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Abstract

We focus on the problem of estimating the ground plane
orientation and location in monocular video sequences
from a moving observer. Our only assumptions are that
the 3D ego motion ~t and the ground plane normal ~n are
orthogonal, and that ~n and ~t are smooth over time. We for-
mulate the problem as a state-continuous Hidden Markov
Model (HMM) where the hidden state contains ~t and ~n and
may be estimated by sampling and decomposing homogra-
phies. We show that using blocked Gibbs sampling, we can
infer the hidden state with high robustness towards outliers,
drifting trajectories, rolling shutter and an imprecise intrin-
sic calibration. Since our approach does not need any ini-
tial orientation prior, it works for arbitrary camera orien-
tations in which the ground is visible.

1. Introduction
With the wide spread of cheap and light consumer cam-

eras, new applications are developing such as dashboard or
ego cameras (attached to helmets or glasses), or cameras at-
tached to bikes or remote controlled vehicles. The major
difference to traditional recording techniques is that there
is only weak human guidance: There is no object being
watched or scene being captured, but a path being docu-
mented. In this paper, we focus on paths on the ground
plane and tackle the problem of estimating the orientation
and the path of the camera — or from camera’s perspective:
Where is the ground and how do we move on it?

Such knowledge about the ground plane orientation and
offset is an important prior for many computer vision ap-
plications, e.g. tracking [7], semantic segmentation [1], free
space estimation [14], and scene analysis [5, 6]. If we use a
monocular setup, the knowledge about the ground plane is
particularly useful since it a allows to measure distances by
projecting foot points onto the ground plane. Furthermore,
if we have a moving camera, we can project the camera po-
sition onto the ground in order to relate observations from
different frames with each other.

Such a motion of a moving monocular camera is con-

best global hypothesis Ssampling prior pc(~c | S)

Figure 1. Overview over our approach. Given the prior pc(~c | S)
(left, color-coded dots) that a correspondence ~c lies on the ground
plane S, homographies are sampled (right, estimation from the
four red circles), decomposed and used as ground plane hypothe-
ses. Our Hidden Markov Model finds the best path over time
through many ground plane hypotheses. By this, S is refined and
thus the sampling prior pc.

strained since it occurs on the ground plane. An obvious
idea is to determine the plane from homographies which
are established between pairs of frames. However, these
planes are not consistently connected over time and sam-
pling points from within one plane and from the right plane
is a problem. In this work, we jointly solve the problem of
estimating the motion and finding the ground plane. We for-
mulate both unknowns as continuous hidden states in a Hid-
den Markov Model (HMM) which allows finding a smooth
solution over time. Having determined a smooth solution,
we use blocked Gibbs sampling to refine our solution. Since
our method has no orientation constraint but just enforces
that the motion vector ~t should be orthogonal to the ground
plane normal ~n over many frames, it can be used to deter-
mine the orientation in a large variety of video sequences.

This paper is structured as follows. In Sec. 2, we give
an overview over related work. In Sec. 3, we describe the
homography decomposition which is used to estimate the
ground plane and ego motion. In Sec. 4, we derive the Hid-
den Markov Model and we show how to initialize and itera-
tively refine the solution using blocked Gibbs sampling. In
Sec. 5, experimental results are presented, and in Sec. 6, we
will have a conclusion.
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2. Related Work
Existing approaches of ground plane (GP) estimation can

be classified into which and how many sensors are used, and
into the restrictions which are applied on the motion (e.g.
planar or nonholonomic) and on the camera orientation.

An obvious solution of the estimation of the GP orienta-
tion is to extract the 3D scene structure. Assuming a dom-
inant ground plane, RANSAC-like approaches can be used
for robust parameter estimation. Since there might be other
planes besides the GP in the 3D data, estimating GP param-
eters from 3D data is a multi-structure fitting task which can
be solved by approaches like J-Linkage [19]. The 3D struc-
ture can be obtained from depth sensors as LIDAR [10] or
TOF [12]. A less expensive alternative to generate 3D point
clouds is a stereo camera setup in which the ground plane
can be estimated from disparity [17]. Assuming that the
scene is static, monocular approaches for simultaneous lo-
calizing and mapping (SLAM) can also be used to extract
the 3D shape and then the GP [18, 11]. However, in con-
trast to our work, these approaches use wide-angle or omni-
directional cameras for enhanced robustness. In our work,
we tackle the problem of estimating the GP without deter-
mining the 3D structure. The advantages are lower compu-
tational complexity, lower sensitivity to degenerate configu-
rations or small field of view, and higher robustness towards
geometrical imperfections of the camera projection.

Our approach was inspired by the approach of [21] who
also assume a freely-moving monocular camera setup. They
use plane estimates from a homography decomposition as
initialization for a bundle adjustment of 3D structure and
ego-motion. However, these estimates are not necessarily
the ground plane, but façades or even planes on moving
vehicles. Furthermore, since their optimization approach,
dubbed TRASAC, maximizes a number of inlier trajecto-
ries, the GP with only few features is often not considered.

Since GP estimation has manly been used for obstacle
detection for robots and cars, the parameterization of the
motion is usually chosen problem specific. [17] assume
a fixed camera orientation with respect to the GP. Further,
they assume a downwards-looking camera which, to our ex-
perience, simplifies the problem since multi-structure fitting
is not needed. With a similar setup, [9] estimate the GP ori-
entation given the motion from dedicated odometry sensors.

Since a byproduct of our ground plane estimation is
the ego motion, our work is related to visual odometry
in which most approaches do not need a 3D reconstruc-
tion step. However, there exist only few monocular ap-
proaches. Since the reduction to a single camera leads to
ambiguities and higher noise sensitivity, constraints on the
type of motion are important. [13] propose an approach
in which camera rotations are restricted to occur around
the vertical axis. [16] show that if additionally the motion
is nonholonomic, ego motion estimates can be found from

Figure 2. The camera coordinate system with the z-axis ~ez point-
ing into the direction of view. Although n3 is obviously negative,
the ground plane is still visible.

only one correspondence which drastically reduces the sam-
pling complexity. Both methods use a decomposition of the
framewise Fundamental Matrix F which only allows to find
the translation direction – the distance is found from ded-
icated odometry sensors. Our work is more general since
we train the usual camera motion from data. Besides, in-
stead of F, we decompose the ground plane homography
H which allows to recover the translation distance up to a
constant global scale. The monocular approach in the Viso
software [4] decomposes F first and then finds the trans-
lation distance by a decomposition of H of the dominant
plane. However, this plane does not have to be the GP and,
as visible during the experiments, switching between differ-
ent planes heavily perturbs the visual odometry. In contrast,
our HMM reliably selects the true GP by enforcing orthog-
onal ego motion and GP normal over long time spans. To
the best of our knowledge, although very simple, this con-
straint has not been proposed before for visual odometry or
GP estimation. Closest is the work of [20] who used the
orthogonality as additional linear constraint to synchronize
the scales of different moving objects in monocular multi-
body SfM.

3. Sampling of Ground Plane Orientation
In order to estimate the ground plane orientation ~n and

ego motion ~t from an image pair, we decompose a homo-
graphy H which has been estimated using a minimal sam-
pling set of four correspondences. Let x̄ be the homoge-
neous representation of a 2D point in image coordinates and
~x the corresponding 3D point in the camera coordinate sys-
tem (cf. Fig. 2). The rigid coordinate transformation

~x′ = R~x+ ~s (1)

of 3D points ~x with shift ~s and rotation R is constrained as
follows if ~x are located on a plane defined by ~nᵀ~x = d (~n
pointing towards the plane): The image projections x̄ are
transformed according to

x̄′ = Hx̄ = K(R + ~t · ~nᵀ)K−1x̄, (2)

where K is the camera matrix with x̄ = K~x, and

~t =
~s

d
(3)



is the translation of the camera, normalized by the absolute
distance d between the GP and the camera center.

We use the standard technique from [8, Ch. 5] to decom-
pose H into D = (~n,~t, ~r), where ~r is an axis/angle repre-
sentation of R.

For the decomposition, the camera matrix K is assumed
to be known. As we will show in the experiments, an ap-
proximate

K =
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w

2
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π
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)
(4)

at an image withw and height h, assuming a horizontal field
of view of 60 degrees, is sufficiently accurate.

For a general homography H, there are four possible de-
composition Dj , out of which ~n1 = −~n2 and ~n3 = −~n4. It
is often stated (e.g. in [8, Ch. 5]) that a positive z-coordinate
nj3 can be used to determine upon visibility and to rule out
one of D1 and D2, and of D3 and D4, respectively. How-
ever when the horizon is visible in the camera, planes with
n3 < 0 are still visible (Fig. 2). Thus, we directly project
that points x̄i onto the plane, which were used to estimate
H:

x̄i = K~xi ∧ ~nᵀj ~xi = 1 . (5)

We choose those two decompositionsDj which yield xi3 >
0 in all the resulting projected 3D points ~xi. If there is no
solution, then the points x̄i were located on different sides
of the horizon and we discard H.

4. Maximum Likelihood Time-Consistent
Ground Plane Estimation

The course over the frames f of the ground plane nor-
mal ~nf as well as the ego motion (~tf , ~rf ) during a whole
sequence is estimated using a state continuous Hidden
Markov Model (HMM) formulation defined by continuous
underlying states S, observations O, and observation and
transition probabilities po(O | S) and pt(S′ | S), respec-
tively. Denote by Sf = (~nf ,~tf , ~rf ) the ground plane orien-
tation and ego motion at frame f . The transition probability
pt(S

f+1 | Sf ), short pt(Sf+1), describes the likelihood of
a state change due to motion or orientation changes of the
camera. The observation probability po(Of | Sf ), short
po(Of ), describes the probability of observing the minimal
sampling set Of = {(x̄1, x̄′1), . . . , (x̄4, x̄

′
4)} from which H

and its decomposition can be estimated, given that the un-
derlying state is Sf .

The model has the layered structure displayed in Fig. 3.
At each frame f , decomposition estimates from different
minimal sampling setsOfi form competing states Sfi . Tran-
sitions are possible from every state at frame f to every state
at f + 1. After we observed a sequence (estimated many
decompositions from differentOfi , cf. Sec. 4.3), and having

1 2 F f. . .Sfi

1

2

3

i

...

Figure 3. The structure of the HMM. Nodes represent states Sf
i .

Each layer of states at a frame f is densely connected with the
layer of the consecutive frame f +1. The left and rightmost nodes
are the enter and exit nodes. If the nodes are assigned an observa-
tion likelihood and the edges a transition likelihood, the shortest
path according to Eq. (6) maximizes the HMM likelihood.

learned the distributions po and pt (cf. Sec. 4.2), the HMM
is used to find the most likely sequence of decompositions
through F frames:

~p ∗ = arg min
~p

lHMM(~p)

= arg min
~p

lHMM(S1
p1 , . . . , S

F
pF ,O

1
p1 , . . . ,O

F
pF )

= arg min
~p

F−1∑
f=1

(
lo(Ofpf ) + lt(S

f+1
pf+1

)
)

+ lo(OFpF ),

(6)

where l denotes the negative log likelihood of a correspond-
ing probability p. The path ~p ∗ is found by searching the
shortest path through the corresponding graph (Fig. 3).

4.1. Blockwise Linearity Assumption

In order to reduce the computational cost for establish-
ing the Markov model, to reduce measurement noise and to
eliminate the false of the two remaining H decompositions,
we process the sequence blockwise. Instead of each pair
of consecutive frames being decomposed into Df , a whole
block of length N receives a decomposition Bf . Assign-
ing multiple frames in a block the same decomposition is
justified by the demand to receive a smooth decomposition
regarding ~t and ~n. Furthermore, more stable block decom-
positions can be found since estimation errors can be aver-
aged out and since the homographies can be estimated over
multiple time spans.

In order to estimate one decomposition for a block of
length N , we use the first frame as reference frame: We
decompose homographies H1i between the first and the ith

frame in the block. For each H1i, there are two possible de-
compositions Di

1 and Di
2. Since the first frame is the same

for all H1i, the camera coordinate system is also the same
for all Di. Thus, we can compare two decompositions and



easily determine an energy

E(D1, D2) = ∠(~n1, ~n2)2

+
1

2

((
∠(~t1, ~n2)− π

2

)2
+
(
∠(~t2, ~n1)− π

2

)2) (7)

describing the dissimilarity between two decompositions
in terms of parallel ~n and orthogonal ~n and ~t. The best-
matching decompositions are found by minimizing the error
Eblk:

~c ∗ = arg min
~c

∑
i,j≥2,i6=j

E(Di
ci , D

j
cj ) = arg min

~c
Eblk, (8)

where ~c ∈ {1, 2}N is a binary indicator variable. We min-
imize Eblk with QPBO [15]. Although the energy is not
necessary submodular, finding ~c ∗ is usually successful in a
very short period if the underlying homographies were sam-
pled from a planar structure.

Finally, we assign the block the decomposition B =
(~n,~t, ~r) by combining the individual sub-decompositions
Di
c∗i

= (~nic∗i ,
~t ic∗i , ~r

i
c∗i

). While combining, we assume that
the stability of a homography H1i grows linearly with the
span si = i − 1. Thus, a decomposition receives a weight
wi proportionally to si. We combine vectors ~ni (and analog
~t i, and ~r i) to ~n by a weighted average of direction ~ni

/|~ni|

and normalized length |~ni|/si independently:

~n =

(
N∑
i=2

wi
|~ni|
si

)
·

(
N∑
i=2

wi
~ni

|~ni|

)
. (9)

Please note that in contrast to sampling correspondences
to estimate a decomposition D between a pair of frames, in
order to estimate a block decompositions, four trajectories
are sampled. Since the trajectories may not last over the full
block length, some decompositions may be unavailable. For
convenience, this is not expressed in equations (8) and (9),
but the implementation for estimating a block estimation
with missing data is straightforward.

4.2. Observation and Transition Probabilities

4.2.1 Modeling

The observation and transition probabilities po(O | S) and
pt(S

′ | S) from Eq. (6) are assumed to be stationary.
We model both as Gaussian mixtures over angular devia-
tions δo, and ~δ respectively.

The angular deviation for the observation probability is
simply the root mean square error of E in Eq. (8):

δo =
√
Eblk. (10)

The transition probability depends on four angular devi-
ations from a linear motion:

δ1(S′ | S) = ∠(~n, ~n′) (11)

δ2(S′ | S) = ∠(~t,~t ′) (12)

δ3(S′ | S) = |~r|+ |~r ′| · sgn
(
∠(~r, ~r ′)− π

2

)
(13)

δ4(S′ | S) = arctan
1

|~t |
− arctan

1

|~t ′|
. (14)

The definition of Eq. (11) and (12) is straightforward.
Eq. (13) is more complicated in order to handle orienta-
tion changes of ~r, e.g. between right and left curves. δ4
in Eq. (14) needs some more explanation. The motion ~t has
been defined as a fraction in Eq. (3), thus

α = arctan
1

|~t |
= arctan

d|~n|
|~s |

. (15)

Accordingly, in the triangle spanned by the orthogonal vec-
tors d~n and ~s, α is that angle having ~s as adjacent and d~n as
opposite leg. δ4 is the deviation of this angle in two consec-
utive states. The fact that we can trade off a distance change
to the ground plane with a change in speed is inherent to the
homography decomposition. However, by the ground plane
orthogonality constraint in δo, we encourage that d remains
constant.

4.2.2 Training

We train the mixture models for po and pt using all blocks
of all city sequences of the Kitti dataset [3]. Here, different
kinds of motion patterns occur (sharp curves, acceleration
and braking) observed from a camera on a car roof. We use
GPS to compute ground truth poses and from this underly-
ing ground truth states Sfgt and GP homographies Hf

gt (2).
Please note that this motion is quite restricted, since, e.g.,
a car does not lean into curves. However, it seems ground
truth for less restricted motions is not available.

Regarding the observation probability po, we collect
samples of δo using many decompositions Bf sampled
from inlier trajectories I(Hgt) of different blocks and se-
quences. However, although sampled from inlier trajecto-
ries, Bf still might be estimated from a degenerate sam-
pling set. We have many ground truth cues at hand to select
such bad observations (e.g., the deviations δi(Bf |Sfgt), i =
1 . . . 4), but their weighting is unknown and using a single
cue leads to poor results. The sum of relative deviations

δfrel =

4∑
i=1

δi(S
f+1
gt | Bf )

δi(S
f+1
gt | Sfgt)

(16)

allows to relate the angular deviation over time between the
ground truth and the decomposition, assuming that the fol-
lowing state is given by the ground truth. For each block,



we sample 100 different inlier decompositions Bf and se-
lect that one which minimizes δfrel.

In order to estimate the transition probability pt, the
ground truth decompositions are extracted from Sfgt and the
deviations ~δfgt are computed. However, there is no normal
associated with the GPS data – it is assumed that the camera
is always perfectly horizontally aligned with the horizon,
thus ~n = (0, 1, 0)ᵀ. But then δ1(S′ | S) would always be
zero. Instead, we assume that δ1 is uncorrelated to δ2 . . . δ4,
and has the same distribution as δ2.

Having many samples of δo and ~δ, the mixtures for pt
and po are estimated using 10 components and weights ac-
cording to the relative occurrence of the components.

4.3. Sampling Decompositions

Since only a small fraction of the ground plane may be
visible, random sampling results in a small fraction of min-
imal sampling sets O which are entirely sampled from the
ground plane. Since the number of samples of each frame
quadratically raises the complexity of the HMM, we use an
iterative approach which alternates finding the underlying
HMM state and sampling for 20 times. By this, inlier-only
minimal sampling sets (MSS) are sampled with increasing
probability over the iterations (cf. Fig. 4).

4.3.1 Initial Sampling

For each block, the trajectories are initially motion-
segmented into 10 segments using multi-scale motion clus-
tering [2]. Since trajectories from the same segments are
more likely to be on the same plane, we sample such that
an MSS is within one segment with 50% probability. Our
observation is that by this, we need far less samples than we
would need with random sampling. We sample 300 decom-
positions for each block and use the best 100 according to
Eblk to find an initial estimate of the HMM’s hidden states
according to Eq. (6).

4.3.2 Blocked Gibbs Sampling

After we have an initial estimate of the underlying states
S = (S1, . . . , SF ) from all blocks f , we use blocked
Gibbs sampling for refinement. Thus, we sample further
MSSs containing trajectories to estimate further block de-
compositions. Since we cannot sample MSSs from the
HMM’s observation probability po, we introduce the prior
pc(c

f | S) specifying the likelihood of a correspondence
cf = (x̄f , x̄′f ) in the f th block given the underlying states
S. We define it as follows:

pc(c
f | S) ∝

F∑
φ=1

po(Oφ) · w(f − φ)

· pplane(c
f | Sφ) · pstable(x̄

f | Sφ),

(17)

Figure 4. Distribution of pc (cf. Eq. (17)) in the first and 20th it-
eration of sequence 2. Red denotes high and blue low probability.
While pplane enforces that points which do not fulfill the plane mo-
tion (e.g. the houses on the right), pstable cancels out solutions over
the horizon (cf. Fig. 5) and which would be located very far if on
the ground plane.

Figure 5. Minimal sampling sets (red circles) sampled according
to pc as displayed in Fig. 4. The green markings on the estimated
ground plane are located at z = {2|~t|, . . . , 5|~t|,∞} as well as at
x = {−2.5d, 0, 2.5d}. The magenta circle is the projection of the
estimated ego motion ~t into the image.

where po is the observation probability of the MSS Oφ at
frame φ from the most likely HMM solution found so far,
and w is a Blackman-Harris window with a radius corre-
sponding to 10 s. These two weighting factors allow prop-
agating likely solutions to nearby frames, while pplane and
pstable guide the sampling within a frame as follows: pplane
specifies that the motion of c should fulfill the motion of
Sφ (2), and pstable prioritizes numerically stable solutions.

We define pplane(c | S) as distribution of the relative sym-
metric reprojection error

r =
1

2

ε(x̄′,HS x̄) + ε(x̄,H−1S x̄′)

ε(x̄, x̄′)
, (18)

where ε specifies the Euclidean distance of the image co-
ordinates of two homogeneous vectors. r is assumed to be
Gaussian-distributed with vanishing mean and standard de-
viation 5. In order to compute pstable(x̄ | S), we project x̄
on the plane (5) yielding a 3D position ~x. In this paper, we
assume that points with a large z-coordinate x3 are unstable
since a small perturbation in the image has a big effect on
the ground plane orientation. Points near the horizon even
might be projected from x3 = ∞ to x3 = −∞. Thus, we
prioritize using a Gaussian on x3 having a vanishing mean
and standard deviation 10d.

4.3.3 Pruning

Although we guide the sampling, the quadratic complexity
of the transitions in the HMM is intractable if we would
consider all observations O sampled in all previous itera-
tions. To prune possibly bad observations O, we compare
the negative log likelihoods lo(O) with lHMM(~p ∗) (6). Since
all lo and lt are positive, we can discard all O with

lo(O) > lHMM(~p ∗) (19)



as they cannot improve a given HMM. Furthermore, all
samples Ofi are pruned which would raise the negative log
likelihood of the HMM too much: Alternative paths ~p fi
which differ from ~p ∗ at frame f by using state Sfi are dis-
carded iff

lHMM(~p fi ) > 2 · lHMM(~p ∗). (20)

Of course, this assumption leads to discarding alternative
diverse paths and may prune good observations. However,
similar to simulated annealing, during the first iterations,
lHMM is quite high and alternative paths can be explored.

5. Experiments
For the evaluation, we use sequences from the Kitti

dataset [3] (Fig. 6) as well as own data containing a large
variety of different camera motions and setups (Fig. 7). The
first class of sequences is taken with high quality cameras
and there are GPS tracks available. Furthermore, the cam-
eras are fixed to a car, so the ground plane orientation does
not change significantly over time. In contrast to these se-
quences, the own videos are not aligned with the horizon
and the optical axis does not coincide with the motion di-
rection. In order to test the impact of an imprecise camera
matrix, we use the generic K from Eq. (4) for our own data.
An additional difficulty is that the sequences 9-12 show dif-
ferent, untrained motion patterns recorded by a low-quality
keychain camera with major rolling shutter distortions1.

5.1. Ground Plane Orientation Accuracy

In this experiment, the accuracy of the ground plane es-
timation is measured using the Kitti sequences. We use two
quality criteria for the evaluation: The comparison of inlier
correspondences and the direct comparison of the angle be-
tween estimated and ground truth ground plane orientation.

The GPS data allows us to extract ground truth motion
(~s, ~r). d and the camera orientation are static and given
by the extrinsic camera calibration to the vehicle. Assum-
ing that the vehicle is always located upright on the ground
plane, ~n is also given. Thus, we can compute ground
truth homographies Hgt (2). Similarly, we can compute
estimated ground plane homographies HO using the most
likely observations from the HMM. Using an outlier thresh-
old of r = 10 (18), we compare the set of inliers I(Hgt)
with I(HO) using the intersection over union metric

qiou =
|I(Hgt) ∩ I(HO)|
|I(Hgt) ∪ I(HO)|

. (21)

In Fig. 8, it can be observed that qiou can be siginificantly
raised by the Gibbs sampling.

As baseline, we use our HMM with modified transition
probabilities. As in RANSAC-like approaches, we add a

1Original sequences and videos with qualitative results are available at
www.vision.ee.ethz.ch/˜dragonr/1401.

Figure 8. Comparison between the ground truth inlier set I(Hgt)
and the estimated one I(HO). The intersection is drawn in green,
missing ground plane points in blue and superfluous in red. Left:
the result after the first iteration (qiou = 0.32). Right: the improved
results after the last iteration (qiou = 0.53).

our error / deg our iou inl error / deg inl iou
1 1.68 0.58 20.71 0.27
2 3.27 0.53 35.68 0.18
3 3.86 0.47 74.79 0.21
4 7.48 0.39 48.01 0.44
5 3.83 0.59 62.07 0.24
6 5.98 0.52 73.55 0.20
7 2.37 0.73 78.86 0.20
8 4.33 0.46 103.29 0.18

Table 1. The average angular error of ~n and qiou over the differ-
ent sequences, using our original HMM formulation and an inlier-
preferring one.

Figure 9. Results in sequence 1 of our original HMM formulation
(left), and a formulation containing an inlier-related energy.

term which makes solutions with many inliers more proba-
ble: We change Eq. (6) and set

l′o = lo −
1

2

|I(HO)|2

σ2
inlier

and (22)

l′t = lt −
1

2

|I(HO′) ∩ I(HO)|2

σ2
inlier

. (23)

Even if we make the variance σ2
inlier large (10002), our

results degrade drastically: As it can be extracted from Ta-
ble 1, the errors rises a lot. Fig. 9 reveals that the added
term leads to finding false ground planes that maximize in-
lier counts.

In order to qualitatively evaluate sequences 9-16 without
GPS ground truth, we plot the estimated horizon, inliers to
the ground plane homographies as well as orientation lines
in the ground plane coordinate system. As it can be ob-
served from Fig. 10, our results are quite accurate although
the generic camera matrix K is used1.

5.2. Monocular Visual Odometry

Although the principle purpose is ground plane estima-
tion, we can also use the approach for monocular visual
odometry. We compare our approach to the implementa-
tion in Viso [4]. To measure the performance, we compute

www.vision.ee.ethz.ch/~dragonr/1401


Figure 6. Overview of the sequences 1-8 (row-wise starting top left), taken from the Kitti dataset.

Figure 7. Overview over ego-motion sequences 9-16 (row-wise starting top left). Sequences 9-12 are taken from a camera attached to a
bike, sequence 13 from a motorbike with a freely-moving camera, and 14-16 from a car-mounted camera.

our ang / deg our dist / % Viso ang / deg Viso dist / %
1 0.02 0.59 0.80 0.69
2 0.07 0.75 1.22 0.40
3 0.04 0.72 0.27 0.23
4 0.23 1.99 0.92 0.33
5 0.01 0.34 0.41 0.28
6 0.07 0.74 0.39 0.17
7 0.20 1.65 3.06 4.95
8 0.11 2.13 1.68 1.11

Table 2. The average relative angular and distance errors of our
GP-based approach (left two columns) comparing with Viso [4].

camera poses and compare them with the given GPS ground
truth using the translational and angular errors, normalized
by the path length. The results are given in Table 2.

As it can be observed, our approach receives compara-
ble distance errors although we did not include any visual
odometry specific optimizations as degeneracy handling.
However, our angular errors are even one magnitude bet-
ter than the one of Viso. Further qualitative results1 in se-
quences 9-16 indicate that our approach is far more robust
towards rolling shutter and camera blur.

5.3. Discussion

The ability to determine the horizon (Sec. 5.1) and to
measure orientation changes (Sec. 5.2) allows us to use our
approach as a visual Gyroscope. Although this seems not
useful as support for drivers or pilots, the horizon is a very

important cue in image analysis, especially in a monocular
setup where distances have to be measured by foot points
on the ground plane.

Regarding the runtime, our non-optimized current im-
plementation is far from realtime. However, for online GP
estimation, we could reformulate our approach in order to
iteratively estimate the hidden HMM states while using the
Gibbs sampling only from new frames. With this, we could
easily reach realtime performance. Furthermore, we did not
take care about handling degenerate cases, e.g. if there is no
motion. As this is an essential step in visual odometry, we
can expect to boost our results by this.

Since the HMM does not only help us to find the best
ground plane but also returns a probability for this interpre-
tation, we could learn to distinguish different motion pat-
terns with multiple HMMs and use it for the classification of
the ego motion. Finally, the HMM formulation has shown
to be a powerful tool to select the best from multiple hy-
potheses which are connected by inertia constraints. It can
be expected that it outperforms the common handling of
outliers via RANSAC or robust loss functions in structure-
from-motion or SLAM approaches.

6. Conclusion
In this paper, we proposed a new way of ground plane es-

timation. For different pairs of frames, we sample multiple
hypotheses of the ground plane and ego motion via homo-



Figure 10. Qualitative results from our own sequences with diverse motions. The markings are explained in Fig. 5.

graphy decomposition. Our HMM formulation then allows
to find the most likely set of hypotheses. This in turn is used
to sample refined estimates with blocked Gibbs sampling.

We showed that our ground plane estimation approach
works robustly in a large variety of sequences, including
tilted cameras or heavily blurred and wobbling images. Us-
ing our approach for monocular visual odometry, we re-
ceived state-of-the-art distance errors, but the angular error
was one magnitude lower.

Since the approach is quite simple, it is applicable for di-
verse tasks: Motion patterns for the HMM transition prob-
abilities can be learned depending on the application. Fur-
thermore, by changing the HMM observation probabilities,
even other kinds of structures like lines or vanishing points
could be tracked over time.
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