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Abstract

We introduce an asymmetric sparse approximate embed-
ding optimized for fast kernel comparison operations aris-
ing in large-scale visual search. In contrast to other meth-
ods that perform an explicit approximate embedding using
kernel PCA followed by a distance compression technique
in Rd, which loses information at both steps, our method
utilizes the implicit kernel representation directly. In ad-
dition, we empirically demonstrate that our method needs
no explicit training step and can operate with a dictio-
nary of random exemplars from the dataset. We evaluate
our method on three benchmark image retrieval datasets:
SIFT1M, ImageNet, and 80M-TinyImages.

1. Introduction

Image comparison for the purpose of detection, recog-
nition, and localization, often reduces to computing statis-
tics, or features, from observe data and comparing them
in some high-dimensional embedding space, where the Eu-
clidean distance is rarely meaningful. Thus, many kernels
have been developed to emphasize different aspects of sim-
ilarity, such as the intersection of two high-dimensional his-
tograms. Kernel-based similarity is usually more costly to
evaluate than the Euclidean distance and becomes imprac-
tical as database size and dimensionality grow, which often
encourages designers of classification schemes to perform
generic dimensionality-reduction as a pre-processing step
before discrimination takes place. Such dimensionality-
reduction, unless specifically tied to the task at hand [21],
usually reduces discriminative power. Therefore, we focus
on making kernel comparisons efficient by compressing the
database as a whole, rather than datapoints.

Similarity search in high-dimensional spaces is usually
divided into two steps: (i) The dataset is filtered to rule
out a large percentage that is unlikely to be similar to the

test datum, leaving a relatively small candidate set, where
(ii) exact comparison with the test datum is performed via
reranking. Filtering (i) is commonly tackled by hashing
each object into a short code and performing lookups in
the resulting hash table [1, 6, 8, 11, 12, 19, 24]. Rerank-
ing (ii) is usually the bottleneck when the data space has
dimension in the hundreds to thousands. Depending on the
similarity function used, the complexity of each similarity
computation is at least directly proportional to this dimen-
sion. Additionally, filtering (i) must return a large candidate
set of similar objects to achieve high recall rates.

(a) Query (b) Top five hits

Figure 1. This paper presents an algorithm capable of determin-
ing the top 100 nearest neighbors in a database of approximately
79 million 384-dimensional GIST descriptors in under 2.5 s on a
single core processor.

Therefore, in this manuscript we address (ii) by propos-
ing a method to perform approximate nearest neighbor
(ANN) computations in high-dimensional space, relative to
an arbitrary kernel, with an asymmetric similarity score.
This is done for the purpose of comparing high-dimensional
feature descriptors that do not live in linear spaces, so the
use of kernels is often necessary. In addition, our method
can be applied to accelerate sparse coding [15], and any
other application where frequent computation of similari-
ties in high-dimensional spaces are required and the use of
kernels is beneficial.

The computation of the asymmetric kernel approxima-
tion is described in Sect. 2.3, after we place our contribu-
tion in the context of existing work (Sect. 1.1). We compare
the performance of our approach to the state-of-the-art in an
ANN task on benchmark datasets in Sect. 3.

1



1.1. Related work and our contributions

The theory of metric embeddings [18] provides meth-
ods to embed certain metric spaces into computationally
tractable spaces, while achieving low distortions. For in-
stance, the Johnson-Lindenstrauss lemma [10] exploits the
concentration of measure phenomenon of the Gaussian dis-
tribution to produce random projections that map n points
in `d2 to `Ω(8 ln(n)/ε2)

2 , with distortion ε. These mappings
are fast to evaluate, but the resulting approximation is often
outperformed by data-dependent methods that can capture
the data’s statistics. This is especially the case for natural
images that are concentrated on a “small volume” of the em-
bedding space of all possible images. Furthermore, the re-
sulting embeddings are symmetric, so a comparison of two
points must happen in the compressed domain, which can
introduce additional approximation error.

Many statistics of interest are normalized. For instance,
histograms of local gradient orientations such as SIFT,
SURF, HOG, CHOG, PHOG and other image descriptors
are elements of the sphere Sd−1 and are compared with the
cosine similarity function. For the cosine similarity, Prod-
uct Quantization (PQ) [9] provides an asymmetric embed-
ding of data points into indices of centroids obtained from
k-means clustering. PQ breaks a vector into α groups of
components, performs k-means on each group, and then, at
approximation time, it estimates the cosine similarity be-
tween a novel point and a point in the database asymmetri-
cally by performing α lookups, one for each of the closest
centroids to the data point. This method can provide a good
approximation to the cosine similarity, but it requires an ex-
tremely costly k-means “training” step. In addition, its rep-
resentative power is limited because (iii) it only constructs a
piecewise constant approximation of the dataset, (iv) it only
takes advantage of the marginal distribution of the data and
(v) it cannot directly be applied to arbitrary kernels. To
partially alleviate (v), the authors of [3] first construct an
explicit embedding of the dataset into `2 by performing Ker-
nel Principal Component Analysis (KPCA) before PQ. As
we have argued, generic dimensionality-reduction typically
yields complexity benefits at the expense of discriminative
power [5], which we wish to avoid.

For general kernels, kernelized locality sensitive hash-
ing (KLSH) [11] combines the central limit theorem and
locality sensitive hashing (LSH) [8] to generate approxi-
mately Gaussian-distributed vectors in feature space. Then,
it uses the sign of the dot product with these vectors to con-
struct an embedding into the Hamming cube {0, 1}d, where
d � 0. The Hamming distance between the image of two
points under this embedding is asymptotically proportional
to their angle similarity under the chosen kernel. Sparse
kernel approximations were recently used to provide signif-
icant speed up in image-based classification and detection

tasks in [23], where it is shown that PQ can be cast as a
sparse kernel approximation.

We wish to overcome the limitations described above
in the efficient computation of ANNs by (iii) computing a
piecewise affine approximation of the dataset (iv) that takes
into account the joint distribution of the data and is, there-
fore, adapted to the task and that (v) can be applied with
an arbitrary kernel. Our method does not require learn-
ing (e.g. clustering, as in [9]). It can be applied without
pre-processing the dataset to reduce its dimensionality1 and,
therefore, captures the natural statistics of the data. We em-
phasize that our work addresses (ii) and is, therefore, com-
plementary to any indexing structure, such as KLSH, be-
cause these filtering algorithms (i) all require an exact ker-
nel computation on a returned list of candidates.

We describe our algorithm in Sect. 2.3, after introducing
some background notions. Our asymmetric approximate
kernel is in Eq. (12), which is followed by a description
of its features compared to existing methods: It provides an
efficient kernel approximation for data in high-dimensional
spaces and yields a natural compression scheme through
sparse embeddings. It also naturally takes advantage of
the joint distribution of the data without requiring learning,
clustering, or pre-processing via dimensionality reduction.
In particular, we show that our algorithm outperforms PQ
with a dictionary of random datapoints. Our algorithm also
applies to arbitrary reproducing kernel Hilbert spaces, with-
out need for intermediate approximations, such as KPCA.
Because of asymmetric nature of our approximation, only
the dataset, not the query set, needs to be compressed,
and the achieved compression is significant: We show that
equivalent ANN performance can be achieved using a sig-
nificantly smaller memory footprint, and the compression
ratio does not depend on the size of the dictionary. In ad-
dition, the speed of our algorithm is essentially constant
across different kernels.

1.2. Background: kernel embeddings

A kernel embedding [18] is any map between kernel
spaces that preserves similarities between pairs of points.
Kernel embeddings can be used to convert a computation-
ally challenging problem into a tractable one. We focus
on kernel embeddings that convert computationally expen-
sive kernel evaluations in one space into computationally
tractable kernel evaluations in another.

It is not always possible to find an embedding between
two kernel spaces. Thus, we relax the definition to include
approximate embeddings with an allowable degree of dis-
tortion. Given two kernel spaces (M,K) and (M ′,K ′), an
ε-embedding of (M,K) into (M,K ′) is a map f : M →

1Of course, our method can also be applied after generic dimensionality
reduction if one so wishes; we discuss this issue in Sect. 3.



M ′ for which

K(x, y)− ε ≤ K ′(f(x), f(y)) ≤ K(x, y) + ε, (1)

for all x, y ∈ M . We call ε the distortion of the embed-
ding. Approximate metric embeddings were introduced to
quantify the distortion of an embedding.

In addition to the symmetric ε-embedding in equa-
tion (1), we introduce the following asymmetric variant:
Suppose g and h are maps between kernel spaces M and
M ′. We call the relaxation of equation (1) to

K(x, y)− ε ≤ K ′(h(x), g(y)) ≤ K(x, y) + ε, (2)

for all x, y ∈ M , an asymmetric ε-embedding. This defi-
nition is useful when we have a subset, Y ⊆ M , that we
would like to search, but computing g is costly, while com-
puting h and K ′(h(x), g(y)) is not. Thus, to efficiently
search Y we compute and store the image, g(y), of each
data point and compute comparisons in the range, M ′. Ide-
ally, g(M) has a smaller memory footprint than M . Note
that PQ is an asymmetric embedding with h : Rd → Rd
given by the identity, while g is the concatenation of several
subquantizers.

2. Sparse kernel approximations
Suppose our data lives on the unit sphere, Sd−1 ⊆ Rd,

and we have a dictionary matrix, D = [z1, · · · , zm] ∈
Rd×m. If Y is our dataset, our aim is to map each y ∈ Y to
an α-sparse point, ΦD(y) ∈ Rm, such that y ≈ DΦD(y).
Because our goal is to approximate the inner product, 〈x, y〉,
for any x ∈ Sd−1, Cauchy-Schwartz implies that we should
minimize ‖y −DΦD(y)‖:

|〈x, y〉 − 〈x,DΦD(y)〉| = |〈x, y −DΦD(y)〉| (3)
≤ ‖y −DΦD(y)‖. (4)

Now, if the residual ‖y −DΦD(y)‖ is small, the following
simple observation is key to our paper:

〈x, y〉 ≈ 〈x,DΦD(y)〉 = 〈DTx,ΦD(y)〉. (5)

This produces an asymmetric supy∈Y {‖y − DΦD(y)‖}-
embedding with g(y) = ΦD(y) and h(x) = DTx. If we
precompute DTx, we reduce the complexity of computing
the dot product in Rd to α � d additions. Despite its sim-
plicity and the computational benefits it affords, to the best
of our knowledge, this fact has not been exploited in the
literature. In the following sections, we develop this obser-
vation in the context of sparse kernel approximations.

2.1. Reproducing kernel Hilbert spaces (RKHS)

Given a set, X , a reproducing kernel on X is a map,
K : X × X → R, such that K(x, y) = 〈Φ(x),Φ(y)〉H

for some Φ : X → H, to a Hilbert space, H. We call H
a feature space. If K is positive definite, the existence of
Φ is guaranteed by Moore-Aronszajn’s theorem [2]. Now,
suppose that K is a normalized kernel function on X , i.e.
K(x, x) = 1 for x ∈ X . We consider distances on X
induced by K : X ×X → R:

d(x, y)2 = K(x, x) +K(y, y)− 2K(x, y) (6)
= 2(1−K(x, y)). (7)

Because K implicitly represents an inner product inH, d is
a true metric on X . Thus, any approximation of the metric,
d, naturally induces an approximation of K and vice versa.

From now on, we work in the general setting: let Y ⊆ X
and x ∈ X . From (7), we see that d(x, y) is minimal when
K(x, y) is maximal. Thus, a nearest neighbor of x in Y is
any point y ∈ Y such that K(x, y) is maximal.

2.2. Symmetric kernel embeddings

Suppose we are given a dictionary set, D =
{z1, · · · , zm} ⊆ X , and a kernel, K. One way to pro-
vide an approximation for arbitrary kernels is to approx-
imate the mapping, Φ. The Hilbert space, H, associated
to K may be infinite-dimensional. Thus, Φ is infeasible
to compute explicitly. In this case, we opt to approxi-
mateH = span(Φ(X)) with a finite-dimensional subspace,
HD ⊆ H:

HD = span{Φ(z1), · · · ,Φ(zm)}. (8)

Thus, we seek a map, ΦD : X → HD, so that K(x, y) ≈
KD(x, y) = 〈ΦD(x),ΦD(y)〉HD

.
Sparse kernel approximations [23] provide a sparse ap-

proximate embedding into feature space by solving the op-
timization:

ΦD(x) = arg min
Φ′∈Rm

‖Φ′‖0≤α

∥∥∥∥∥Φ(x)−
m∑
i=1

Φ(zi)Φ
′
i

∥∥∥∥∥
2

H

. (9)

Approximate solutions can be generated using sparse recov-
ery algorithms, such as orthogonal matching pursuit (OMP)
[17], that only need to compute inner products in H. The
vectors, ΦD(x), produced by this embedding are sparse and
high-dimensional. If we increase the size of the dictionary,
D, we can only increase the approximation quality of the
resulting vectors. In addition, a larger D requires no extra
storage for fixed sparsity ΦD(x). Unfortunately, these large
sparse vectors are not directly comparable in terms of inner
products. Instead, if DG ∈ Rm×m is the Gram matrix of
D, ΦD(x)TDGΦD(y) ≈ K(x, y).

KPCA [20] performs a dense m′ ≤ m dimensional em-
bedding of the dataset into HD by choosing the m′ dimen-
sional subspace, H′D, that best approximates HD in the
least-squares sense. Note that KPCA aims to find a single



subspace that best explains all of the data, whereas sparse
kernel approximations choose the α-dimensional subspace
that best approximates each data point.

2.3. Asymmetric sparse kernel approximations
(ASKA)

If the sparse vectors, ΦD(x), were directly comparable,
we could compute inner products in, at most, α additions.
However, note that, in general, we do not wish to compare
points within the (training) dataset but want to compare a
test datum (query) to each element of the dataset. In ad-
dition, we do not enforce that two similar points x and y
even have similar encodings: The inner product between
two high-dimensional sparse vectors could easily be zero.

In the beginning of Section 2, we showed that the sparse
vectors, ΦD(x), were directly comparable with the images
of query points under the adjoint map, DT . In the case of
kernels, the adjoint map takes the form

x 7→ K(x,D) (10)
= (K(x, z1), · · · ,K(x, zm)). (11)

Thus, if Y ⊆ X is a dataset and x ∈ X a query, we can
compute K(x, y), for y ∈ Y via

K(x, y) ≈ 〈K(x,D),ΦD(y)〉HD
. (12)

This follows because

K(x, y) ≈ 〈Φ(x),

m∑
i=1

Φ(zi)Φ
D
i (y)〉HD

(13)

=

m∑
i=1

ΦDi (y)K(x, zi) (14)

= 〈K(x,D),ΦD(y)〉HD
. (15)

By using sparse kernel approximations, we can save consid-
erably when |Y | � m. In addition to providing a fast kernel
approximation, if α is sufficiently small, the sparse embed-
ding, ΦD(x), produces a natural compression scheme. The
advantages of ASKA (12) can be summarized as follows:

1. The search time is essentially constant across differ-
ent kernels. Indeed, after computing K(x,D) (m ker-
nel operations, where m � |Y |), we can approxi-
mate 〈x, y〉 with an α-sparse Euclidean dot product,
〈K(x,D),ΦD(y)〉HD

.

2. It takes advantage of the joint distribution of the data
through the dictionary, D.

3. It requires no prior learning, clustering, or dimension-
ality reduction: In Sect. 3 we show that it outperforms
PQ with a dictionary of random exemplars from the
dataset. In addition, as previously noted by [4], for
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Figure 2. SIFT1M comparison of (a) ASKA with K(x, y) =
〈x, y〉, m = 1024 and α = 8, and (b) PQ with 8 subquantizers.
The mean square errors are 3.8 · 10−6 and 1.2 · 10−5 respectively.

the purposes of classification, dictionaries built from
random exemplars perform just as well as dictionaries
learned from the data.

4. It applies to arbitrary RKHS kernels without an inter-
mediate approximation step, such as KPCA.

5. It does not compress query points, leading to faster
search and better approximation.

6. It can greatly reduce the memory usage of the original
dataset by a factor of O( dα ). In addition, the compres-
sion ratio does not depend on the size of the dictionary,
D. Thus, one can achieve better approximation, while
maintaining the same compression ratio.

7. It is a piecewise linear model, so it is necessarily more
expressive than a piecewise constant model, such as
PQ. Indeed, for PQ, one may need to greatly increase
k (see Table 1) in order to place a subquantizer near
enough to each projected data point.

8. The encoding of any point can be computed quickly
with inexpensive algorithms, such as OMP [17], while
achieving a good approximation.

The main disadvantage of the sparse kernel approxima-
tion is that it does not map objects to a discrete set. In-
stead, it maps objects to the list of non-zero components
and coefficient values of the sparse representation. This still
achieves high compression with less accuracy loss as shown
in Tab. 2 and Fig. 2.

3. Experiments
We developed our sparse kernel approximation in C++

using the SPAMS-toolbox [14]. Of the many sparse ap-
proximation algorithms, we chose OMP [17] because it is
fast (O(αf(K)m) with f(K) the cost of a kernel evalua-
tion), easy to implement, and provides a good approxima-
tion with low sparsity levels.



Cost ASKA PQ KLSH JL

Preprocessing 0 k-means(|Y ′|) 0 0

Data encoding O(αdm) O(αdk) O(db) O(dp)

Memory (bytes) O(4α) O(α log2(k)/8) O(b/8) O(4p)

Search (flops) O(dm+ α|Y |) O(dk + α|Y |) O(db+ b
32

|Y |) O(dp+ p|Y |)

Table 1. Various costs associated to each algorithm. Notation: Y ′ is a training set for k-means, b is the number of bits in the KLSH hash
code, p is the dimension of the JL projection. For simplicity, we only show the costs for the cosine kernel, 〈·, ·〉. Note that the data encoding
cost of ASKA is dependent on the sparse coding algorithm. We used OMP for all of our experiments [17].

3.1. Datasets

We utilized three benchmark datasets common in large-
scale image search: a medium-scale, SIFT1M [9], consist-
ing of 1 million 128-dimensional SIFT descriptors [13] and
10000 queries; a larger ImageNet-based set of 1.26 mil-
lion 1000-dimensional bag-of-words (BOW) vectors and
their associated class labels from the large scale recogni-
tion challenge [7]. Our query set consists of 50000, 1000-
dimensional BOW vectors and their associated class labels.
Finally, the TinyImages [22] dataset consists of 80 mil-
lion, 384-dimensional Gist descriptors [16] extracted from
28×28 images crawled on the web. The TinyImages dataset
contains about 1 million constant color images, resulting in
many identically zero Gist descriptors. These were removed
from the database.

3.2. State of the art and evaluation protocol

We compared our method with KLSH [11], KPCA fol-
lowed by Product Quantization [9] (PQ), and a baseline
method consisting of KPCA followed by a random pro-
jection in the style of the Johnson-Lindenstrauss lemma
(JL) [10]. We only compared against methods that gener-
ate an approximation of the underlying kernel. Thus, we
did not compare against hashing methods which approx-
imate a non-kernel (e.g. semantic) similarity. We could
compare at either similar memory, or similar computation
costs. We chose the latter because comparing at equal stor-
age is unfair to PQ: the computation cost would blow up at
the query (2O(#bytes) flops) and preprocessing (2O(#bytes)-
means) stages as shown in Table 1. Throughout the compar-
isons we set these methods to the default parameters found
in the respective papers: KLSH generates a 300-bit hash
code, PQ and JL perform kernel PCA with a dictionary of
size m = 8192 and approximate subspace H′D of dimen-
sion 128. Then, PQ performs an asymmetric approximate
embedding with 8 vector subquantizers. Similarly, JL ran-
domly projects to a 32-dimensional vector space spanned
by the columns of a random Gaussian matrix. Note that we
chose a 32-dimensional projection so that JL could com-
pete with the other methods. After KPCA, we randomly
permuted the components of the database and query set as

in [3]. This does not affect the JL projection, but is em-
pirically known to improve the result of PQ [3]. Note that
computing the Hamming distance between two 300-bit hash
codes is slightly more costly than simply adding 8 floating
point numbers.

We evaluated our method on three datasets with four
kernels: cosine, chi-square, intersection, and Hellinger.
We performed exhaustive nearest neighbors search and
evaluated the quality using two scores: Recall@R and
recognitionRate@R. Recall@R measures the proportion
of queries for which the first approximate nearest neigh-
bor appears in the top R true nearest neighbors. The
recognitionRate@R metric is computed by performing k =
5 nearest neighbor classification and calculating whether or
not the correct class label appears among the top R most
frequently appearing class labels.

We reiterate that ASKA is designed to address (ii), so it
is complementary to any indexing structure that addresses
(i). Thus, we we do not attempt to evaluate it in conjunction
with such a scheme.

3.3. Nearest neighbors search: effect of dictionary
size and sparsity

Fig. 4 shows the effect of the dictionary size m: All but
the intersection kernel performed at an acceptable level with
m = 1024. This is probably due to the substantial non-
linearity present in the “min” operation. We confirmed the
statement of [3] that performance of KPCA + PQ saturates
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Figure 3. ImageNet: (a) Recall@R for ImageNet with m = 8192
and α ∈ {8, 16, 32, 64}. (b) Recall@R for 128-dimensional
KPCA.
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Figure 4. SIFT1M recall@R for m ∈ {1024, 2048, 4096, 8192} and α = 8.

beyondm = 1024. This makes sense because KPCA forces
a single 128-dimensional subspace to explain all of the data.
In contrast, ASKA achieved better approximation with in-
creasing dictionary size, while maintaining the same com-
pression ratio.

In Fig. 3(a), we experimented with different sparsity
levels and a fixed dictionary size on ImageNet. As ex-
pected, the sparsity level dramatically affects the approxi-
mation quality: Fig. 3(b) shows that we outperformed 128-
dimensional KPCA with sparsity α = 32.

3.4. Comparisons with other methods

Figs. 5 and 6 compare our performance with other meth-
ods. In all of our experiments we fixed a dictionary with
m = 8192 columns randomly chosen from the database
and a sparsity level α = 8. Tab. 2 shows that we achieved
60-fold compression of ImageNet, while still outperforming
each of the other methods. At query time, we performed the
exact same number of operations as KPCA + PQ, less op-
erations than KPCA + JL, and slightly less operations than
KLSH to compute the kernel (although KLSH does not re-
quire computing K(x,D) for each query).

Fig. 7 plots the recognition rates we obtained using
different kernels. Sometimes, performing KPCA on the
data prior to classification improves accuracy. We showed
that applying KPCA with kernel K, followed by applying
ASKA with the cosine kernel, achieves higher recognition
rates than all other methods. It is interesting to note that the
cosine nearest neighbors classifier performs worse than the
other kernels that are specifically tailored to histograms.

SIFT1M ImageNet Tiny Images

Original file size 516 MB 5.1 GB 121.7 GB

Compressed file size 67.8 MB 85.8 MB 5.31 GB

Compression ratio 7.61 60.86 22.9

Table 2. File compressions achieved by sparse coding, while out-
performing the other methods.

3.5. TinyImages

Fig. 8 shows the results we obtained by exhaustive search
with a dictionary of size m = 8192 and sparsity α = 8.
Because there is no ground truth set for this database, we
displayed the top 5 search results obtained and highlight the
instances for which we retrieved the correct nearest neigh-
bor in the database with a green box. The search took≈ 2.5
seconds per query to retrieve the 100 nearest neighbors on
a single core processor. The encoding of the 79 million,
384-dimensional GIST features took between 2 to 4 hours,
per kernel, on a 4-core Intel CPU @ 3.4 GHz, with 12 GB
of memory. Note that this time is essentially independent
of the kernel used: After computing K(x,D) for a query x
(m = 8192 kernel evaluations), we can compute the near-
est neighbors among the dataset with sparse Euclidean inner
products (α = 8). In addition, the 22.9-fold compression
(Tab. 2) allows storing the database in main memory.

4. Conclusion

We introduced asymmetric sparse kernel approximations
in the context of nearest neighbors search. Our algo-
rithm achieved satisfactory approximations with no train-
ing, heavy compression of the original database, and fast
query time while outperforming the state of the art. This
makes our method particularly suited to image-based im-
age retrieval, where a large number of features living in
high-dimensional non-linear spaces must be evaluated at
query time. Asymmetric sparse kernel approximations en-
joy wide applicability beyond nearest neighbors search.
Indeed, many learning algorithms require the asymmet-
ric evaluation of kernels against large collections of fixed
database points. Such applications will be the subject of fu-
ture research. Our code is available at the following URL:
http://www.math.ucla.edu/∼damek.
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(c) Hellinger kernel
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Figure 5. SIFT1M recall@R with m = 8192 and α = 8. The average search time per query was ≈ 21ms. The average encoding time
across kernels was 1.5ms per database element. Both timings were achieved on a single core Intel CPU @ 3.4 GHz with 16 GB of memory
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(c) Hellinger kernel
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Figure 6. ImageNet recall@R with m = 8192 and α = 8. The average search time per query was ≈ 40ms. The average encoding time
across kernels was 6.2ms per database element. Both timings were achieved on a single core Intel CPU @ 3.4 GHz with 16 GB of memory
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Figure 7. ImageNet recognition@R with m = 8192 and α = 8.
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Figure 8. Sparse linear scan with m = 8192 and α = 8.
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