
Who Do I Look Like?
Determining Parent-Offspring Resemblance via Gated Autoencoders

Afshin Dehghan, Enrique G. Ortiz, Ruben Villegas, Mubarak Shah
Center for Research in Computer Vision, University of Central Florida

{adehghan, eortiz}@cs.ucf.edu, ruben.e.villegas@knights.ucf.edu, shah@crcv.ucf.edu

Abstract

Recent years have seen a major push for face recogni-
tion technology due to the large expansion of image shar-
ing on social networks. In this paper, we consider the diffi-
cult task of determining parent-offspring resemblance using
deep learning to answer the question “Who do I look like?”
Although humans can perform this job at a rate higher than
chance, it is not clear how they do it [2]. However, recent
studies in anthropology [24] have determined which fea-
tures tend to be the most discriminative. In this study, we
aim to not only create an accurate system for resemblance
detection, but bridge the gap between studies in anthropol-
ogy with computer vision techniques. Further, we aim to an-
swer two key questions: 1) Do offspring resemble their par-
ents? and 2) Do offspring resemble one parent more than
the other? We propose an algorithm that fuses the features
and metrics discovered via gated autoencoders with a dis-
criminative neural network layer that learns the optimal, or
what we call genetic, features to delineate parent-offspring
relationships. We further analyze the correlation between
our automatically detected features and those found in an-
thropological studies. Meanwhile, our method outperforms
the state-of-the-art in kinship verification by 3-10% depend-
ing on the relationship using specific (father-son, mother-
daughter, etc.) and generic models.

1. Introduction

From the moment a baby is born, he is faced with the
question,“Who does he look like more, the father or the
mother?” With differing opinions, it is often difficult to ever
answer this question completely. Anthropologists have tried
to answer this question with quantifiable measurements for
years. In [24], Naini and Moss claim to have cracked the
code finding the most meaningful genetic features in deter-
mining relatedness. Further studies [2, 5, 6], claim to have
correlated visual resemblance between parents and their off-
spring of varying ages. In this paper, we aim to bridge the
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Figure 1. Our method, given a set of patches from parent-offspring
pairs, learns the most discriminative features and metrics to de-
scribe parent-offspring relatedness.

gap between findings in the social sciences and computer vi-
sion to answer the age-old question, “Who do I look like?”

Sparking much research and debate, anthropology began
to explore this question with Christenfeld and Hill’s pio-
neering work [9], concluding that children do not look like
parents, with the exception of one-year olds to their fathers.
Brédart and French [5] later contradicted those findings stat-
ing there is a large resemblance between parents and chil-
dren up to the age of 5. Subsequent studies have corrobo-
rated that offspring do in fact resemble parents more than
random strangers and at different ages may resemble a par-
ticular parent more [2, 6].

When assessing the resemblance of parents and their off-
spring it is crucial to consider which features are the best
(the most similar between parents and offspring), which
we refer to as genetic features. Past anthropological stud-
ies have not only analyzed familial relationships, but more
specifically the relationship between twins [7, 8, 20]. Naini
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and Moss [24] specifically compare facial features across
3D scans of dyzogotic and monozygotic twins. This twin
method allows finding which features are genetic vs. envi-
ronmentally influenced. In this work, we directly compare
our automatically discovered features to the features from
anthropology [24] to see if they correlate.

In the computer vision community, there has always
been great interest in implementing the human visual sys-
tem; however, finding a general principle that underlies
most perception is still very challenging. Recently, deep
learning architectures have shown great power in discover-
ing biologically inspired features in an unsupervised fash-
ion, and have been successful in tasks ranging from face
verification to object recognition [14, 16, 17, 4, 15]. There-
fore, we found these approaches well suited in discovering
features that model parent-offspring resemblance. In learn-
ing the relationship between parents and their offspring, we
further propose using a new generative and discriminative
model based on the gated autoencoder [1, 22, 21]. Our
method enables us to learn the transformation matrix and
feature representation jointly through a hybrid system un-
like existing approaches. Prevailing methods use simple,
hand-crafted features [11, 12, 19, 28], discover the metrics
between them separately [11, 19, 28], and/or only find a sin-
gle metric [19, 28]. In general, none of the existing work ad-
dress the questions we aim to answer with the quasi-genetic
features discovered via deep learning.

While anthropological studies have found a correlation
between parental effort and father-son resemblance [3, 25],
and a further relationship between facial resemblance and
trust [18], computer applications contrastingly aim to use
facial resemblance to automate retrieval tasks. With the in-
creasing pervasiveness of photos in social networks and in
search engines, new methods for sifting through this data
is essential. In these difficult scenarios, contextual infor-
mation like the co-occurrence [23], position [13], and rela-
tionship [27] of individuals in an image has proven advanta-
geous in increasing recognition rates. Recognition could be
further aided by kinship relations. Besides providing con-
textual information, we believe familial resemblance can
aid in reuniting parents with their missing children.

In this paper, we propose a method to discover the opti-
mal features and metrics relating a parent and offspring via
gated autoencoders. Moreover, we introduce a new layer
that further enhances the relationship of a parent-offspring
pair converging on a more discriminative function. Given
our proposed method, we aim to answer two key questions
from the perspective of a computer:

1. Do offspring resemble their parents?

2. Do offspring resemble one parent more than the other?

Given the answers to these questions, we can in turn con-
clude whether computer vision findings agree with anthro-

pology and consequently discover which facial features lead
to the best performance in parent-offspring recognition.

The rest of this paper is organized as follows: First, in
Section 3, we introduce our method combining gated au-
toencoders with a discriminative layer to discover the best
feature and metrics to describe the parent-offspring relation-
ship. Next, in Section 5, we explore our core questions,
compare our automatically discovered features to those in
the anthropology literature, and evaluate the kinship verifi-
cation task. Finally, in Section 6, we summarize our find-
ings and propose some future work.

2. Related Work
In the computer vision community, most interest has

been in kinship verification (family or not family). Fang et
al. [12] first introduces the problem and postulates simple
features like eye color, distances between facial parts, and
skin color work well for verification. Subsequently, Xia et
al. [28] claim that the appearance similarity between par-
ents and their offspring is quite large, thus propose transfer
learning between two photos of a parent, one young and
one old, and an image of a child to close the gap. Unfor-
tunately, in a real-world application we cannot always ex-
pect the availability of such data. Lu et al. [19] propose a
metric learner specifically for kinship verification. Though
effective, the features used are not necessarily the most
discriminative. Finally, Fang et al. [11] present a method
for kinship identification (family matching) using sparse
representation-based classification for different facial com-
ponents claiming them as ’genetic features’. However, they
make no direct connections with existing anthropological
works. In general, none of the existing works address the
main questions we aim to answer.

3. Autoencoder
Recently autoencoders have shown promise in feature

learning [26] and have been correlated to the way the human
visual system processes imagery. Deep learning architec-
tures provide the means to find a compact representation of
the data while keeping the most important information. This
property allows us to learn the most discriminative features
that encode the resemblance between a parent and their off-
spring, which we refer to as ‘genetic features’.

A simple way to train an autoencoder is minimizing the
reconstruction error given a set of N randomly sampled lo-
cal patches from the training set:

L =

N∑
n=1

∥∥∥y(n) − y′(n)
∥∥∥2 , (1)

where y(n) ∈ RNy represent the nth image patch, y′(n) =
WTWy(n), and W ∈ RNy×Nm is the weight matrix that



maps the input data to the hidden units, which is a discov-
ered representation. Ny and Nm represent the dimension
of the image patch and number of hidden units respectively.
Once the learning method is finished the weights W will be
used as filters for feature extraction.

4. Gated Autoencoders

Autoencoders have shown good performance in model-
ing the representation of a single image. However, we are
interested in encoding the relationship between a pair of im-
ages. Thus, when we present a new pair of images, the hid-
den units will change even if the transformation between
images remains the same. We move towards the use of rela-
tional autoencoders which help us learn the transformation
between a pair of images, while still benefitting from the
ability of autoencoders to represent the data.

One naı̈ve way to achieve our goal in finding the relation-
ship between two images is a standard feature learning on
the concatenation of the two images. Although this feature
learning may capture the transformation between images, it
is still dependent on the content of each individual image.
A better representation should be dependent on the input
data as well as the transformation between them. Gated au-
toencoders [1, 21, 22] allow encoding the relation between
images and frees the network to focus only on the transfor-
mation of the images rather than the representation of each
individual image. In this case the activation of the hidden
units will be dependent on both inputs, x and y.

As shown in Figure 2, our proposed method takes parent-
offspring pairs as input, from which we extract patches.
Given these patches, we first learn the mapping units z
via a gated autoencoder, which is the generative portion
(Section 4.1) that learns the new feature representation that
best describes the relationship between the pair. The next
stage implements our discriminative model (Section 4.2)
that finds the best features to differentiate between true pairs
versus wrong pairs. The final output of our system is a relat-
edness or resemblance statistic, which we can use for clas-
sification. The details of each stage are discussed in the
remainder of this section.

4.1. Generative Training

Our generative model closely follows [1, 22] to encode
the transformation between a pair of images. If we re-
call from autoencoders, given an input image patch, y, the
hidden units are obtained via fk =

∑
j wjkyj . In gated

autoencoders, it is very similar, however the weights are
a linear combination of one of the inputs. For example,
given a pair of local image patches, x and y, if we con-
sider wjk(x) =

∑Nx

i wijkxi, then the weights are obtained
as follows:
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Figure 2. Gated Autoencoder Diagram. This diagram depicts the
processing of a father-son pair and the process leading to the final
discriminative filter that gives the relatedness prediction.

zk =

Ny∑
j=1

Nx∑
i=1

wijkxiyj . (2)

We refer to the weights zk as mapping units. Given a basis
expansion of input x as well as the mapping units z one can
get output vectors y′ and x′ similarly:

y′j =

Nz∑
k=1

wjk(x)zk =

Nz∑
k=1

Nx∑
i=1

wijkxizk, (3)

x′i =

Nz∑
k=1

wjk(y)zk =

Nz∑
k=1

Ny∑
j=1

wijkyjzk, (4)

where Nx, Ny and Nz are the dimension of x, y and z re-
spectively. Factorizing the parameter W into three matrices
[22] results in the following equations:

wijk =

F∑
f=1

wx
ifw

y
jfw

z
kf

zk =

F∑
f=1

wz
kf (

Nx∑
i=1

wx
ifxi)(

Ny∑
j=1

wy
jfyj), (5)

where F is the number of hidden units. We can further sim-
plify the equation and write it in the form of:

z = KT (p ? q), (6)



where p = UTx and q = V Ty are the hidden units, and
? indicates elementwise multiplication. The columns of
U ∈ RNx×F and V ∈ RNy×F contain our image filters
that are learned along with K ∈ RF×Nz from the data. It
is worthwhile to mention that the mapping units, z, encode
only the transformation and not the content of each individ-
ual input.

Given z and x, y′ can be computed using Equation 3 and
x′ can be computed similarly given y and z. Therefore, for
learning, we simply minimize the reconstruction error using
gradient-based optimization over the loss function:

Lgen =

N∑
n=1

∥∥∥y′(n) − y(n)
∥∥∥2 + N∑

n=1

∥∥∥x′(n) − x(n)
∥∥∥2 , (7)

where N is the number of image patches used for training.

4.2. Discriminative Training

A good generative method can ensure that our model has
preserved most of the information from the original train-
ing data. However, it does not necessarily give us optimal
discriminative ability. Since label information is available
for training, we propose to modify our objective function
by adding a discriminative term, which takes into account
the labels while learning the features. Therefore, we are
able to learn features which are not only generative, but also
discriminative, in other words able to differentiate between
parent-offspring and not pairs.

A discriminative objective function computes an average
loss between the predicted and ground-truth labels. Here
the ground-truth labels take the values one (same family) or
zero (not same family), therefore the discriminative objec-
tive function can be written as:

Ldisc =

N∑
n=1

∥∥∥softmax(T (z(n)))−GT (n)
∥∥∥
1

(8)

softmax(ak) =
exp(ak)∑
k′ exp(ak′)

k = 1, ...,K a ∈ RK ,

where GT ∈ [0, 1] and T ∈ R2×Nz is a classifier to be
learned. Combining both the discriminative and generative
models results in our final hybrid model:

Lhybrid = Lgen + αLdisc, (9)

where α is selected to avoid overfitting of our discriminative
function. The best α is easily found by cross validation over
the training data, which in our experiments came to be 0.4.

5. Experiments
In this section, we explore our two main questions:

1. Do offspring resemble their parents? (Section 5.2)

2. Do offspring resemble one parent more than the other?
(Section 5.3)

Then, we compare our automatically discovered features to
those found in anthropological studies (Section 5.4.1). Fi-
nally, we explore performance of our method on kinship
verification (Section 5.4.2) and how well different methods
produce generic kinship models (Section 5.4.3).

5.1. Experimental Setup

For all experiments involving the gated autoencoder
method, we experimentally found the following optimal pa-
rameters. For each input pair, we extract 8×8 patches from
an RGB image of size 64 × 64 (performance plateaued at
this size). We set the number of filters to F = 160 and
the number of mapping units to Nz = 40. During training,
pairs are provided with their corresponding labels, same or
not same. For training our generative model, we only in-
put pairs with label same, but for training the discriminative
model both positive and negative samples are required. For
discriminative training, the number of negative patches are
set to be equal to the number of positives. The parameter
α is found through cross validation, which is 0.4. When
using SVMs for classification, we use the RBF kernel with
parameters selected via 4-fold cross validation.1

5.2. Relatedness

To explore the question, “Do offspring resemble their
parents?”, we look at the face identification task. In other
words, can our algorithm match an offspring to the correct
parent given a large gallery of parents. This experiment
mimics anthropological studies [2, 6, 5], where a human
subject is shown an offspring image and three images of
adults and is asked to match the offspring to his/her most
likely parent. In [2], all the images are taken under specific
conditions which makes the decision easier for judges. All
of the subjects are asked to express a neutral face and to
look directly at the camera, the background is removed, and
the illumination and contrast is normalized in all images.
In our experiment, the problem is substantially more diffi-
cult, since we can easily show it more images and they are
unconstrained from the web [11]. Moreover, this models
a realistic usage scenario where an operator would want to
match a missing person with a database of families.

We employ the Family 101 [11] dataset to investigate
the relatedness between parents and their offspring. This

1For more information visit http://crcv.ucf.edu/
projects/kinship/.

http://crcv.ucf.edu/projects/kinship/
http://crcv.ucf.edu/projects/kinship/
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Figure 4. Rank Results. The first row of this figure shows the query child or offspring followed by the latter part of the figure showing the
top ranked parent results. The first row of the parent matches shows the top rank 1 match followed by three other results, with a green box
denoting the correct match.
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Figure 3. Rank vs. Identification. The graph shows the result of
the identification task on Family 101 for each split (Father-Son,
Father-Daughter, Mother-Son, and Mother-Daughter) compared to
Chance.

dataset consists of 206 nuclear families, 101 unique fam-
ily trees, and 14,816 images. We select 101 unique, nu-
clear families for our experiments and we split the set into
50 training families and 51 testing families for a total of
11,300 images. For training, we match every possible
parent-offspring pair in a family for a maximum of ten im-
ages each. We apply our discriminative feature learning
technique on the training relationships between all possible
mother-daughter (MD), mother-son (MS), father-daughter
(FD), and father-son (FS) pairs. Given a test image, we ap-
ply its respective model to compare it to every image of test
parents; in other words, a test son is compared to all fathers
and all mothers and the candidates are ranked based on their
similarity. Figure 3 summarizes the results in terms of rank
vs. the identification rate, showing that for the most part
all of the splits perform better than chance (average shown -

some performed better w.r.t. to own curve) at all ranks. This
result corroborates anthropological findings stating that off-
spring resemble their parents more than random adults with
a rate higher than chance [2, 6, 5].

Finally, Figure 4 shows qualitative results for our method
on the Family 101 dataset. The first row depicts the child or
offspring, followed by subsequent rows showing the 1st and
a few other ranked matches with the correct matches high-
lighted in green. This figure highlights the true difficulty of
this dataset with large variations in pose, illumination, im-
age quality, and occlusions, which often causes the correct
match to fall to a larger rank, e.g. first column at rank 48.

5.3. Resemblance

Next, we look at, “Do offspring resemble one parent
more than the other?” To analyze this question, we setup
the experiment in terms of training identically to the previ-
ous section, however for testing we only compare an off-
spring to its known parents. In this comparison, we record
which parent the offspring resembles more as a frequency
for each gender with a margin of 5% due to the tight distri-
bution of predictions (e.g a FS resemblance prediction score
of 60% and MS of 58% is not considered). Our results in
Table 1 show that sons overall resemble their father more of-
ten than their mother and daughters resemble their mother
more than their father. Our results parallel anthropological
findings in which daughters resemble their mothers more
often than sons do their fathers.

5.4. Genetic Features

Finally, we examine our method with respect to three
factors: 1) how our discovered features compare to those
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High
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Figure 5. Genetic Features. This figure depicts the feature response of our method overlaid on the mean face from each data split separately
of the Face 101 dataset. The last two show the overall scores for the trained models and an estimate of the anthropological weights
from [24].

Son Daughter

Father 62.6% 18.5%

Mother 37.4% 81.5%

Table 1. Resemblance Results. This table shows results for the
Family 101 dataset comparing a test offspring to their parents and
counting how many times they match the father or the mother.
Sons resemble their fathers and daughters resemble their mothers
more often than not.

from anthropological studies, 2) how well our genetic fea-
tures outscore the state-of-the-art in metric learning, and 3)
how well the feature models generalize.

5.4.1 Computer vs. Anthropology

We first analyze the features and metrics discovered by
our method compared to those determined by Naini and
Moss [24]. As previously stated, Naini and Moss use the
twin-method to discover genetic vs. environmental features,
in other words, the features that best describe familial re-
semblance vs. all others. Using 3D scan measurements,
they rate the importance of each facial component, for ex-
ample the left-eye is rated higher than the base of the nose.
Similarly, we aim to find which features our method finds
most meaningful. We employ the Face 101 dataset for this
task. Given this data, we train a father-son, father-daughter,
mother-son, and mother-daughter model separately provid-
ing the discriminative output describing the importance of
each patch for distinction during learning. Figure 6 shows
automatically discovered feature filters with some strong
edges and circular shapes. Next, we test each model on
test data and the feature responses are overlaid on the mean
test faces for each split as well as a fusion of them to show
the overall response (All) in Figure 5. Overall, the eyes,
chin, and parts of the forehead give a large feedback. The
response to the eye locations are especially correlated to the
anthropological results shown in the final image, which as-

Parent Offspring 

Figure 6. Discovered Filters. This figure shows sample filters
automatically discovered using autoencoders trained on parent-
offspring image patch pairs. The left column shows filters for par-
ents and the right for offspring.

sign them a high weight as shown in the image on the far
right. Interestingly, the mother-daughter relationship has
large responses throughout the face, confirming the strong
resemblance between mothers and daughters versus fathers
and daughters found in [2].

5.4.2 Face Verification

Next, we explore the face verification task in order to
compare how well our method performs against exist-
ing metric learning techniques and determine whether fus-
ing the findings from anthropological studies with our
method improves performance. For this task, we use the
KinFaceW [19] dataset, which is comprised of two sets,
KinFaceW-I with 533 parent-offspring pairs from differ-
ent images and KinFaceW-II with 1,000 pairs from the
same image. The data is split into 134 father-son, 156
father-daughter, 126 mother-son, and 116 mother-daughter
relationships. Similar to [19], we follow a 5-fold cross-
validation with balanced positive and negative pairs. To
test our implementation, we were able to obtain compara-
ble accuracy as reported in [19], often getting higher re-
sults. We find the best metric for analysis is mean average



FS FD MS MD Mean

ITML [10] 75.3 64.3 69.3 76.0 71.2

NRML [19] 66.7 66.8 64.8 65.8 66.0

Generative 70.5 70.0 67.2 74.3 70.5

Anthropological 72.5 71.5 70.8 75.6 72.6

Discriminative 76.4 72.5 71.9 77.3 74.5

Table 2. KinFaceW-I Verification Results. This table summarizes
results on the KinFaceW-I verification data where face pairs are
from different images. Our discriminative model outperforms all
other methods in terms of mean average precision from 7-15%.

FS FD MS MD Mean

ITML [10] 69.1 67.0 65.6 68.3 67.5

NRML [19] 78.8 73.2 71.9 77.9 75.5

Generative 81.8 74.3 80.5 80.8 79.4

Discriminative 83.9 76.7 83.4 84.8 82.2

Table 3. KinFaceW-II Verification Results. This table summarizes
results on the KinFaceW-II verification data where face pairs are
from the same image. Our discriminative model outperforms all
other methods in terms of mean average precision by up to 14%.

precision (MAP) because it summarizes verification perfor-
mance over a wide range of operating thresholds for a set of
queries, as opposed to the single one reported by accuracy.

Tables 2 and 3 summarize the results on the KinFaceW-I
and II respectively. The first two entries are metric learners
Information-Theoretic Metric Learning (ITML) [10] and
Neighborhood Repulsed Metric Learning (NRML) [19].
ITML tends to pull together all pairs marked as similar mak-
ing no distinction in classes, while NRML pulls together a
kin-match, while pushing away all other uncorrelated pairs.
The advantage of our method compared to these methods is
that, we are learning the features and metrics jointly. More-
over, instead of learning one metric, we learn multiple met-
rics at the same time which more precisely guarantees to
capture the transformation between a pair of images. The
Generative entry in the table refers to our feature learning
technique followed by SVM classification, whereas the Dis-
criminative technique uses the proposed hybrid model. As
can be seen, the generative+discriminative model is better
than the pure generative model by ˜4% and outperforms
the metric learners by 5-14%. This means that learning the
features and metrics jointly improves performance.

We further explore our method by introducing the
weights in [24] to put more emphasis on parts we labeled
followed by patch extraction. The weights show the rela-
tive contribution of heredity and environment for each facial

Figure 7. Facial Parts. Here we depict the parts we use in the ex-
periments introducing weights for the most genetic features [24].

feature as shown in the last image of Figure 5. The intu-
ition behind our experiment is that the more genetic is a fa-
cial feature, the more contribution it should have in finding
parent-offspring pairs. Therefore, we increase the contribu-
tion of the parts with higher weights by repeating the cor-
responding patches during training. We manually selected
the parts shown in Figure 7 in a way to be as close as possi-
ble to the ones in [24] for the KinFaceW-I split and results
are shown under the Anthropological entry of Table 2. In-
terestingly, the weights help in MAP by about 2% over the
generative results, however the discriminative model is able
to find the best features without any part detection or anno-
tation.

5.4.3 Generalizability

Finally, we explore the generalizability of each method by
training a generic model for parent-offspring relationships
combining all father-son, father-daughter, mother-son, and
mother-daughter pairs. Intuitively, we want to see if we
can learn the genetic relationship between parents and off-
spring overall and still perform well across domains. More-
over, having a generic model can be useful in finding family
members and is more suitable when the gender of the test
subject is unknown. Similar to previous verification exper-
iments, we use the KinFaceW dataset, do a 5-fold cross-
validation, and record the results in terms of MAP as shown
in Table 4. Most interestingly, all of the models obtain com-
petitive results using generic learned models versus the re-
lationship specific ones and our discriminative method still
outperforms other methods by approximately 6-7%.

6. Conclusions and Future Work
In this paper, we introduce a new method for learning

discriminative, genetic features for describing the parent-
offspring relationship. Using this method, we uncover three
key insights that bridge the gap between anthropological
studies and computer vision. First, we find that our results
corroborate the finding that offspring resemble their parents
with a probability higher than chance (Section 5.2). Second,
we conclude that female offspring resemble their mothers



KinFaceW-I KinFaceW-II

ITML [10] 69 75.3

NRML [19] 67.7 74.1

Generative 68.3 78.9

Discriminative 72.72 81.09

Table 4. Generic Model Results. This table shows results for train-
ing a generic model combining all parent-offspring pairs. Our Dis-
criminative model outperforms the next best metric learner by 6%.

more often than their fathers, while a male offspring only
slightly favor the father(Section 5.3). Third, our algorithm
discovers features similar to those found in anthropological
studies, for example the eyes and parts of the nose, how-
ever our method generally uses additional information to
make its decisions (Section 5.4.1). Moreover, we consider
the face verification task and obtain a performance increase
over existing methods by 5-14% depending on the relation-
ships analyzed. Further, we consider the generalizability of
each learning method and find that our method outperforms
existing techniques by up to 7%.

In summary, we have made the first major strides towards
bridging the gap between computer vision and anthropolog-
ical studies by looking at the parent-offspring relationship,
however there is still a large breadth of literature with fur-
ther insights into vision problems. Moreover, kinship ver-
ification in the past has tended to focus on looking at in-
dividual relationships like mother-daughter, however as we
showed, a joint, generic model is quite adequate at the task,
thus requiring more research.
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