This CVPR2014 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

Predicting Object Dynamics in Scenes

David F. Fouhey

Carnegie Mellon University

dfouhey@cs.cmu.edu

Abstract

Given a static scene, a human can trivially enumerate
the myriad of things that can happen next and character-
ize the relative likelihood of each. In the process, we make
use of enormous amounts of commonsense knowledge about
how the world works. In this paper, we investigate learn-
ing this commonsense knowledge from data. To overcome
a lack of densely annotated spatiotemporal data, we learn
from sequences of abstract images gathered using crowd-
sourcing. The abstract scenes provide both object location
and attribute information. We demonstrate qualitatively
and quantitatively that our models produce plausible scene
predictions on both the abstract images, as well as natural
images taken from the Internet.

1. Introduction

What can happen next in Figure 1?7 Where should the
sunglasses in the middle of the image go? Humans can
readily distinguish plausible continuations of Figure 1’s
scene from nonsense ones: the people will probably move
forward, the woman on the left may stop smiling, the sun-
glasses will likely remain attached to the people’s faces, and
if there were sunglasses on the street they would probably
remain there. Despite its complexity, prediction is as effort-
less for humans as recognizing the contents of the image. In
this paper, we investigate how we can represent and predict
the dynamic high-level aspects of a scene.

How can we model the dynamics of objects? Several
factors are critical in motion prediction. These include the
likelihood of the object’s resulting position. For instance, a
person is more likely to be standing on a street than in the
air. Similarly, the likelihood of the object’s motion needs
to be considered. For instance, a dropped ball will fall to-
wards the ground and not away from it. A third and more
subtle factor also must be considered. The previous two fac-
tors examine the movement of an object independent of the
movement of other objects. However, the movement of sev-
eral objects may be strongly dependent. For example, if two
objects are attached to each other, they will move together,
such as a pair of sunglasses worn by a person. Finally, the
changes that occur within a scene are not just limited to the
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Figure 1. Given an image, many things are perceived to be likely
to happen next and many things are not. Much of what separates
the plausible from the implausible is commonsense spatiotempo-
ral knowledge. Irrespective of what happens next, we know that
the woman’s sunglasses should move with her and that the street-
light should stay in place. In this paper, we explore how to learn
commonsense spatiotemporal knowledge from data.

movement of objects. Animate objects can change in pose,
gaze direction and facial expression. These object attributes
are essential for both predicting scene motions and for gen-
erating realistic predictions of future attributes.

How can we model these various factors? A model must
capture the dependence of an object’s prediction on the pre-
vious objects’ attributes and positions, while enforcing con-
straints on the predicted relative motions of objects. In this
paper, we achieve these goals using a Conditional Random
Field (CRF) formulation. The nodes of the CRF represent
the objects and their attributes, while pairwise potentials
model their interactions. The unary and pairwise potentials
are learned using a Random Forest classifier with the previ-
ous objects’ positions and attributes as features. The pair-
wise potentials enable constraints to be placed on the rela-
tive motion between pairs of objects. A multiple-restart it-
erative conditional modes algorithm is used to sample novel
scenes from the model.

An enormous challenge for studying the prediction of
scene dynamics is obtaining training data. As motivated
by Fig. 1, we need extraordinarily detailed knowledge of



the scene if we are to make effective predictions. Get-
ting a reasonable amount of non-contrived image sequence
data adequately annotated is prohibitively difficult. But
more importantly, even if we could get sufficient training
data, at inference-time we would need fairly accurate an-
swers to questions that are far too difficult for contempo-
rary computer vision algorithms, e.g., detecting purses and
sunglasses, or localizing hands in unconstrained images.

Deferring the investigation of scene dynamics until bet-
ter detectors are developed is short-sighted. Incorporating
an understanding of scene dynamics ought to provide use-
ful complementary information for detecting objects and re-
lated tasks in image sequences. Nonetheless, simply devel-
oping prediction on top of contemporary vision algorithms
is a risky endeavor, since it may be unclear whether defi-
ciencies are due to failings in object detection or in predic-
tion. We therefore turn to abstract scenes [21, 22], which
allow us to investigate scene dynamics in isolation and to
easily gather large amounts of data. This methodology al-
lows us to easily test multiple models to learn which may be
most promising when applied to real images. Finally, while
our models are learned on abstract scenes, we demonstrate
their surprising ability to generalize to natural images.

We show that our model outperforms a number of alter-
nate baseline approaches to modeling scene dynamics on
both abstract and natural images. We report quantitative re-
sults using human studies, as well as measuring results on
various prediction sub-tasks.

2. Related Work

Learning spatiotemporal commonsense knowledge for
predicting scene dynamics offers many un-explored chal-
lenges. Most work on reasoning about future actions
has used top-down and manually encoded commonsense
knowledge. In the tracking literature, this has been done by
treating humans as privileged objects and reasoning about
their motion around defined obstacles [6] and other pedes-
trians [14, 15]. Analogously in the affordance literature [8],
common sense takes the form of geometric knowledge of
where humans can perform various actions. In contrast,
we investigate the problem of learning these relationships
themselves, including the fact that animate objects, espe-
cially humans, are special objects with respect to motion.

Other work has aimed at learning these relations from
data. For instance, Lan et al. [12] learn social relationships
from video data that are informative of human actions. Ki-
tani et al. [10] learn which parts of scenes humans should
prefer while moving. Xie et al. [18] learn functional parts of
scenes for predicting human paths, and Koppula et al. [11]
learn to predict human actions given the presence of other
objects. However, significant complexity exists beyond hu-
man motion. Inanimate objects are frequently in motion,
e.g., if they are already in motion or attached to an actor.
It is not clear how to learn that humans are special with re-
spect to other objects and how this relationship should be
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Figure 2. Illustration of the four factors modeled in our motion
prediction model: (a) Previous frame at time ¢ — 1 for a boy and
hat, (b) the absolute position at time ¢ for the boy, (c) the relative
position for the boy and the cap at time ¢, (d) the absolute motion
of the boy, and (e) the relative motion of the boy and the cap.
Notice it is more likely for the hat to move with the boy than not.

modeled.

This difficulty has also noted in recent work [17] that,
in addition to prediction, tackles the challenge of learning
which parts of the scene will move without assuming a-
priori semantic knowledge. Nonetheless, as confirmed by
our experiments, the motions of objects are highly interde-
pendent and thus modeling them independently produces
implausible results. One work that does not follow this
paradigm is that of Yuen and Torralba [20], which models
each scene as a whole and transfers scene-level flow vec-
tors. While this yields plausible flow fields for test scenes,
the more difficult question of how these fields can be com-
bined to produce a following scene remains unanswered.
As shown by Fig. 2(e) and our baseline results using an
approach with global motion transfer, holistically applied
scene flow can lead to poor results.

There is a rich body of literature exploring spatial com-
monsense. This comes in the form of context models for im-
proving object recognition [5, 9], recognizing out-of-place
objects [4], as well as learning spatial relationships [7].
While much of this work is top-down, there has been recent
work [3] proposing the automatic learning of visual com-
monsense from Internet images. Nonetheless, spatiotempo-
ral reasoning is not a simple extension of spatial reasoning:
the heads of people tend to be likely locations of hats, but
when predicting the motion of a group of people and their
hats, the hats’ locations cannot be arbitrarily permuted.

Artificial intelligence has also focused on obtaining com-
monsense knowledge such as properties and relationships
among concepts via automated reasoning [13] and by read-
ing the Web [1]. These systems include many of the same
ingredients as predicting scene dynamics, including predict-
ing how things change in time [16]. Unfortunately, this
commonsense is not visually-grounded and is entirely ab-
stract. At best, it might suggest that if a human is carrying
a box, the box will move with the human; however, it can-
not reveal how to recognize that a human is carrying a box,



even if one can recognize both humans and boxes.

Our work specifically tackles the problem of learning the
dynamic structure of scenes. This requires joint reasoning
about objects in both space and time to learn commonsense
relationships. In our work, we automatically learn under
what conditions objects are capable of motion, how they
move, and the interdependence of object motion. Unlike
much past work, we do not assume a priori semantic knowl-
edge of objects, but instead model each object equivalently
and learn the its properties from data.

Recently, several works have explored semantic scene
understanding using abstract scenes similar to ours [21, 22].
The semantic understanding of dynamic scenes also re-
quires temporal commonsense knowledge and has also re-
cently gained attention [2, 19].

3. Overview

Prediction is an inherently ambiguous problem. A myr-
iad of events may follow from a particular scene with vary-
ing likelihoods. Given a set of previous scenes and model
parameters, our approach computes the likelihood of a pre-
dicted scene. During generation, we sample from this
model to predict scenes of high likelihood. This allows our
model to acknowledge the multi-modal nature of prediction.

We model four aspects of scene composition and transi-
tion: the position and motion of each object in either abso-
lute terms or relative to other objects (Fig. 2). Our model
captures the rules of scene composition with constraints on
both the absolute location of objects (e.g., a boy is likely to
be standing on the ground), as well as the relative location of
objects, e.g., a boy is likely to be below a baseball cap (Fig.
2(c)). To capture temporal information, we learn a model
of the absolute motion of the objects, e.g., a child is more
likely to move in the direction they are facing (Fig. 2(d)).
Finally, we model the relative motion of pairs of objects in
scene transitions. This subtle yet important factor ensures
that objects move coherently. For instance, as illustrated in
Fig. 2(e), it is more likely for the boy and the baseball cap
to move in the same direction than not.

3.1. Spatiotemporal Model

We begin by describing how the various spatial and tem-
poral factors are represented using a Conditional Random
Field (CRF). Our approach for sampling and generating
scenes from the model is described in the following sec-
tions. Each node in our CRF represents an object and the
edges model the relationships between objects. Our dataset
consists of 58 different objects [21] that are commonly
found outside when children are playing, such as people,
toys, clothing, animals, trees, etc. Section 4 describes how
our training data set was creating using clip art and Ama-
zon’s Mechanical Turk. For testing, we show results on both
abstract and real scenes.

Each object is represented as a node in the CRF with the
following variables: location {z;, y; }, depth represented as

the scale s; of the object, and the horizontal orientation or
flip d; € {-1,1}, ®; = {4, yi, s, d;}. Each object may
also have a set of attributes W;. Currently, only people have
attributes corresponding to their pose and facial expression.
However, the model is general and could handle attributes
for other objects as well. Finally, we denote the previous
set of scenes with .S and the model parameters as ©. Our
model is of the form:
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where \,w, 7 are unary potentials, ¢, ¢ are binary poten-
tials, « is a global potential, and Z(.S, ©) is the partition
function that normalizes the distribution. The variables
and j index objects. Next, we describe how each poten-
tial is computed, followed by describing the method used to
learn the model parameters that are dependent on the previ-
ous scenes.

Absolute location: The absolute location of an object in a
scene is modeled using a spherical Gaussian Mixture Model
(GMM):

A(@;05) = log (Z P(®; k)05 (i, k))

k

where k indexes the GMM’s components. P(®;|k) =
N((zi,y:); k., o) is the normal distribution with mean g,
and standard deviation oj. In our experiments, 40 compo-
nents are used. The means pj, and standard deviations oy,
are jointly learned across all object types. The mixture co-
efficients 6, (, k) for the ith object and kth component are
set equal to the empirical likelihood P (k7).

Absolute motion: Absolute motion represents the indepen-
dent motion of an object. Similar to absolute location, the
absolute motion potential is computed using a GMM,

wi(®s, 3 0.,) = log <Z P(3(2;, )[k)0., (i, kﬁ))
k

where P(6(®;, ®})|k) is the Probability Density Function
(PDF) of the kth Gaussian component of the GMM learned
for absolute motion. Similarly to the absolute location
GMM the means and standard deviations are shared across
objects. The distance between the object at its predicted



location ®; and its previous location @} is computed by ad-
justing for horizontal orientation d; and scale s;,

5(@;, @) — (di(%‘ —o) - 1/2))7
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where {z,y/} C ®) is the position of the object in the
previous time frame. We describe how we learn the model
parameters 6, (4, k, .S) in the subsequent section.

Attributes: The attribute potential represents the likelihood
of seeing each attribute in the next scene given the previous

scene,
7:(U;10,) = log (Z 9ﬂ(i,k,5)> ,
k

where k indexes a set of attributes. We describe how we
obtain the parameters 0 (¢, k, S) in the subsequent section.

Relative location: Relative location represents the likeli-
hood of seeing object j in a particular position relative to
object ¢, and is also represented by a GMM:

5 (Pi, 5]05) = log (Z P6(®i, ®;)|k)0s (i, J, k)) :
k

As with the GMM used to model absolute position, the
component PDFs are learned jointly across all objects. The
parameters 64(i, 7, k) are set to the empirical likelihood
P(k|i, j) of the kth component given object 7 and j in the
training data.

Relative motion: Relative motion represents the likelihood
of one object j’s motion vector relative to another object’s,
and is factored as:
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where ¢ measures the difference in motion vectors similar
to Equation 2 using,
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We describe how we obtain the model parameters
0, (i, j, k,S) in the subsequent section.

Motion Prior: Our final potential places a prior on the
number of objects that move in a scene. Without such a
prior, the most likely prediction is often that no objects
move. To preclude this from happening we add a motion
prior on the number of objects that moved M,

a(®,S) =log b, (M),

where 6, is the empirical frequency of observing M mov-
ing objects.

3.2. Learning model parameters

Many of our scene potentials are dependent on the state
of the previous scenes, S. In our paper S either contains
one or two previous scenes. The parameters related to the
absolute or relative movement of an object are dependent
on S. For instance, hats and people move together only
if they are attached, and a hot dog is more likely to move
near a human than by itself. Changes in attributes are also
dependent on previous scenes. For instance, if a bear moves
towards a person their expression might change to fear. In
this section, we describe how the model parameters for the
temporally dependent potentials in our CRF are computed.
These include the absolute motion 6,,, relative motion 6,
and attribute 6, model parameters.

To estimate our parameters, we learn a mapping from S.
This mapping consists of two stages. First, a classifier de-
termines whether an object ¢ will move Q(3,5) € {0,1},
and another classifier II(7, S) € {0, 1} determines if its at-
tributes will change. If no change occurs, the model param-
eters are held constant from the previous scene. Otherwise,
the model parameters are updated using a series of classi-
fiers T for each set of parameters and object. For instance,
a classifier Y, (4,.9) is learned that takes as input features
extracted from the previous scenes .S related to object 7 and
outputs a k dimensional feature vector corresponding to the
mixture coefficients used by the absolute motion GMM,
0., (i, k, S) = Yy (4, 5), with Y, Yo, 1 (¢,.5) = 1. Similar
classifier pairs are learned for relative motion and sets of ex-
clusive attributes, such as poses and expressions; pairwise
classifiers are learned bi-directionally (i.e., the hat’s motion
relative to the girl and the girl’s motion relative to the hat).
Each classifier is learned using multi-class random forests
with k classes using the Gini coefficient for splitting. For
training, the values of 6., (4, k, S) and 6., (4, j, k, S) are com-
puted from the response of their respective Gaussian com-
ponents on the ground truth next scene. The attribute pa-
rameters are set to the observed attributes 6, in the ground
truth scene. Only objects that change position or attributes
are used for training Y. The sets of scenes used for training
are described in Section 4.

Features: Each of our classifiers €2, IT and T compute a
set of features from the previous scenes S that are used as
inputs into a random forest classifier. For every object’s
classifier, we use the absolute location of the object as well
as the relative location of the other objects encoded by the
response of the Gaussian components in the relative loca-
tion GMMs. If an object does not exist in a scene, all of its
GMM features are zero. The attributes for each object are
encoded as a set of binary values. The GMM features and
attribute features for all objects are concatenated to form our
final feature vector. Given 58 objects, 40 mixture compo-
nents per GMM, and 11 attribute values, our feature vector
has size 40+40 x 57+11 x 58 = 2958. If S has two scenes,
we concatenate the features from the most recent scene with
a motion feature, specifically the object’s motion between



the two scenes encoded with the absolute motion GMM as
well as whether each attribute changed.

3.3. Prediction generation

We generate a predicted scene in two stages. First, us-
ing 2 and II, we generate a posterior on which objects will
move and/or have their attributes changed. For those ob-
jects which do change, we estimate new parameters 0,,, 8,
and 0 using Y,, T, and T respectively. Given the esti-
mated set of parameters for the updated CRF, we use a form
of Iterated Conditional Modes (ICM) to generate a scene.
We randomly select an object that is changing position and
estimate its most likely position assuming the other objects’
positions are fixed, and similarly for attributes. After a fixed
number of iterations, the scene is scored using the CRF.
This procedure is repeated 2,000 times and the scenes with
the best scores are returned.

3.4. Implementation details

Number of trees: for k-way classification problems, we
use 100 trees; for distributions, we use 30 trees. These and
other parameters were capped to ensure training and testing
could be done within 16 hours on a single desktop. Pose
alignment: To determine whether an object stays attached
to a person’s head or hand even if their pose changes, we
assume that we have correspondence between poses. We
manually annotate the discrete poses of humans with land-
marks and compute the relative position of nearby objects
with respect to these landmarks. We warp the relative po-
sition of nearby objects (within a 20% bounding-box size
radius) to a canonical reference frame. Learning the mix-
ture models: We learn the four GMMs used for inference
using k-means, yielding spherical components. Robustness
to slight misalignment: To give robustness to the tool used
to create scenes, which does not naturally allow users to
move objects together, we clip motions computed to be less
than 30 pixels (normalized for scale) to O in our learning
and inference.

4. Results

We now present experiments to validate our approach. In
addition to the qualitative results throughout the paper, we
present a quantitative analysis using human studies as well
as results on various prediction sub-tasks, such as determin-
ing whether an object should move. Finally, we present
results on natural photos gathered from the Internet using
similar bounding-box-style annotations.

Abstract scene dataset: We gathered a dataset of 5,000
sequences from Amazon Mechanical Turk (AMT). Turkers
were asked to create a story consisting of five frames. Each
worker had access to a random subset of items from [21]
and could arbitrarily arrange objects and set them to three
discrete scales and two horizontal orientations. As Turkers
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Figure 3. Human evaluation of the Full CRF predictions compared
to the baselines (win, tie, lose.) The full method substantially out-
performs the computer baselines and even crowdsourced human
completions while doing comparably to the ground-truth scenes.
The black line shows the win/loss ratio for each baseline.

moved forward in time, the interface propagated the previ-
ous scene. We split the data randomly into 4, 500 training
and 500 testing sequences. An example of the user interface
may be viewed in the supplementary material.

Methods: We compare our Full CRF approach with five
baselines. The first two provide a sense of inter-human
agreement; the next two test whether it is possible to simply
transfer an entire scene; the last assesses whether prediction
may be handled independently for each object. (1) Ground-
truth: Given a test scene, we return the following scene in
the sequence. (2) Human prediction: We crowdsource the
prediction by asking a human to continue the scene. We
show subjects the first two scenes and ask them to complete
the sequence. (3) Bag-of-Words copy (BoW(C)): Given
the test scene, we build a multiscale bag-of-words represen-
tation on object presence and find the most similar scene
in our training dataset. We use the scene that follows it as
the prediction. When given multiple scenes, we concatenate
the representations. (4) Bag-of-Words transfer (BoW(T)):
Simply copying the next scene makes no adjustments for
scale or position. We instead transfer the motions of the
objects common to both the query and retrieval scene, ad-
justing for scale and orientation. (5) No CRF: We train a
random forest to predict the location and attributes of an ob-
ject in the scene using the same features as our full method;
we take the most likely label for all locations and attributes.
This does not model the relative motion or enforce consis-
tency among the objects’ predictions as done by the full
CREF. (6) Full CRF: This is our full model including the
CRF.

4.1. User study results

One natural way to evaluate predictions is asking humans
to assess the likelihood of one scene following another. To
do this, we ask human subjects to judge the relative quality
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Figure 4. The proposed approach compared with the baselines on scenes selected from ones with consistent human ratings (top three rows
success, final row failure). Simply copying the scene results in continuity errors (BOW Copy, Random), e.g., unrealistic disappearance of
objects. Transferring the motions (BOW Transfer) or predicting without a CRF (No CRF) does not enforce consistency in scene dynamics

(note the inaccurate motion of hat and sunglasses in the top row).

of the approaches. We show subjects the first two scenes
of a sequence and then the completions generated by two
approaches. The subjects can pick either scene to be more
likely or declare a tie. We compare our full approach with
each baseline in Fig. 3. Qualitative results selected based
on these evaluations are shown in Fig. 4.

Our method is comparable to the ground truth and sub-
stantially out-performs the other algorithmic approaches.
The bag-of-words approaches do especially poorly in com-
parison. Transferring the motion rather than simply return-
ing the next scene results in a modest, but ultimately inade-
quate improvement because it is hard to find similar scenes
with similar layouts given the huge diversity of scenes. As
a result, object motions typically appear unnatural with at-
tachment properties frequently violated, e.g., the third row
of Fig. 4.

We also outperform the No CRF approach that does not
model relative motion and other joint factors handled by our
Full CRF approach. As shown in Fig. 4, this may produce
inaccurate predictions, causing our full method to be pre-
ferred 34% of the time and the No CRF being preferred
26% of the time. Since modeling joint factors is not critical
for all scenes, the two approaches are found to tie in 40% of
instances. The crowdsourced human completions are often
overly creative, resulting in worse results.

4.2. Quantitative results

Another approach to evaluating prediction is evaluating
the extent to which a prediction agrees with what actually
happened in a sequence of scenes. In aggregate, a good
predictor will correlate better with the actual continuation

of a scene than a bad one.

We evaluate various prediction sub-tasks quantitatively
using standard metrics. Specifically, we use precision
(whether the predictor is right when it predicts the positive
class), and recall (whether ground-truth positives are pre-
dicted as positive). We summarize precision and recall with
the F1 score, or harmonic mean. For attributes, we compute
F1 scores for each attribute and take their average.

Metrics: We now describe and motivate each sub-task
used. Motion Indicator: If an object is present at both time
tand t + 1, does it move from time ¢ to ¢t + 1? This metric
captures both objects that should not move (e.g., trees) and
objects whose motion is scene-dependent (e.g., hot dogs).
Joint Motion: If object ¢ moves from time ¢ to ¢ + 1, which
objects have the same displacement as object ¢? This met-
ric characterizes how well a model captures interactions be-
tween objects. Even if a method accurately models the ob-
jects’ individual motion, its predictions will be incoherent
if it does not capture the relationships between the objects’
motions. Motion Direction: If an object moves, does it
move left or right? Attributes: If an object is present at
both time ¢ and ¢ + 1, what are its attributes at time ¢ + 1?

Results: We present quantitative results in Table 1 for
all methods. We independently show results with one scene
and two scenes as input; our approach outperforms the base-
lines according to most criteria. The F1 measure for the mo-
tion indicator and attributes is substantially better for Full
CRF and No CREF since both use the same learned func-
tions Q(4,.5) and Y, (4, S) to determine whether an object
moves and how its attributes change respectively. Note that
recall is higher for BoW Copy and Random since they al-



Table 1. Quantitative evaluation of the approach in comparison to the baselines on the abstract scenes dataset. We report results with models

using both one and two previous scenes.

One Previous Scene

Two Previous Scenes

No CRF Random Full CRF BoW(C) BoW(T) No CRF

Full CRF Human BoW(C) BoW(T)
F1 49.3 48.8 339
Motion Indicator { Prec. 51.2 50.1 20.9
Rec. 476 475 87.7
F1 429 31.8 16.8
Joint Motion { Prec. 429 313 13.6
Rec. 429 323 188
Motion Direction F1 66.6 70.0 57.7
Attributes F1 619 523 246

39.6
42.8
36.9

16.2
20.0
13.6

61.9
29.1

49.0 39.0 533 333 364 504
46.1 245 56.0 203 40.7 503
524 96.0 509 914 329 50.6
11.9 0.0 449 18.6 10.0 15.6
9.0 0.0 46.8 174 250 123
177 0.0 431 200 63 212
751 65.8 68.7 630 63.1 744
61.5 22.1 619 239 279 61.6

Bear not present

Likelihood of moving

Boy's horizontal position

Figure 5. How do interactions influence predicted motion? (Left)
We plot the relative likelihood €2 that an object will move as we
sweep the boy across the scene for the hot dog (blue) and picnic
table (red). Notice the hot dog is more likely to move if the boy
is near it. (Right) we show the distribution (red more likely; blue
less likely) of the girl’s absolute motion Y, in one scene (top) and
if we just add a bear (bottom). Although there is a strong prior for
moving forward, the bear’s presence overrides this.

most always predict objects will move. For joint motion,
Full CREF significantly outperforms No CRF and the other
baselines. The F1 measure is over twice as good as the next
best non-human baseline method. This shows that joint ob-
ject dynamics do not emerge from per-object motion mod-
els in the No CRF method and are similarly not captured
by non-parametric transfer via either Bag-of-Words mod-
els. This can be seen qualitatively in Fig. 4, rows 1 and 3.
The No CRF approach achieves the best result on pre-
dicting the motion direction. We found the No CRF ap-
proach heavily favors moving objects to the center, which
is commonly correct. The high value for the Random pre-
dictor can be explained by the same effect in that it typi-
cally pulls objects towards the center. The pairwise relative
motion constraints can sometimes pull objects away from
the center, resulting in slightly lower scores. However, as
shown in Fig. 3 and the joint motion metric, when the di-

rections and magnitudes of the movements are considered
together, the Full CRF produces more convincing results.

Two qualitative results are shown in Fig. 5 demonstrat-
ing the effect of other objects on an object’s predicted mo-
tion. For instance, if the boy is near a hot dog, the hot dog is
more likely to move, unlike a stationary object like a picnic
table. The presence of objects such as bears can also effect
the likelihood of an object’s motion direction.

4.3. Natural Images

We also evaluate our approach on natural images. We
gathered 225 images from flickr.com using queries
containing descriptions of one or more pieces of clip art
(e.g., “dog tennis ball”). The bounding boxes of object cat-
egories that exist in our clip art dataset were labeled using
AMT. Because we do not know what occurred in the scene
after the image was taken, we rely on human annotation for
ground truth labels on our prediction sub-tasks. We apply
each model learned on abstract scenes and compare with our
ground-truth labels for whether objects move and which ob-
jects move together. For human results on natural images,
we ask a separate set of annotators to label the ground-truth
and treat these as predictions; these results are generally
better than our human baseline on abstract scenes since hu-
mans do not have to actually produce a scene, but instead
assess how the objects will move.

As shown in Table 2, we outperform our baseline ap-
proaches on real images. As with abstract images, the F1
measure for joint motions in natural images is significantly
better than the computer baselines. Our results are simi-
lar to the human baseline for the motion indicator metric.
However the humans have access to richer information and
predict joint motions better. We show qualitative results in
Figs. 6 and 7. Fig. 6(a) shows that our model can learn
subtle rules, such as balls are unlikely to move unless they
are in the air or near an agent that can move them. Simi-
larly, Fig. 6(b) shows that our model’s prediction of which
objects move together captures notions of attachment, and
Fig. 7 shows that our model can produce intuitively correct
attributes.



(a) Context-dependent movement

Table 2. Quantitative evaluation of the approach in comparison to
the baselines on the natural images dataset.

Full CRF Human BoW(C) BoW(T) No CRF

F1 912 97.8 80.6 69.3 87.5
Motion Indicator{ Prec. 87.3 95.6 74.7 84.7 80.1
Rec. 95.6 100 87.6 58.7 96.5
F1 452 753 75 57 144
Joint Motion Prec. 35.1 604 98 69 194
Rec. 63.6 100 6.1 48 115

Figure 7. The model’s belief Y . of peoples’ expressions. In scenes
with a bear, people are predicted as more likely to be scared.

5. Discussion

We have presented a method for modeling spatiotem-
poral dynamics for prediction in both abstract and natural
scenes. Our method is capable of both sampling and evalu-
ating the likelihood of future scenes and achieves substan-
tially better performance compared to alternate approaches,
including modeling at a scene level (BoW) and indepen-
dently modeling each object (No CRF).

In the process, we have also offered insights into both the
prediction task and its evaluation. Our results suggest that
relative motion consistency does not simply emerge from
the data, but must be built into a model to occur: both the
global BoW models and the independent No CRF object ap-
proaches have dismal performance on joint motion metrics.
This failure is reflected in both our quantitative metrics and
human assessment.

In this paper, we explored short-range scene dynamics
that occur within a brief time period. A promising area of
future work is long-range interactions that commonly occur
in coherent stories containing actors with specific person-
ality types and comprehensive memories. How to semanti-
cally describe scene dynamics is also an open question.

(b) Motion association

Figure 6. Results on our natural image dataset (best viewed in color): object with bounding boxes with warmer colors are more likely to
move and lines join objects that are likely to move together. (a) The motion of many objects depends entirely on context: on the left, the
tennis balls on the ground are unlikely to move; on the right, the ball flying through the air near the dog is very likely to move. (b) Our
model captures motion association well, although it does not always determine attachment correctly for nearby humans.
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