfer method. This method improves the recognition
rate of the commercial FR SDK in all the four experiments.
The simultaneous fitting of the 3DMM to both the gallery
and the probe images makes the problem of fitting more
constraint. A better separation between the identity and the
expression can thus be achieved.

The expression transfer method clearly outperforms the
other methods with respect to expression variations. The
last column of Table 1 shows an important decrease of the
recognition rate variations with this method.

Expression and pose variations In this section, we
present some results of simultaneous expression neutraliza-
tion and pose normalization on different subsets. Given the
lack of such experiments in the state-of-the-art, we designed
the following experimental protocol. For each expression
(Smile in session 1, Smile in session 3, Surprise in session
2 and Squint in session 2), three subsets with different poses
are used (Camera 05 1, 14 0 and 13 0 approximately at 0◦,
15◦ and 30◦). Figure 9 shows two examples of simultane-
ous expression neutralization and pose normalization.

a b c d

Figure 9. Simultaneous pose normalization and expression neu-
tralization on the CMU Multi-PIE database with surprise expres-
sion and moderate pose variations (About 30◦ (first row) and 15◦

(second row)). Each row contains the gallery image (a), the probe
image (b), the result of the mean neutral expression (c) and the
result of the expression transfer from the gallery to the probe (d).

Table 2 presents the corresponding recognition rates. As it
can be seen, the performance of the standard commercial
FR SDK is significantly improved when the probe faces
are pose normalized and their facial expressions neutral-
ized, either using the mean neutral expression method or
the expression transfer method. This improvement is par-
ticularly impressive when the expression transfer method is
used, leading to a recognition rate increase as high as 36
points for the subset surprise in session 2 (Sur-S2) with a
yaw angle of 30◦.

4.2. AR database

The AR database contains more than 4000 frontal im-
ages of 126 subjects with variation in expressions, illumi-
nations and occlusions. As in [23], we choose a subset (50
male and 50 female subjects) for probes. Since identities



Smi-S1 Ang-S1 Scr-S1 Smi-S2 Ang-S2 Scr-S2
SRC [25] 98.0% 89.0% 55.0% 79.0% 78.0% 31.0%
PD [20] 100.0% 97.0% 93.0% 88.0% 86.0% 63.0%
SOM [21] 100.0% 98.0% 88.0% 88.0% 90.0% 64.0%
DICW [24] 100.0% 99.0% 84.0% 91.0% 92.0% 44.0%
CTSDP [9] 100.0% 100.0% 95.5% 98.2% 99.1% 86.4%
FS [23] 100.0% 100.0% 91.4% 94.5% 98.0% 58.6%
No pre-processing with the commercial SDK 100.0% 100.0% 94.0% 99.0% 99.0% 76.0%
Mean neutral expression with the commercial SDK 100.0% 100.0% 96.0% 99.0% 99.0% 85.0%
Expression transfer with the commercial SDK 100.0% 100.0% 97.0% 99.0% 99.0% 82.0%

Table 3. Recognition rates on the AR database on different expression subsets.

are not specified in the previous works, we randomly chose
the subset. The gallery images are neutral faces recorded
during session 1. To evaluate our work, six subsets with
different expressions are tested.

Table 3 compares the recognition rates of the proposed
methods with the state-of-the-art. As it can be seen, face
recognition with the scream expression appears to be the
most difficult task whereas other expression subsets gener-
ate a recognition rate between 99% and 100%. The large
deformations of the face when screaming are related to a
widely opened mouth and closed eyes. Once more, the pro-
posed two pre-processing methods, in pose normalizing and
neutralizing facial expressions, improve the accuracy of the
commercial FR SDK. They both outperform all local-based
approaches, in particular with the more challenging expres-
sions. In the case of the scream expression in session 2, the
deformations of the faces are not only due to the expression
but also the temporal variation. In such a case, our meth-
ods achieve a comparable performance to CTSP which is a
method also based on the warping of face images.

5. Conclusion

We proposed two novel methods to improve the robust-
ness of standard FR SDKs with respect to expression and
pose variations. Given the fact that standard FR SDKs are
mostly optimized to perform 2D FR with high reliability us-
ing frontal and neutral face images, we proposed to synthe-
size a novel view of the probe where the expression is neu-
tralized and the pose rectified. For this purpose, an extended
3D morphable model, which isolates the identity variations
from those due to facial expressions, is used.

First, we presented a method to generate an image with
a mean neutral expression. To this end, novel view of the
probe is synthesized with expression coefficients extracted
on training neutral images. The main advantage of this
method is that only the probe is needed during the expres-
sion neutralization. This pre-processing can thus be per-
formed during the enrolment.

In order to improve the recognition rate with expressions

where identity and expression are difficult to separate, we
proposed a second method which transfers the expression
of the gallery image to the probe image in making the as-
sumption that they are of the same identity. As both gallery
and probe are needed, this method is better suited to verifi-
cation.

The experiments that we conducted on both Multi-PIE
and AR dataset showed that the proposed methods sig-
nificantly improved the robustness of a standard commer-
cial FR SDK towards expression and pose variations and
demonstrated the effectiveness of the proposed methods.
We also presented the experimental results of the pro-
posed methods on a challenging experimental protocol us-
ing Multi-PIE where pose and facial expression are simul-
taneously observed on face probe images.

In our future work, we want to improve the extended
3DMM to better handle the facial deformations.
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