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Abstract

In this paper we study optimization methods for min-
imizing large-scale pseudoconvex L∞ problems in multi-
view geometry. We present a novel algorithm for solving
this class of problem based on proximal splitting meth-
ods. We provide a brief derivation of the proposed method
along with a general convergence analysis. The resulting
meta-algorithm requires very little effort in terms of im-
plementation and instead makes use of existing advanced
solvers for non-linear optimization. Preliminary experi-
ments on a number of real image datasets indicate that the
proposed method experimentally matches or outperforms
current state-of-the-art solvers for this class of problems.

1. Introduction
In this paper we revisit the problem of pseudoconvex op-

timization problems in multiview geometry, with emphasis
on solving large scale problems. It has recently been proven
[17, 18] that certain types of geometric vision problems
are in fact pseudoconvex when formulated using the L∞
norm. This result can be used to eliminate the occurrence
of locally optimal solutions to the reconstruction problem at
hand, a common concern in most traditional, least-squares
formulations. An additional application of the L∞ formula-
tion is also in its use in decting and removing outliers [16].

A number of different methods for efficiently solving
the resulting L∞ optimization problem have been proposed
in recent years. With a few exceptions, most of these ap-
proaches are based on formulating the problem as a param-
eterised optimization problem. The solution to the original
problem is then obtained by solving a sequence of convex
feasibility problems. This class of solvers include the bisec-
tion approach of [10], the improved bisection algorithm of
[17] and Gugat’s algorithm for generalized fractional pro-
gram presented in [1].

Alternative approaches for L∞ minimization include the
use of interior point solvers as suggested in [17] and the re-

duction scheme of [13]. The former however, was found
to have issues with numerical instability and the latter is
most suitable for low-dimensional problems. We are also
aware of work on interior point methods developed specif-
ically for solving the fractional optimization problems that
appear in these formulations [6]. Even though such efforts
have shown to obtain a certain amount of computational
speedup, they do require the development of specialized
and dedicated software packages. For the same reason as
given by [1] we chose not cover efforts in this direction in
this work but instead only focus on methods that are less
cumbersome to implement and that can take advantage of
existing mathematical programming tools.

A common property of all these methods are nonetheless
that they all require separate and dedicated solvers. And
more often than not, the solutions obtained through L∞ op-
timization are typically passed on and refined in a least-
squares formulation using bundle adjustment [25]. The
present paper focuses on the problem of efficiently solv-
ing large-scale pseudoconvex L∞ problems and one of the
main contributions of this work is the proposal of a meta-
algorithm, based on ideas from proximal splitting methods
[5], that rely on existing least squares solvers1. As a conse-
quence, in this framework no dedicated solver for the L∞
problem is required and hence transitions over to an L2 for-
mulation can be done seamlessly.

We present this method in a general view for solving L∞
problems in geometric vision along with some simple con-
vergence proofs and strong optimality guarantees on the so-
lutions. In addition, the numerical results we obtained by
comparing our method against the state-of-the-art method
of [1], indicate that this algorithm is highly competitive and
appears to offer observable speedups in all of the experi-
ments conducted.

This paper is organized as follows. In the next section,
a brief review of L∞ optimization is given, along with an
introduction to Bregman iterations and a discussion on its
connection to proximal splitting methods. This is then fol-
lowed by a section containing the derivation of the proposed

1In this paper we used the publicly available package of [14]

1



algorithm along with a convergence analysis. Section 4
states the actual algorithm and discusses some practical is-
sues in regards to its implementation. Finally, experimental
results are given in section 5 followed by a concluding dis-
cussion.

2. Preliminaries

First we give some prerequisites needed for the deriva-
tion of our proposed algorithm. This includes a brief review
of the use of the L∞-norm in multiview geometry as well
as an introduction to Bregman iterative algorithms.

2.1. The L∞ Problem Formulation

The multiview geometry problems considered under this
framework are ones where the residuals can be expressed
as quotients of affine functions. If we let ri : Ci 7→ R+

denote the Lp-norm of the i-th residual, then for this class
of problems we can write

ri(x) = ||(a
T
i1x+ bi1
cTi x+ di

− u1i,
aTi2x+ bi2
cTi x+ di

− u2i)||p, (1)

i = 1, ..., N.

Here ai1, ai2, ci ∈ Rn and bi1, bi2, di, u1i, u2i ∈ R and the
set Ci = {x ∈ Rn|cTi x+di > 0} represents the requirement
that the reconstructed points lie in front of the cameras.

If we take N-view triangulation as an example, where the
aim is that given N camera matrices, denoted Pi ∈ R3×4,
and as many image measurements ui ∈ R2, to recover the
coordinates of the corresponding 3D point. Here x ∈ R3

would represent the real world location of the point and
[aTi1 bi1], [aTi2 bi2] and [cTi di] would correspond to each of
the rows of camera matrix i.

It has been shown that a large number of multiview prob-
lems, apart from triangulation, can be written in the above
form. This includes camera resectioning, homography esti-
mation as well as certain structure from motion estimation
problems, see [12, 11].

The interesting property of the formulation (1) is that
each residual ri is a quasiconvex function of x. Quasicon-
vexity is not preserved under theL2-norm, but it is under the
L∞ norm. This means that issues of local minima, which
typically needs to be addressed when using the traditional
L2 norm, can be avoided and guarantees of global optimal-
ity can actually be achieved when instead using the latter
norm. Hence, any local minimizer of the problem

min
x∈C

max
i
ri(x) (2)

is also a global minimizer. For a further discussion on the
different convexity properties of L∞ problems we refer to
[18].

These properties hold, for any choice of p ≥ 1 but will
result in slightly different formulations of the particular sub-
problems that needs to be solved. Setting p = 2 leads to the
SOCP formulation used in [11] and p = 1 or p = ∞ to the
LP formulations of [20] and [16] respectively.

To simplify notation it will prove convenient to introduce
the following perspective mapping Π : Rn 7→ RN×2, de-
fined as

Π(x) =
[

ΠT
1 ... ΠT

N

]T
, i = 1, ..., N (3)

Πi(x) =
[

aT
i1x+bi1
cTi x+di

,
aT
i2x+bi2
cTi x+di

]
. (4)

This allows us to write (2) as

min
x∈C
||Π(x)− u||p,∞, (5)

where || · ||p,∞ denotes the mixed matrix norm

||A||p,∞ = max
i
||ai||p, (6)

and ai is the i-th row of matrix A.

2.2. Bregman Methods

Bregman methods were initially introduced as a method
for finding extreme points of convex functionals [4]. In this
work we will follow the approach of [8] and apply it to the
problem of nonconvex constrained minimization. Let us as-
sume we wish to solve,

min
u

F (u), (7a)

s.t. Au = b. (7b)

This problem can be transformed into an unconstrained
problem with the introduction of a penalty function Ψ :
Rn 7→ R+. This function is positive when the constraints
are violated and zero otherwise.

min
u

F (u) + ρΨ(Au− b) (8)

By letting ρ → ∞ it can be shown that the solution of (8)
approaches that of (7). Unfortunately this also leads to very
ill-conditioned problems, typically with numerical instabil-
ities as a consequence. It is this ill-conditioning that Breg-
man methods aim to avoid by instead minimizing the Breg-
man distance.

Definition 2.1 The Bregman distance D(p)
ϕ associated with

a convex function ϕ is given by

D(p)
ϕ (u, v) = ϕ(u)− ϕ(v)− < p, u− v >, (9)

with p ∈ ∂ϕ(v).



Using this notion of a Bregman distance we arrive at the
Split Bregman algorithm of [8] by replacing the objective
function F in (8) by its associated Bregman distance, re-
sulting in the following iterations

uk+1 = arg min
u

D
(pk)
F (u, uk) + ρΨ(Au− b), (10)

where pk ∈ ∂F (uk). It can then be shown that, under very
mild assumptions and for an arbitrary initial value u0 and
penalty parameter ρ > 0, the sequence {uk}k∈N converges
to a global minimizer of (7).

Now the above subproblems are no longer ill-
conditioned but they can nevertheless be costly to solve.
However, if the objective function happens to be separable,
i.e. on the form E(u, d) = g(u) + Φ(d), the iterations (10)
can be decomposed further. The idea is that this decoupling
of the entering variables will result in simpler subproblems
and thus improve computational efficiency. This leads to the
Alternating Split Bregman method, also proposed by [8],

uk+1 = arg min
u

D
(pk)
E (u, dk, uk, dk)

+ρΨ(A [ u
dk ]− b), (11)

dk+1 = arg min
d

D
(pk)
E (uk+1, d, uk, dk)

+ρΨ(A
[
uk+1

d

]
− b), (12)

where now pk ∈ ∂E(uk, dk). The convergence properties
of this algorithm has shown to be similar in many aspects to
that of the split Bregman metod.

It was later established that there are strong connections
between all these variations of the Bregman method and a
number of already existing algorithms. For instance, if we
let Φ = 1

2 || · ||
2
2 then both the Split Bregman and alter-

nating Split Bregman are special instances of the classical
proximal splitting methods in convex analysis. The Split
Bregman algorithm can be identified with the augmented
Lagrangian algorithm [2] which in turn can be interpreted as
applying Douglas-Rachford [7] splitting to its correspond-
ing dual problem. Similarly the Alternating Split Bregman
algorithm can be shown to coincide with the alternating di-
rection method of multipliers [2]. This connection was es-
tablished in [21, 22] and greatly helps to improve the under-
standing of the Split Bregman methods as well as providing
clarification into their convergence properties.

3. Bregman Iterations and Pseudoconvex Opti-
mization

We now describe our formulation of a proximal split-
ting method that is particularly effective for globally solving
pseudoconvex minimization problems on the form (5).

As a starting point for this presentation we chose the
Bregman iteration approach. However, as indicated by the

discussion in the previous section and the work of [21, 22]
chosing any of the other interpretations of this approach
will without doubt lead to an identical, or very similar, al-
gorithm. In fact, for those readers who have an intimate
knowledge of these methods, the resulting formulation will
probably appear familiar. The derivation closely follows
that of [21] but does, due to the nonconvexity, deviate from
that work.

Let E : C × C 7→ R+ be the function E(U, V ) =
||U ||p,∞, with C =

⋃
Ci, a convex subset of R2×N .

As the penalty function Ψ : R2×N 7→ R+ we use
Ψ(U) = 1

2 ||U ||
2
F . The associated Bregman distance

D
(p)
E ([T, x], [T k, xk]) for our iterations then becomes

D
(p)
E ([T, x], [T k, xk]) = ||T ||p,∞ − ||T k||p,∞−

< pkTT , T − T k > − < pkTx , x− xk >, (13)[
pk
T

pk
x

]
∈ ∂E(T k, xk). (14)

The Split Bregman iterations are obtained by solving

{T k+1, xk+1} = arg min
T,x∈C

D
(pk)
f (T, x, T k, xk)+

ρ

2
||Π(x)− u− T ||2F . (15)

Now Π is no longer a linear operator, nor is it convex, but
we can still proceed in a similar fashion to that of previous
work. Using the fact that (15) implies

∂TE|T=Tk − pkT − ρ
(
Π(xk)− u− T k

)
3 0 (16)

−pkx − ρ∇Π(xk)T
(
Π(xk)− u− T k

)
= 0 (17)

since ∂xE = 0. Then letting

pk+1
T = pkT + ρ

(
Π(xk)− u− T k

)
(18)

pkx = −ρ∇Π(xk)T
(
Π(xk)− u− T k

)
(19)

we have that
[
pk
T

pk
x

]
∈ ∂E(T k, xk), satisfying (14). Insert-

ing (18) and (19) into (15) we then obtain the following
equivalent iterations

{T k+1, xk+1} = arg min
T,x∈C

||T ||p,∞+

+
ρ

2
||bk + Π(x)− u− T ||2F . (20)

where for convenience of notation we have introduced pkT =
ρbk. From an augmented Lagrangian point of view, bk

could be interpreted as an approximation of the scaled La-
grangian multipliers associated with the equality constraint
T = Π(x)− u.

Finally, by splitting the variables x and T and, thus only
approximately solving the subproblem (15) at each iteration



we arrive at our splitting algorithm.

xk+1 = arg min
x∈C

ρ

2
||bk + Π(x)− u− T k||2F . (21)

T k+1 = arg min
T

||T ||p,∞+

+
ρ

2
||bk + Π(xk+1)− u− T ||2F , (22)

bk+1 = bk +
(
Π(xk+1)− u− T k+1

)
. (23)

Note first that the (22) is a convex problem in T , in fact it
is the proximity operator of the || · ||p,∞-norm. In addition,
the subproblem (21) is not convex. That means we could
potentially have issues with local minimas. However, next
we will show that for our specific original problem (5), this
is interestingly enough not an issue.

3.1. Convergence Analysis

Unfortunately proximal splitting methods are not di-
rectly applicable to problems that are not convex. This
nonconvexity introduces significant obstructions to the the-
oretical analysis. For general nonconvex problems, proofs
of convergence to a local minima is extremely difficult for
most problem formulations. Consequently the majority of
convergence results for nonconvex problems are typically
weak. In this section we will nonetheless establish some of
the convergence properties of the proposed algorithm.

We start off by showing the boundedness of the sequence
of scaled Lagrangian multipliers bk.

Lemma 3.1 The sequence {bk}k∈N generated by (21)- (23)
is bounded.

Proof 3.1 Since the subdifferentials of the convex functions
h(z) = ||z||∞ and g(x) = ||x||p are both bounded sets,
it follows from subgradient calculus, see [3], and the non-
increasing property of h on R+ that the subdifferential of
the composition ∂(h ◦ g) = ∂(h(g(x1), ..., g(xN ))) =

∂(|| [ x1, ... xN ]
T ||p,∞) must also be bounded. The lemma

follows from the fact that pkT ∈ ∂TE(T k) = ∂(h ◦ g)(T k)
and ρbk = pkT for ρ > 0.

Next we state a weak convergence lemma regarding our
method, with the proof is omitted.

Lemma 3.2 If we let ρ → ∞ as in (21)-(23) then
{bk}k∈N → b∗.

This lemma is weak in the sense that for convergence to be
guaranteed ρ needs to approach ∞. It also means that in-
stances of ill-conditioning can not be ruled out, despite our
best efforts to eliminate them through the use of the Breg-
man distance. However, empirically we have found that the
proposed algorithm indeed onverges for even moderately
large values of ρ. Proving under what conditions such a

proposition is true in general is highly desirable and is cur-
rently also at the top of our list of future work.

Next we show that if our algorithm converges it does so
to a global solution of our original problem. This despite
the fact our iterations involve subproblems that are neither
convex nor quasiconvex.

Theorem 3.1 If the sequence {bk}k∈N defined as in (23)
converges to some b∗, then the sequences {xk}k∈N con-
verges to x∗, a global minimizer of (5).

Proof 3.2 First, from (21) and (22) we have that {T k}k∈N
and {xk}k∈N must converge to local minimizers T ∗ and
x∗2. Then from (21) and (22) it must hold that

0 = ρ(∇xΠ(x∗))T (b∗ + Π(x∗)− u− T ∗), (24)
0 ∈ ∂||T ∗||p,∞ − ρ(b∗ + Π(x∗)− u− T ∗). (25)

Our initial assumption on {bk}k∈N implies through (23)
that

(Π(xk)− u− T k)→ 0. (26)

Inserting this back into (24)-(25) and simplifying we obtain

0 ∈ (∇xΠ)T∂||Π(x∗)− u||p,∞. (27)

Identifying the above expression as a necessary condition
for optimality associated with our original problem (5) it
follows that x∗ is a stationary point for this function. Then
by pseudoconvexity [18] we have that any such stationary
point must also be a global minimizer of (5) and the lemma
follows.

4. A Proximal Splitting Algorithm for L∞ Min-
imization

Here we present a summary (algorithm 1) of the pro-
posed method derived in the previous section, along with
discussions on some of the practical aspects of this algo-
rithm.

4.1. Initialization

Since the convergence of the proposed algorithm is not
dependent on initialization, due to pseudoconvexity, any
choice of x0, b0, T 0 will in theory suffice. However, the
better the initialization is the faster convergence will be
achieved. In this work we initialize x0 using standard alge-
braic methods of [9], and set T 0 = Π(x0)− u and b0 = 0.

2For the sake of brevity we have here assumed that the solution of (15)
is unique. Extending this proof to include instances when this does not
necessarily hold is a straightforward exercise but requires slightly lengthier
notation.



Algorithm 1 The proposed proximal splitting algorithm for L∞ minimization.
Input: u, ρk

Initialize: x0, b0, T 0

repeat

• Find (approximate) solution to the subproblem in x

xk+1 = arg min
x∈C

||bk + Π(x)− u− T k||2F (28)

• Evaluate the proximity operator

T k+1 = arg min
T

||T ||p,∞ +
ρ

2
||bk + Π(xk+1)− u− T ||2F (29)

• Update b

bk+1 = bk +
(
Π(xk+1)− u− T k+1

)
(30)

• Update ρ (31)

until convergence

4.2. The subproblem in x

As the resulting subproblem in x (28), can be identified
as a least squares minimization of the reprojection error, but
now with respect to the modified image points

û = (u+ T k − bk). (32)

This subproblem can consequently be solved using existing
bundle adjustment solvers. In addition, since the our main
problem (20) is solved in alternation, starting with x, the
obtained xk+1 will, unless we are nearing convergence, not
be a stationary point of (20) at iteration k. It may there-
fore suffice to only solve this subproblem approximately. In
fact, in our current implementation we terminate after a sin-
gle bundle adjustment iteration. The constraint x ∈ C is
handled by simply defining Π(x) =∞ if x /∈ C.

4.3. The subproblem in T

In order to solve the second step of algorithm 1, (29), we
will use a result of [23]. Here we need to solve problems on
the form

min
X∈Rn×m

1

ρ
||X||p,∞ +

1

2
||X −A||2F . (33)

By Moreau’s decomposition theorem [19] we have that the
dual problem of (33) is given by

max
Z∈Rn×m

−1

2
||Z||2F + < Z,A >, s.t. ||Z||q,1 ≤

1

ρ
, (34)

where || · ||q is the dual norm of || · ||p3. It was shown in [23]
that that solving (34) is equivalent to finding the root of the

3Where q is conjugate to p, ( 1
p
+ 1

q
= 1).

following monotonically decreasing function g : R 7→ R

g(θ) =
1

ρ
− Z(θ), (35)

Z(θ) = arg min
Z∈Rn×m

−1

2
||Z −A||2F + θ||Z||q,1. (36)

The solution to the original primal problem (33) is then ob-
tained through X∗ = A− Z(θ∗).

Solving (22) thus only involves finding the root of a
one-dimensional function. This can be efficiently carried
out by employing standard root finding algorithms, such as
quadratic interpolation. However, what ultimately makes
solving the subproblem (22) so efficient is the fact that for
the choices of p that we consider in this paper, the resulting
proximity operators in (36) have very simple closed form
solution. For instance, for p = 1 the solution is given by
soft-thresholding,

Zij(θ) = sign(Aij) max(|Aij | − θ, 0). (37)

For p = 2 the solution is obtained by

Zij(θ) = max(1− θ

||A||F
, 0)A. (38)

A similar and equally efficient, but slightly more intricate
expression also exists for p = ∞. For this choice of p the
solution is obtained by again invoking the Moreau decom-
position theorem and evaluating the resulting dual prob-
lems. We refer the interested reader to [23, 5] for the details.

4.4. The Penalty Parameter ρ

As mentioned in the previous section, we currently have
no theoretical result prohibiting ρ from approaching ∞ in



order to achieve convergence. However, we have empiri-
cally observed that algorithm 1 indeed converges for even
moderate values of ρ. A standard extension these types
of methods is to modify this penalty parameter ρ during
the progress of the algorithm. The simplest possible such
scheme is possibly,

ρk+1 = ηρk, (39)

where typical choices of these parameters in this work were
ρ0 = 10−3 and η = 1.01.

4.5. Necessary Conditions for Optimality and Stop-
ping Criteria

The necessary conditions for optimality of (20) are given
as its stationary points

ρ∇Π(xk+1)T
(
bk + Π(xk+1)− u− T k+1

)
= 0, (40)

∂||T k+1||p,∞ − ρ
(
bk + Π(xk+1)− u− T k+1

)
3 0. (41)

We have, by construction, that (41) is satisfied for every T k.
Rewriting (40) gives us

0 = ρ∇Π(xk+1)T
(
bk + Π(xk+1)− u− T k

)
= (42)

= ρ∇Π(xk+1)T
(
bk + Π(xk+1)− u− T k+1

)
+

ρ∇Π(xk+1)T
(
T k+1 − T k

)
. (43)

Hence, if the second part of (43) holds then (40) is also
satisfied. Then with the addition of the requirement that
bk → b∗, see section 4.5, we can write the necessary con-
dition for the convergence of (21)-(23) to a local minima
as

ρ∇Π(xk)T
(
T k − T k−1) = 0, (44)

bk − bk−1 = 0. (45)

These conditions then suggest that using the norms of (44)-
(45) would be a sensible choice for a stopping criteria. In
this work algorithm 1 was terminated when the L2 norm of
both these expressions were smaller than ε = 10−3.

Finally, we would like to point out an interesting obser-
vation, or interpretation, regarding the proposed algorithm.
This observation perhaps only becomes apparent when con-
sidering the implementation of this method. In doing so,
one basically only need to add three lines of code (29), (30)
and (31) to the main loop of any existing bundle adjustment
package. So essentially what we are doing is deceiving this
nonlinear bundle solver into unknowingly minimizing the
reprojection residuals under a very different norm to the L2-
norm it was designed for. And we do so by simply moving
the measurements around in a very specific manner. We are
using a solver intended for finding local minima of smooth,
nonconvex problems to instead obtain global optima of a
nonsmooth and pseudoconvex problem.

5. Experiments
This section contains an experimental evaluation of our

proposed method. As we are primarily interested in large
scale L∞ optimization we limited our experiments to SfM
with known camera rotation. We performed experiments on
six different, publicly available datasets. These are listed in
table 1. The dinosaur and corridor sequences are available
from the Oxford visual geometry group. The house, cathe-
dral, UWO and Alcatraz datasets are available from [15].

All methods were implemented in Matlab on a 3.20 GHz
desktop computer with 8 GB of RAM. The MOSEK4 opti-
mization package was used as LP solver, SeDuMi [24] as
the SOCP solver and the SBA package of [14] for solving
the bundle adjustment subproblems that arises in (28).

In the following experiments we compare the running
times achieved by our method and the state-of-the-art ap-
proach as described in [1] for different choices of p ∈
{1, 2,∞}. To provide a baseline we also include the results
from the standard bisection methods of [10]. It is not the
intention of this work to compare and argue the merits of
different choice of norms used in L∞ formulations of mul-
tiview geometry problems but rather to show the efficiency
and scalability that comes from splitting a complex problem
into subproblems that can then be solved separately and ef-
ficiently.

The results are given in table 1, as the average compu-
tation time over 100 separate runs. Execution times were
not reported on some instances where convergence was not
achieved within a reasonable time frame, due to numerical
or memory issues of the associated solvers. This typically
occurred for large-scale SOCP subproblem, an issue also
reported in [1].

These results do seem to indicate that the proposed al-
gorithm matches or outperforms state-of-the-art solvers for
this class of problems. It should also be noted that the exe-
cution times of our algorithm closely match those reported
in [6]. However, since comparisons between different algo-
rithms as carried out here heavily depend on the different
level of effort put into their implementation, the program-
ming language used and what solvers were employed, these
results can only be seen as indicative. Future versions of
this manuscript will contain a more detailed and extensive
experimental evaluation.

6. Conclusions
In this paper we have proposed a proximal point formu-

lation for large-scale pseudoconvex L∞ optimization. The
resulting meta-algorithm is both computationally efficient
as well as very uncomplicated to implement. The experi-
mental evaluation clearly demonstrates the competitive per-
formance of this algorithm as it appears to be able to offer

4Available from http://www.mosek.com.



Dinosaur Corridor House
Observations 2663 4035 35321
Points 328 737 12475
Images 36 11 12
|| · ||2,∞ Bisection 27.5 39.6 -

Gugat 9.1 11.6 -
Proximal 1.8 3.8 45.1

|| · ||1,∞ Bisection 11.5 18.3 172.0
Gugat 6.8 8.8 61.7
Proximal 1.8 3.9 44.7

|| · ||∞,∞ Bisection 8.3 16.9 144.2
Gugat 2.8 6.8 49.1
Proximal 1.8 3.8 44.3

Cathedral UWO Alcatraz
Observations 45,553 27,309 68,615
Points 16,961 8,880 23,674
Images 17 57 67
|| · ||2,∞ Bisection - - -

Gugat - - -
Proximal 31.4 30.0 117.1

|| · ||1,∞ Bisection 181.3 158.2 459.3
Gugat 63.1 52.1 129.1
Proximal 31.2 29.5 115.3

|| · ||∞,∞ Bisection 146.0 122.3 404.0
Gugat 50.1 37.1 118.0
Proximal 31.8 29.8 112.3

Table 1. Performance of various methods on 6 different image sequences. We report the execution time in seconds averaged over 100 runs.



significant speedups over the current state-of-the-art.
As an additional advantage, and perhaps the main con-

tribution of this method, it does not require a separate
dedicated numerical solver from the corresponding least-
squares formulation. Allowing it to take advantage of the
computational efficiency of existing state-of-the-art soft-
ware packages for non-linear minimization as well as to
seamlessly transition between different residual norms.

At this point, several avenues for future work remain
open. The most challenging is perhaps in strengthening the
proof of convergence given in section 4.5. Empirically we
have observed that the proposed algorithm does indeed con-
verge even for moderate choices of ρ. Proving this is cur-
rently our main focus.
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