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Abstract

It has long been recognized that one of the fundamental
difficulties in the estimation of two-view epipolar geome-
try is the capability of handling outliers. In this paper, we
develop a fast and tractable algorithm that maximizes the
number of inliers under the assumption of a purely translat-
ing camera. Compared to classical random sampling meth-
ods, our approach is guaranteed to compute the optimal so-
lution of a cost function based on reprojection errors and
it has better time complexity. The performance is in fact
independent of the inlier/outlier ratio of the data.

This opens up for a more reliable approach to robust
ego-motion estimation. Our basic translation estimator can
be embedded into a system that computes the full camera
rotation. We demonstrate the applicability in several diffi-
cult settings with large amounts of outliers. It turns out to
be particularly well-suited for small rotations and rotations
around a known axis (which is the case for cellular phones
where the gravitation axis can be measured). Experimental
results show that compared to standard RANSAC methods
based on minimal solvers, our algorithm produces more ac-
curate estimates in the presence of large outlier ratios.

1. Introduction
Estimating the epipolar geometry in two views is a clas-

sical problem in computer vision. Perhaps the most well-
known method is the eight point algorithm by Longuet-
Higgins [12], which gained popularity due to its simplic-
ity and efficiency. However, it does not properly handle
measurement noise and mismatches among the image cor-
respondences. In this paper, we study the special case of
translation estimation in two views. Either the camera is
known not to rotate or the relative rotation can be obtained
by some other means. So, why is this setting worth study-
ing? First, there are many situations where the camera un-
dergoes a pure translation, for example, in robotic applica-
tions. Then, the solution to this problem turns out to be very
simple and computationally tractable.

The most closely related work is the paper by Hartley
and Kahl [7], where a branch and bound framework is in-
troduced that searches over all rotations. As a subroutine,
the translation of the camera is estimated using linear pro-
gramming. In contrast to our work, it is assumed that no
outliers are present in the data. Our basic translation esti-
mator could be used instead in order to obtain an algorithm
that computes the globally optimal solution in the presence
of outliers. A related branch and bound approach for deal-
ing with outliers is given in [4]. Yet another branch and
bound method for the uncalibrated setting based on an alge-
braic cost function was developed in [11]. A serious draw-
back of these approaches is that they are based on a compu-
tationally costly scheme with unpredictable running times.
We will not follow the branch and bound path and limit the
scope to restricted motions in this paper.

In multiple view geometry, RANSAC has proved to be a
useful technique for dealing with outliers [5, 15, 8]. The
approach has also been specialized to the case with rota-
tion around one axis [6, 14]. This is motivated by the fact
that many modern cell phones are able to directly measure
the gravitation vector. One disadvantage with these meth-
ods is the randomness of the results and that the solution
space is restricted to the hypotheses given by minimal sub-
sets of the data. Thus, there is no guarantee of actually
finding a good solution even if there exists one. A direct
application of the general theory of optimal robust model
fitting proposed in [3] would yield an O(n3)-algorithm for
minimizing the number of outliers. Our approach is sig-
nificantly faster. Structure from motion with known rota-
tions has previously been considered, first with algebraic
cost functions [17], then later with reprojection errors in the
L∞-framework of [9]. However, it is assumed that there are
no outlier correspondences. Extensions to outliers can only
handle limited amounts of outliers [10, 16, 18].

In this paper, we analyze in depth the case of two-view
translation estimation. Our main contributions are:

• We develop a provably optimal algorithm that, for a
given error threshold ε, finds a translation which max-
imizes the number of correspondences with reprojec-
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Figure 1: Epipolar geometry. The translational direction t,
from one camera centre to the other, should lie in the same
plane as the two image vectors v and v′ of the 3D point X.

tion errors below ε. The time complexity of the algo-
rithm is O(n2 log(n)), where n is the number of hy-
pothetical correspondences. Note that performing ex-
haustive search over all minimal subsets in a RANSAC-
manner would result in an algorithm that has complex-
ity O(n3).

• We experimentally demonstrate that our algorithm per-
forms very well in several realistic and challenging set-
ups including cases with known rotation, known rota-
tion axis and small rotations. The baseline method for
our comparisons is RANSAC and our experiments indi-
cate that we cannot only obtain more accurate results,
but also can be faster, particularly in presence of large
amounts of outliers.

2. Translational Epipolar Geometry
We assume calibrated cameras undergoing a purely

translational motion. As is commonly done with calibrated
cameras, we find it convenient to consider image points as
lying on an image sphere, rather than an image plane. Thus,
an image measurement is represented by a unit vector giv-
ing the direction from the camera centre to the 3D point.

Given a correspondence pair (v,v′) in two images view-
ing a 3D point X, the epipolar constraint tells us that the
three vectors v, v′ and t should be coplanar as illustrated in
in Fig. 1. The translation direction t from one camera cen-
tre to the other can be assumed to have unit norm since the
global scale cannot be determined in any case. In practice,
one has to take into account measurement noise and ideally,
we would like that the reprojections of X should lie as close
to the measured image points v and v′ as possible. We re-
quire that the reprojection is smaller than some predefined
angular error ε, which can be written

∠(v,X) ≤ ε and ∠(v′,X− t) ≤ ε,

where ∠ is the angle between v and v′. The above condi-

Figure 2: Epipolar constraint on a sphere. The translation
t is bounded to lie in the wedge formed by two great circles
of the sphere. The great circles are tangent to the ε-cones
around v and v′, respectively.

tions can be equivalently expressed as

‖v ×X‖
v ·X

≤ tan(ε) and
‖v′ × (X− t)‖
v · (X− t)

≤ tan(ε),

(1)
provided that the denominators are positive. For a fixed t,
each such condition constrains the 3D point X to lie in a
convex cone, and hence the feasible set of 3D points satis-
fying (1) is convex and obtained as the intersection of two
cones [9]. We say that a correspondence pair (v,v′) is fea-
sible for t if the feasible set of 3D points is non-empty. This
leads us to the following problem formulation.

Problem 1. Given image correspondences (vi,v
′
i), i =

1, . . . , n and an angular error bound ε in two views, find
a translation t such that the number of feasible correspon-
dences is maximized.

It turns out that one can simplify the epipolar constraints
of (1) by further analyzing the geometry of the setup. If the
two image vectors v and v′ are placed on the same sphere
together with the translation vector t, then — in the noise-
free case — the coplanarity constraint is equivalent to the
three vectors lying on a great circle of the sphere. If we
now include the angular error bound ε as previously spec-
ified, then we see that the translation is constrained to lie
on a wedge bounded by two great circles, cf. Fig. 2. Con-
versely, for any t that lies in such a wedge, there exists a
3D point X such that when X is reprojected to the image,
the angular error between the measured image vector and
the reprojection is less than ε. In other words, the corre-
spondence (vi,v

′
i) is feasible provided its wedge contains

t. This observation was first made in [7]. Note that only the
wedge in Fig. 2 containing v will yield a 3D point X with
positive depths with respect to the two image vectors.



Figure 3: Two correspondences constrain the translation t
to be in the intersection of two wedges.

Hence, in order for two correspondence pairs to be feasi-
ble simultaneously, their corresponding wedges must have
a non-empty intersection as illustrated in Fig. 3. Analo-
gously, for a set of correspondences to be feasible for the
same translation, the corresponding wedges should have a
common intersection point. Inspired by computational ge-
ometry terminology [2], the depth of a point is defined to be
the number of wedges on which the point lies. For exam-
ple, the vector t in Fig. 3 has depth two. Note that the depth
is constant on the intersection sets of the wedges. Thus, a
set of wedges tessellates the sphere into a set of spherical
polygons bounded by great circles and on each such poly-
gon, the depth is constant, see Fig. 4. This leads us to the
following reformulation of our problem.

Problem 2. Given a set of n wedges on the sphere, find a
point of maximum depth.

Wedge formula. Consider the pair (v,v′) and the angu-
lar bound ε. Let α be the angle between v and v′ (com-
puted via cos(α) = v · v′) and let β be the angle be-
tween the two great circles of the wedge at the intersection
w = (v+v′)/‖v+v′‖, cf. Fig. 2. Then, β can be obtained
via the spherical law of sines

sin(β/2) = sin(ε)/ sin(α/2).

A great circle can be represented by the normal vector of the
plane through the great circle and the origin of the sphere.
The plane normal for the great circle through v and v′ is
given by n = (v × v′)/‖v × v′‖ and the two normals for
the great circles of the wedge are given by

n± = sin(β/2)(n×w)± cos(β/2)n. (2)

Throughout the rest of the paper will use the convention that
the signs of n+ and n− are chosen so that a unit vector t
lies on the wedge if and only if t · n+ ≥ 0 and t · n− ≥ 0.

Figure 4: Three wedges with intersection points marked in
red. The numbers state the depth of each spherical polygon.

3. Finding the Maximum Depth
Consider a set of n wedges on the sphere represented

by pairs of normals (n+
i ,n

−
i ), i = 1, . . . , n. A brute-force

approach for computing the maximum depth would be to,
for each pair of wedges, find the four corner points of the
intersecting spherical quadrilateral (Fig. 3) and for each of
these points, count how many of the other wedges contain
the point. As there are O(n2) wedge pairs, the total com-
plexity of the approach would beO(n3). This bound can be
improved with a more sophisticated scheme.

We will start by describing a procedure for finding the
maximum depth along one of the great circles of wedge
k, say n+

k , that starts at point wk and ends at point −wk.
This procedure can be applied for all 2n great circles and
thereby guaranteeing that the point of maximum depth will
be found. First, compute all intersection points for the other
wedges (i 6= k),

t+i =
n+
i × n+

k

‖n+
i × n+

k ‖
and t−i =

n+
k × n−i

‖n+
k × n−i ‖

. (3)

See Fig. 4. Wedges that are not intersecting the great half
circle of n+

k can be discarded. Then, sort the points in the
order they appear along the great circle of the sphere. A
simple way to do this is to compute the projection of t+i
and t−i onto wk, that is,

ρ+i = t+i ·wk and ρ−i = t−i ·wk, (4)

and then sort the values ρ+i and ρ−i . The next step is to
traverse the sorted list. When a point of type t+i is encoun-
tered, a new wedge is entered and the depth is increased by
one. Analogously, for a point t−i , the depth is decreased by
one. This will yield all the depths along the great circle and
in particular the maximum depth. The complete procedure
is summarized in Algorithm 1.



Algorithm 1 Maximum depth

Input: Wedge normals (n+
i ,n

−
i ), i = 1, . . . , n

Set maxdepth = 0
For each great circle of a wedge

Set depth = 1
Compute intersection points with other wedges, cf. (3)
Sort the intersections along the great circle, cf. (4)
For each intersection in the sorted list

If entering a wedge, then
depth = depth + 1 and update maxdepth

else
depth = depth− 1

Complexity. The sorting step of Algorithm 1 takes
O(n log(n)) and this has to be repeatedO(n) times. Hence
the total complexity of the algorithm is O(n2 log(n)).

Related work. The standard approach for finding the
maximum depth (maximum number of inliers, maximum
consensus set etc.) is to use RANSAC [5]. It works by hy-
pothesize and test: Pick a random minimal set (two pairs of
correspondences), compute a hypothesis (a translation), and
evaluate the hypothesis on the remaining set (the other cor-
respondences), see Algorithm 2. The complexity is O(kn),
where k is the number of iterations. If an exhaustive search
over all minimal sets is performed, then the complexity be-
comesO(n3). Note that even if an exhaustive search is per-
formed there is no guarantee of finding the maximum depth.

There are two operations that need to be defined for
RANSAC. The first one is given two pairs (v1,v

′
1) and

(v2,v
′
2), compute a translation hypothesis t. Applying the

epipolar constraint twice, one obtains

t = (v1 × v′1)× (v2 × v′2). (5)

The second operation is to determine whether a correspon-
dence pair (v,v′) is feasible or not for a given t and resid-
ual error ε in order to count the number of inlier pairs. This
is done by first computing the wedge normals n+ and n−

using the formula in (2) and then checking whether the con-
ditions t · n+ ≥ 0 and t · n− ≥ 0 are fulfilled or not.

Algorithm 2 K-iteration RANSAC

Input: Correspondence pairs (vi,v
′
i), i = 1, . . . , n

Set maxdepth = 0
Repeat K times:

For a random subset of two pairs
Compute a hypothetical translation t using (5)
Set depth = #feasible correspondences for t
Update maxdepth

4. Experiments

In this section we evaluate Algorithm 1 in two differ-
ent settings. The first problem has no rotation, only trans-
lation, between the pairwise images. We compare Algo-
rithm 1 with Algorithm 2 and the well known 5-point al-
gorithm [15]. In the second experiment the direction of the
gravitation axis is assumed to be known, leaving us to de-
termine not only the translation, but also one rotation angle.
In this experiment we branch and bound over the rotation
angle, which we can assume is in the interval [−π, π]. I the
second experiment we compare Algorithm 1 with a 3-point
algorithm [6] and the 5-point algorithm. In both experi-
ments we use real images taken with an Iphone 4. We also
add some synthetic experiments where we evaluate the al-
gorithms for different levels of outliers. All algorithms were
implemented in C++ using an Intel core i7, 3.4 GHz with 16
GB RAM computer. We did not use more than one of the
four cores in any of the experiments, even though all the al-
gorithms are easy to run in parallel. For detecting keypoints
we use SIFT [13].

4.1. Pure Translation

In this experiment only translated images are considered
(no rotation). To make a good evaluation we used 136 im-
age pairs, see Fig. 5. We benchmarked Algorithm 1 against
Algorithm 2 and the 5-point algorithm. The number of it-
erations for Algorithm 2 were set to 500 which gives more
than 99 % probability of finding a good solution with up to
90 % outliers. In the 5-point case we ran it the same number
of times as Algorithm 1 (10,000 iterations).

To maximize the information gained from the SIFT
points, every point in the first image was matched with their
best corresponding point in the second image. This resulted
in 5,000-10,000 matches for every image pair. We set the
maximum angular error ε so it corresponds to one pixel in
the images.

To generate ground truth data we manually selected point
matches in every image and used bundle adjustment [8] to
calculate the structure and motion. The translation errors
with respect to the ground truth for the different algorithms
are shown in Fig. 7. The mean angle error for the transla-
tion vector can be seen in Table 1. The 5-point algorithm
has difficulties since it can force in extra inliers by rotat-
ing the space which results in bad translation estimates. In
Fig. 6 we compare the number of inliers for the three meth-
ods. The 5-point algorithm has 10 % more inliers than Al-
gorihm 1 which in turn has 20 % more inliers than Algo-
rithm 2.
We also compare Algorithm 1 and Algorithm 2 with 500
iterations of LO-RANSAC [1]. The LO-RANSAC algortihm
found 2% more inliers then Algorithm 2, which is 17%
lower than the number of inliers found by Algorithm 1.



Alg. 1 Alg. 2 5-pt. alg.
Translation error 4.6◦ 8.5◦ 51◦

Table 1: The mean translation error measured in degrees
between the translations of the different methods and the
ground truth translation. Ground truth is calculated with
manually selected points and bundle adjustment.

Figure 5: One image pair out of 136, together with some of
the SIFT points. There is no rotation between the images,
only translation. Note that there are a lot of repeated struc-
tures (windows).

Figure 6: Historgram over the inlier differences obtained
from the 136 image pairs. On average there are 7,300
matches between every pair of images. The red bars rep-
resent the difference in inliers between Algorithm 1 and Al-
gorithm 2, with 500 iterations. The blue bars represent the
difference between Algorithm 1 and the 5-point algorithm,
with 10,000 iterations.

4.1.1 Synthetic Experiments

In this synthetic experiment we evaluate how a different
number of outlier correspondences affect the number of de-
tected inlier correspondences for Algorithm 2, compared
to Algorithm 1. We set K ∈ {100, 500,∞} and use 100

Figure 7: Histogram over the translation errors. The figure
compares the estimated translations for Algorithm 1, Al-
gorithm 2 and the 5-point algorithm, with the ground truth
translation. The translation error is measured as the angle
to the true translation, in degrees.

matches in total. We use the same angular error ε as in the
real experiment above. We also add normally distributed
noise with a standard deviation ε/3. The runtime for Algo-
rithm 2 with K = 100 equals that of Algorithm 1. Here
K = ∞ means exhaustive search over all

(
100
2

)
= 4950

possibilities. The results for this experiment are reported in
Fig. 8. Note that even though Algorithm 2 checks all the
possibilities of two pairs, it does not guarantee the optimal
solution as Algorithm 1 does.

4.2. Known Gravitation Direction

In this second experiment we search over the rotation
angles as well. This can be done optimally by using Al-
gorithm 1 with branch and bound, similar to the method in
[7]. The accelerometer in smart phones registers the grav-
itation direction, and this can be extracted as sensor data.
The gravitation direction for each image can then be rotated
so that the images only differ by a translation and a rotation
around a known axis. In this experiment we compare the
branch and bound version of Algorithm 1 with the 3-point
algorithm and the 5-point algorithm. We use 10 images
(45 image pairs) for which the ground truth was obtained
by manually selecting corresponding points and performing
bundle adjustment. The camera rotations were constrained
to have the known rotation axes. We use SIFT matching
with ratio 0.8, to get 350 correspondences on average for
the image pairs. The 3-point algorithm was used with 5,000
RANSAC iterations and the 5-point algorithm with 10,000 it-
erations. Since we had fewer corresponding points we used
three times as large error threshold (corresponding to 3 pix-



Figure 8: Difference in inliers: Algorithm 1 versus RANSAC with K ∈ {100, 500,∞} iterations of Algorithm 2. In this
synthetic experiment 100 points were used. Note that 100 iterations take the same time as Algorithm 1 and that K = ∞
corresponds to exhaustive search in a deterministic manner. The optimal solutions for the left and right diagrams have 90 and
95 outliers respectively. The last staple corresponds to differences ≥ 3.

Branch and bound Alg. 1 3-pt. alg. 5-pt. alg.
Inliers 234 231 242

Table 2: The number of inliers on average for the 45 image
pairs, out of an average of about 350 correspondences. The
inlier threshold was set to 3 pixels.

Method Angle Axis Translation
Algorithm 1 1.9◦ 6.5◦ 9.3◦

3-point algorithm 2.0◦ 6.5◦ 9.1◦

5-point algorithm 2.4◦ 9.4◦ 9.4◦

Table 3: The mean errors for the angle, axis and translation
vector, between Algorithm 1, the 3-point algorithm and the
5-point algorithm. The errors are measured as the angle to
the ground truth. In this experiment the gravitational direc-
tions for the images are known, but not the angle nor the
translation between the images.

els).
The mean errors for the different methods can be seen

in Table 3. Note that the 3-point algorithm and the branch
and bound version of Algorithm 1 shows very similar re-
sults. This is expected since there are a lot of inliers in this
experiment. Note also that the rotation axis for the 5 point
algorithm is bad. This is probably due to the fact that it has
more degrees of freedom, see Table 2. The RANSAC algo-
rithms took about 2-3s while the branch and bound version
took about 10s.

4.2.1 Synthetic Experiment

This setup is similar to the previous synthetic experiment
with pure translation. Here we randomized the angle and
the translation for 100 image points. We let the number of
outliers vary, 90 % and 95 % and iterated the 3-point algo-
rithm 500, 5, 000 and 20, 000 times. We compare this to the
branch and bound version of Algorithm 1. Since branch and
bound makes Algorithm 1 much slower (about 1.5s), 20,000
iterations of the 3-point algorithm take the same time. The
results are reported in Fig. 9. The reason why we do not
compare with the 5-point algorithm is that it does not pro-
vide in a good solution with this amount of outliers.

5. Conclusions
We have shown that the two-view epipolar geometry of

a translating camera can be robustly computed in an effi-
cient manner by just using simple arithmetic operations in
low-order polynomial time. Unlike random sampling meth-
ods, the result is provably optimal and not affected by large
amounts of outliers. In fact, for difficult scenarios with large
rates of outliers, the results are not only more accurate and
reliable, but obtained in less time.

In addition, the proposed method can be embedded into
rotation space search framework, similar to [7], making it a
robust and reliable method for computing the full motion of
the camera. From a computational point of view, it is par-
ticularly efficient for small rotations or restricted motions.
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Figure 9: Difference in inliers: Branch and bound with Algorithm 1 versus RANSAC with K ∈ 500, 5000, 20000 iterations of
the 3-point algorithm. In this synthetic experiment, in total 100 points were used. The optimal solutions for the left and right
diagrams have 90 and 95 outliers respectively. The last staple correspond to differences ≥ 3.
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