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Abstract

We present a video co-segmentation method that uses
category-independent object proposals as its basic element
and can extract multiple foreground objects in a video set.
The use of object elements overcomes limitations of low-
level feature representations in separating complex fore-
grounds and backgrounds. We formulate object-based co-
segmentation as a co-selection graph in which regions with
foreground-like characteristics are favored while also ac-
counting for intra-video and inter-video foreground coher-
ence. To handle multiple foreground objects, we expand the
co-selection graph model into a proposed multi-state selec-
tion graph model (MSG) that optimizes the segmentation-
s of different objects jointly. This extension into the MSG
can be applied not only to our co-selection graph, but al-
so can be used to turn any standard graph model into a
multi-state selection solution that can be optimized directly
by the existing energy minimization techniques. Our experi-
ments show that our object-based multiple foreground video
co-segmentation method (ObMiC) compares well to related
techniques on both single and multiple foreground cases.

1. Introduction

The goal of video foreground co-segmentation is to joint-
ly extract the main common object from a set of videos.
In contrast to the unsupervised problem of foreground seg-
mentation for a single video [16, 22, 23], the task of video
co-segmentation is considered to be weakly supervised,
since the presence of the foreground object in multiple
videos provides some indication of what it is. Despite this
additional information, there can still remain much ambi-
guity in the co-segmentation of general videos, which of-
ten contain multiple foreground objects and/or low contrast
between foreground and background. Taking the pair of
videos in Fig. 1 (a) as an example, it can be seen in (b)
that co-segmentation methods based on low-level appear-
ance features may not adequately discriminate between the
foreground and background. Also, object-based methods
designed for single video segmentation do not take advan-
tage of the joint information between the videos, and con-

(a) (b) (c) (d)

Figure 1. Video co-segmentation example for the case of a s-
ingle foreground object. (a) Two related video clips. (b) Co-
segmentation results from [3] based on low-level appearance fea-
tures. (c) Results from object-based video segmentation [23] that
does not consider the two videos jointly. (d) Results of our object-
based video co-segmentation method.

sequently may extract different objects as shown in (c).
In this paper, we present a general technique for video

co-segmentation that is formulated with object proposals as
the basic element of processing, and that can readily han-
dle single or multiple foreground objects in single or mul-
tiple videos. Our Object-based Multiple foreground Video
Co-segmentation method (ObMiC) is developed from two
main technical contributions. The first is an object-based
framework in which a co-selection graph is constructed
to connect each foreground candidate in multiple videos.
The foreground candidates in each frame are category-
independent object proposals that represent regions likely
to encompass an object according to the structured learn-
ing method of [6]. This mid-level representation of regions
has been shown to more robustly and meaningfully separate
foreground and background regions in images and individ-
ual videos [21, 14, 16, 22, 23]. We introduce them into
the video co-segmentation problem, and propose compat-
ible constraints that assist in foreground identification and
promote foreground consistency among the videos.

The second technical contribution is a method for ex-
tending the graph models such as the aforementioned co-
selection graph to allow selection of multiple states in each
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node. In the context of video co-segmentation, we apply
this method to expand the co-selection graph into a multi-
state selection graph (MSG) in which multiple foreground
objects can be dealt with in our object-based framework.
The MSG is additionally able to accommodate the cases of
a single foreground and/or a single video, and can be op-
timized by existing energy minimization techniques. Our
ObMiC method yields co-segmentation results that surpass
related techniques as shown in Fig. 1 (d). For evaluation
of multiple foreground video co-segmentations, we have
constructed a new dataset with ground truth, which will be
made publicly available upon publication of this work.

2. Related Works
Video Co-segmentation: Only a few methods have been

proposed for video co-segmentation, and they all base their
processing on low-level features. Chen et al. [2] identified
regions with coherent motion in the videos and then find a
common foreground based on similar chroma and texture
feature distributions. Rubio et al. [19] presented an iterative
process for foreground/background separation based on fea-
ture matching among video frame regions and spatiotempo-
ral tubes. The low-level appearance models in these meth-
ods, however, are often not discriminative enough to ac-
curately distinguish complex foregrounds and background-
s. Guo et al. [9] employed trajectory co-saliency to match
the action form the video pair. However, this method on-
ly focuses on the common action extraction rather than
the foreground object segmentation. In [3], the Bag-of-
Words representation was used within a multi-class video
co-segmentation method based on distant-dependent Chi-
nese Restaurant Processes. While BoW features provide
more discriminative ability than basic color and texture fea-
tures, they may not be robust to appearance variations of
a foreground object in different videos, due to factors such
as pose change. Fig. 1 (b) shows co-segmentation results
of [3], where the pixel-level features do not provide a rep-
resentation sufficient for relating corresponding regions be-
tween the input videos. By contrast, our method uses an
object-based representation that provides greater discrim-
inability and robustness, as shown in Fig. 1 (d).

Object-based Segmentation: In contrast to the meth-
ods based on low-level descriptors, object-based techniques
make use of a mid-level representation that aims to delineate
an object’s entirety. Vicente et al. [21] introduced the use
of object proposals for co-segmentation of images. Meng
et al. [17] employed the shortest path algorithm to select a
common foreground from object proposals in multiple im-
ages. Lee et al. [14] utilized object proposal regions as fore-
ground candidates in the context of single video segmen-
tation, with the objectness measure used in ranking fore-
ground hypotheses. More recent works [16, 22, 23] on s-
ingle video segmentation have extended this object-based

approach and incorporated a common constraint that the
foreground should appear in every frame. This constraint
is formulated within a weighted graph model, with the so-
lution optimized via maximum weight cliques [16], short-
est path algorithm [22], or dynamic programming [23]. As
these single video segmentation methods do not address the
co-segmentation problem, they do not account for the infor-
mation within other videos. Moreover, they do not present a
way to deal with multiple foreground objects. In our work,
we present a more general co-selection graph to formulate
correspondences between different videos, and extend this
framework to handle both single and multiple foreground
objects using the MSG model.

Multiple foreground co-segmentation: Some co-
segmentation methods can handle multiple objects. Kim et
al. [11] employed an anisotropic diffusion method to find
out multiple object classes from multiple images. They al-
so presented a different approach for multiple foreground
co-segmentation in images [12], which builds on an iter-
ative framework that alternates between foreground mod-
eling and region assignment. Joulin et al. [10] proposed
an energy-based image co-segmentation method that com-
bines spectral and discriminative clustering terms. Mukher-
jee et al. [18] segmented multiple objects from image col-
lections, by analyzing and exploiting their shared subspace
structure. The video co-segmentation method in [3] can also
deal with multiple foreground extraction, which uses a non-
parametric Bayesian model to learn a global appearance
model that connects the segments of the same class. How-
ever, all of these methods are based on low-level feature rep-
resentations for clustering the foregrounds into classes. On
the other hand, object-based techniques operate on a mid-
level representation of object proposals but lack an effective
way to deal with multiple foregrounds. In our work, we ex-
tend the object-based co-segmentation approach to handle
multiple foregrounds using the MSG model, where multi-
ple foreground objects can be segmented jointly in multiple
videos via the existing energy minimization method.

3. Our Approach
We present our object-based video co-segmentation al-

gorithm by first describing it for the case of a single fore-
ground object, and then extending this approach to handle
multiple foreground objects using the MSG model.

3.1. Single object co-segmentation

We denote the set of videos as {V 1, ..., V N}, where each
video V n consists of Tn frames denoted by {Fn1 , ..., FnTn

}.
In each frame, a set of object-based candidates is obtained
using the category-independent object proposals method
[6], from which the generated candidates may possibly have
some overlapping areas. To identify the foreground objec-
t in each frame, we consider various object characteristic-
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Figure 2. Unary energy factors in foreground detection. (a) Two input frames from a video. (b) Top three proposal regions generated
from [6], where the candidates are ranked by their objectness scores. (c) Optical flow maps by [15], which detects dynamic objects and
ignores static objects. (d) Co-saliency maps by [8], which indicate common salient regions among the video. (e) Our selected candidates
determined from the co-selection graph, which extracts the common foreground (giraffe) and removes background objects (elephant).

s that are indicative of foregrounds, while accounting for
intra-video coherence of the foreground as well as fore-
ground coherence among the different videos.

We formulate this problem as a co-selection graph in the
form of a conditional random field (CRF). As illustrated in
Fig. 3, each video is modeled by a sequence of nodes. Each
node represents a frame in the video, and the possible states
of a node are comprised of the foreground object candidates
in the frame. For the case of a single foreground object,
we seek for each node the selected candidate unt that corre-
sponds to it. By concatenating the selected candidates from
all the frames of the video set, we obtain a candidate se-
ries u = {unt |n = 1, ..., N ; t = 1, ..., Tn}. For each video,
intra-video edges are placed between the nodes of adjacent
frames. The nodes of different videos are fully connected
with each other by inter-video edges.

For this co-selection graph, we express its energy func-
tion Ecs(u) as follows:

Ecs(u) =

N∑
n=1

Tn∑
t=1

[
Ψ(unt ) + Φα(unt , u

n
t+1)

]
+

N∑
n,m=1,
n 6=m

Tn∑
t=1

Tm∑
s=1

Φβ(unt , u
m
s ), (1)

where Ψ,Φα and Φβ represent unary, intra-video and inter-
video energy, respectively.

Unary energy combines three factors in determining
how likely an object candidate is to be the foreground:

Ψ(unt ) = − log [O(unt ) ·max (M(unt ), S(unt ))] . (2)

The factors that influence this energy are the objectness s-
core O(u), motion score M(u), and saliency score S(u) of
the candidate u. The objectness scoreO(u) provides a mea-
sure of how likely the candidate is to be a whole object. For
this, we take the value returned in the candidate generation
process [6]. The motion score M(u) measures the confi-
dence that candidate u corresponds to a coherently moving
object in the video. We define the motion score using the

Frame Inter-video term

Intra-video term

Object candidates

... ...

......

Video 2

Video 1

Figure 3. Our co-selection graph is formulated as a CRF mod-
el. Each frame of a video is a node, and the foreground object
candidates of the frame are the states a node can take. The nodes
(frames) from different videos are fully connected by inter-video
terms. Within a given video, only adjacent nodes (frames) are con-
nected by intra-video terms.

definition in [14]:

M(unt ) = 1− exp

(
− 1

Mm
χ2
flow(unt , ū

n
t )

)
, (3)

where ūnt denotes the pixels around the candidate unt with-
in a minimum bounding box enclosing the candidate, and
χ2
flow is the χ2-distance between the normalized optical

flow histograms with Mm denoting the mean of the χ2-
distances. In our work, the optical flow is computed by
using the method in [15].

Most video segmentation methods [14, 16, 22, 23] aim
to find a coherently moving foreground object based on its
motion score. However, in practice a foreground object may
not always be moving in the video, so we additionally con-
sider a static saliency cue and take the maximum between
the dynamic motion and static saliency cues in Eq. (2). D-
ifferent from the objectness score O(u), which is designed
to identify extracted regions that are object-like and whole,
the saliency score S(u) relates to visually salient stimuli,
which has often been used to find regions of interest. For
this, rather than performing saliency detection for single im-
ages, we compute the co-saliency map on multiple images
as described in [8], which takes consistency throughout the
video into account.

The differences among the three factors in the unary ter-
m are illustrated in Fig. 2. For the input frames in (a), the
top proposals ranked only by objectness scores [6] do not



accurately represent the foreground in the video. For exam-
ple, the actual foreground in the first frame of (b) is ranked
third, while in the second frame the correct foreground ob-
ject is not even among the top three. On the other hand,
the optical flow map of [15] in (c) highlights the primary
object (giraffe) in the first frame, but instead finds the sec-
ondary object (elephant) in the second frame due to its high-
er motion score. The co-saliency map of [8] in (d) detects a
common foreground, but may also give high scores to other
regions. Jointly considering these disparate factors leads to
more reliable estimates of the foreground, as shown in (e).

Intra-video energy provides a spatiotemporal smooth-
ness constraint between neighboring frames in an individu-
al video. It is commonly used in single video segmentation
[16, 22, 23], and we define this term as follows:

Φα(unt , u
n
t+1) = γ1 ·Dc(u

n
t , u

n
t+1) ·Df (unt , u

n
t+1), (4)

where γ1 is a weighting coefficient, Dc represents the color
histogram similarity between two candidates as

Dc(u
n
t , u

n
t+1) =

1

Mc
χ2
color(u

n
t , u

n
t+1), (5)

where χ2
color is the χ2-distance between unnormalized color

histograms with Mc denoting the mean of the χ2-distances
among all candidates in all the videos, and Df represents
the overlap between the two candidates in the adjacen-
t frames:

Df (unt , u
n
t+1) = − log

(
|unt ∩Warp(unt+1)|
|unt ∪Warp(unt+1)|

)
, (6)

where Warp(unt+1) transforms the candidate region unt+1

from frame t+ 1 to t based on optical flow mapping [15].
Inter-video energy measures foreground consistency a-

mong the different videos. In the co-selection graph, can-
didates from one video are connected to those in the other
videos. We define the inter-video energy as follows:

Φβ(unt , u
m
s ) = γ2 ·Dc(u

n
t , u

m
s ) ·Ds(u

n
t , u

m
s ), (7)

where γ2 is a weighting coefficient, Dc denotes color his-
togram similarity computed as in Eq. (5), and Ds measures
shape similarity between the two candidates. In our work,
shape is represented in terms of the HOG descriptor [4]
within a minimum bounding box enclosing the candidate.
We define Ds as

Ds(u
n
t , u

m
s ) =

1

Ms
χ2
shape(u

n
t , u

m
s ), (8)

where χ2
shape is the χ2-distance between unnormalized

HOGs with Ms denoting the mean of the χ2-distances.
Inference: To solve the co-selection graph, we seek the

labeling u∗ that minimizes its energy function:

u∗ = arg min
u
Ecs(u). (9)

Unary term 

Smoothness term
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Figure 4. Our MSG model, illustrated for K = 3. For K-state se-
lection, our method replicates the co-selection graph K − 1 times
to form K subgraphs, and connects the corresponding nodes of
different subgraphs with the candidate overlap term. Each sub-
graph outputs its corresponding candidate series. The smoothness
terms include the inter-video terms and intra-video terms in our
co-selection graph.

In contrast to the directed graph used in [22, 23], our co-
selection graph is a cycle graph that connects candidates
among multiple videos. Optimizing a cycle graph is a NP-
hard problem. We employ TRW-S [13] to obtain a good
approximated solution as in [5].

Since object candidates generated by [6] are only rough-
ly segmented, we refine the results as in [14, 23] with a
pixel-level spatiotemporal graph-based segmentation.

3.2. Multiple foreground co-segmentation

In this section, we extend our single object video co-
segmentation approach to handle multiple foregrounds us-
ing a multi-state selection graph model (MSG). With MSG,
multiple foregrounds can be solved jointly in the multiple
videos via existing energy minimization methods.

3.2.1 Multiple foreground selection energy

For the case of multiple foregrounds,K different candidates
are to be found in each frame. We refer to the set of selected
candidates throughout the videos for the kth foreground ob-
ject as the candidate series u(k). In solving for the multiple
foreground co-segmentation, we account for the indepen-
dent co-segmentation energies Ecs(u(k)) of each of the K
candidate series. In addition, it must be ensured that the
K candidate regions have minimal overlap throughout the
videos, since an area in a video frame cannot belong to two
or more foreground objects. We model this constraint by
introducing the candidate overlap penalty Eov(u(k),u(j))
between different candidate series, and define the multiple
foreground selection problem as follows:

Definition: Let G = 〈V, E〉 be an undirected graph with
the set of vertices V and the set of edges E . By concatenat-
ing the variables from all the nodes, we obtain a candidate
series u. The multiple foreground selection solves for K



different candidate series {u(1), ...,u(K)} in G according to

min
u(1),...,u(K)

K∑
k=1

Ecs(u(k)) +

K∑
k,j=1

Eov(u(k),u(j)), (10)

where Ecs(·) denotes independent co-selection graph ener-
gies and Eov(·, ·) represents the candidate overlap penalty.

Incorporating Eq. (1) into the multiple foreground selec-
tion energy function in Eq. (10), we obtain

Emsg =

K∑
k=1

Ecs(u(k)) +

K∑
k,j=1

Eov(u(k),u(j))

=

K∑
k=1



N∑
n=1

Tn∑
t=1

[
Ψ(u

n,(k)
t ) + Φα(u

n,(k)
t , u

n,(k)
t+1 )

]
+

N∑
n,m=1,
n 6=m

Tn∑
t=1

Tm∑
s=1

Φβ(u
n,(k)
t , um,(k)

s )


+

K∑
k,j=1
k 6=j

N∑
n=1

Tn∑
t=1

∆(u
n,(k)
t , u

n,(j)
t ), (11)

where un,(k)
t denotes the kth selected candidate in frame

Fnt , and ∆(·, ·) is the candidate overlap term. In our co-
segmentation method, the candidate overlap term is defined
as the intersection-over-union metric between two candi-
dates:

∆(u
n,(k)
t , u

n,(j)
t ) = γ3

|un,(k)
t ∩ un,(j)t |
|un,(k)
t ∪ un,(j)t |

, (12)

where γ3 is a scale parameter.

3.2.2 Multi-state selection graph model

To optimize the multiple foreground selection energy in E-
q. (11), we propose the multi-state selection graph model
(MSG). In MSG, the co-selection graph for single objec-
t co-segmentation is replicated K − 1 times to produce K
subgraphs in total, one for each candidate series. We ob-
serve that the candidate overlap penalty ∆(·, ·) in Eq. (11)
can be treated as edges between corresponding nodes in the
subgraphs, as illustrated in Fig. 4. Linking the subgraphs in
this way combines the subgraphs into a unified MSG, such
that the single foreground co-selection graph G = 〈V, E〉 is
extended into the multi-state selection graph G′ = 〈V ′, E ′〉,
where the vertex set V ′ is composed of the vertices from the
K subgraphs, and edge set E ′ includes the edges in the K
subgraphs as well as the edges between the subgraphs for
the candidate overlap term.

With the MSG model, we can express the multiple
foreground selection energy of Eq. (11) as follows:

Emsg =

K∑
k=1

∑
q∈V

Ψ(uq) +
∑

(q,r)∈E

Φ(uq, ur)


+

∑
(q,r)∈V∆

∆(uq, ur) (13)

=
∑
q∈V′

Ψ(uq) +
∑

(q,r)∈E′
Θ(uq, ur), (14)

where (q, r) denotes the edge between nodes q and r, V∆

denotes the edge set for the candidate overlap term in multi-
state selection, and Θ is the combination of the smoothness
term Φ and the candidate overlap term ∆. Note that Φ(·)
in Eq. (13) encompasses the intra-video terms Φα(·) and
inter-video terms Φβ(·) in Eq. (11).

Our MSG energy in Eq. (14) can be derived in the
context of Markov Random Fields: A minimum of Emsg
corresponds to a maximum a posteriori (MAP) labeling
{u(1), ...,u(K)}. Thus, our MSG can be solved direct-
ly by the existing energy minimization method (e.g., A∗

search [1] and belief propagation [7]), yielding the multi-
ple foreground objects in one shot. Moreover, our MSG can
be applied not only to extend our co-selection graph, but
also to turn any standard graph model into a multi-state s-
election solution. In this paper, we employ TRW-S [13] to
obtain the approximated solution.

4. Experiments
The ObMiC method is general enough to handle sin-

gle/multiple videos and single/multiple foreground segmen-
tation. In our experiments, we test our method in the t-
wo video co-segmentation cases, with a single foreground
and with multiple foregrounds. We employ two metrics for
the evaluation. The first is the average per-frame pixel er-
ror [20] defined as |XOR(R,GT )|

F , where R is the segmenta-
tion result of each method, GT is the ground truth, and F
is the total number of frames. The second measure is the
intersection-over-union metric [3] defined as R∩GT

R∪GT .

4.1. Single foreground video co-segmentation

In evaluating for the single foreground case, we employ
the MOViCS dataset [3], which includes four video set-
s in total with five frames of each video labeled with the
ground truth. The foregrounds in these video sets are tak-
en to be the primary objects, namely the Chicken, Giraffe,
Lion and Tiger. Using the codes obtained from the cor-
responding authors, we compare our ObMiC algorithm to
six state-of-the-art methods that are the most closely related
works published in recent years: (1) Co-saliency detection
(CoSal) in [8], which is based on bottom-up saliency cues
and employs a global coherence cue to detect the common
saliency region in multiple images. CoSal [8] can also pro-
duce the co-segmentation results via a binary segmentation.
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Figure 5. Single object segmentation results on the MOViCS dataset, where the displayed video frames are from different videos. From
top to bottom: input videos, MIC [10], MVC [3], OIC [17], OVS [23], and our ObMiC method. (Best viewed in color.)

Methods Chicken Giraffe Lion Tiger Avg.
CoSal [8] 6092 5791 8007 53253 18284
ObjPro [6] 13624 8917 5243 56743 21132
OIC [17] 3107 69001 9534 82303 40986
OVS [23] 5579 23735 7853 24200 15342
MIC [10] 7771 4053 4067 44809 15175
MVC [3] 3985 3244 3181 34352 11191
Our SeC 2450 3953 3058 24147 8402
Our ObMiC 1567 2938 1598 21005 6726

Table 1. The average per-frame pixel errors on MOViCS dataset.

(2) Object-based proposals (ObjPro) in [6], which generates
a set of object candidates in each frame based on a category
independent generic object model. We use the top-ranked
proposals as the result in [6]. (3) Object-based image co-
segmentation (OIC) in [17], which selects a common object
from the multiple images via the shortest path algorithm.
(4) Object-based video segmentation (OVS) in [23], which
employs a directed acyclic graph based framework to select
the primary object in a single video. (5) Multi-class image
co-segmentation (MIC) in [10], which segments the multi-
ple images into regions of multiple classes. We select the
class that has the most overlap with the ground truth over
the video set as its foreground segmentation result. Since
the number of clusters K needs to be predefined in MIC,
we sample values of K between 5 and 8, and choose the
value that yields the best performance for each video set.
(6) Multi-class video co-segmentation (MVC) in [3], which
produces a segmentation of multiple classes from the mul-
tiple videos. As with MIC [10], we select the class that has
the most overlap with the ground truth over the entire video
set as its segmentation result. (7) We also present an inter-
mediate result of our method: the selected candidates (SeC)
from Eq. (1), i.e., our ObMiC results prior to pixel-level re-
finement. The segmentation results are shown in Fig. 5, and
quantitative errors are given in Table 1 and Fig. 6.

ObjPro [6] does not perform well, because it lacks intra-
video and inter-video constraints. Slightly better perfor-
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Figure 6. The intersection-over-union metric on MOViCS dataset.

mance is obtained by CoSal [8], as it employs inter-video
cues. However, the bottom-up saliency cue used in [8] can
become less effective in complex videos (e.g., Tiger), as al-
so mentioned in [8]. Our SeC integrates objectness, mo-
tion, and co-saliency related cues in the unary term, which
together with the additional inter-video and intra-video con-
straints leads to significant improvements over ObjPro and
CoSal on average.

OIC [17] is an object-based co-segmentation method
for multiple images. Image co-segmentation methods of-
ten make use of the assumption that the multiple images
have different backgrounds. However, the backgrounds of
a video are temporally continuous and similar in content,
which leads to incorrect foregrounds from OIC as seen in
the videos of Giraffe and Tiger. In video segmentation
methods, the use of motion cues and intra-video smooth-
ness provides powerful constraints that help to avoid this
issue.

OVS [23], which is designed for single video segmenta-
tion, extracts the foreground without considering the oth-
er videos. As a result, the segmented foreground might
not be the same among the videos in the set. For exam-
ple, it extracts both the lion and zebra together as the fore-



ground region in the third video of Lion, since they both
have foreground-like characteristics and appear connected
through most of the video.

MIC [10] combines local appearance and spatial consis-
tency terms with class-level discrimination. However, as an
image co-segmentation method, it does not include a tem-
poral smoothness constraint for video co-segmentation. The
low-level representation in MIC without an objectness con-
straint may lead to fragmentary segmentation, as seen in the
second video of Lion and the third video of Tiger.

Inter-video constraints are incorporated in MVC [3].
However, its segmentation with pixel-level features often
does not capture the foreground object in its entirety, as
shown for the videos of Chicken and Tiger. The use of
pixel-level features can also affect its class labeling, as seen
in the third video of Tiger, though this problem is not penal-
ized in this comparison since the region that has the maxi-
mum overlap with the ground truth is taken as the segmen-
tation result of MVC. By contrast, the use of objectness and
intra-video smoothness constraints in our ObMiC method
helps to avoid these issues and provides more meaning-
ful foreground co-segmentation results. ObMiC obtains the
best results on the four video sets.

4.2. Multiple foreground video co-segmentation

Since there are no datasets for multiple foreground video
co-segmentation, we have collected our own, consisting of
four sets, each with a video pair and two foreground ob-
jects in common. The dataset includes ground truth manu-
ally obtained for each frame. With these videos, we com-
pare our method to two multi-class co-segmentation meth-
ods: MIC [10] and MVC [3]. We also provide two other
baselines: selected candidates via our MSG, and iterative
selection (IterSel) which solves for the foreground object-
s one at a time from Eq. (11). IterSel first computes one
candidate series based on single object co-selection, then
updates the unary term of each node by adding the candi-
date overlay term in Eq. (12) for the selected candidate to
prevent re-selection of its associated states in subsequent
iterations. These two steps are repeated until K state se-
ries are selected. The total energy function of IterSel thus
becomes equivalent to Eq. (11) after selecting all the state
series. For most object-based segmentation methods, the
number of foregrounds (i.e., K) needs to be predefined. In
this experiment, we set K = 2. Fig. 8 displays multiple
foreground segmentation results with our dataset, and quan-
titative errors are given in Table 2 and Fig. 7.

MIC [10] employs a global constraint to group similar
regions from different images. It also classifies pixels based
on a low-level representation without an objectness con-
straint, which may result in wrongly merged object class-
es from the foreground and background. For example, the
black dog in the first video of the Dog set is wrongly classi-

Methods Dog Person Monster Skating Avg.
MVC [3] 1807 10389 7394 10223 7453
MIC [10] 4794 11033 7836 26616 12570
IterSel 1527 12482 6631 3537 6044
Our MSG 1209 12120 5699 3455 5621
Our ObMiC 1115 9321 3551 3274 4315

Table 2. The average per-frame pixel errors on our multiple fore-
ground video dataset.
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Figure 7. The intersection-over-union metric on our multiple fore-
ground video dataset.

fied together with the background tree shadows in the sec-
ond video. Also, for the complex foreground (e.g, the big-
ger monster) in the Monster set, MIC produces a fragmen-
tary segmentation from the low-level features.

MVC [3] includes a temporal smoothness constraint and
obtains better performance than MIC. However, as with the
single foreground segmentation, the pixel-level processing
of MVC leads to some errors in class labeling and hence to
some incorrect correspondence of objects (e.g., the chang-
ing of the bigger monster classes in the Monster set). Even
though our comparison does not penalize these class switch-
es in MVC (by taking the region with the maximum overlap
with the ground truth), our ObMiC still outperforms both
MVC and MIC on all the videos.

Since IterSel and MSG both generate results direct-
ly from the object proposals of [6] without using pixel-
level refinement, their segmentation results are coarse and
have greater error than those with pixel-level segmentation.
IterSel is similar to a greedy process that sequentially ob-
tains a local optimum for each candidate series. By contrast,
our MSG method optimizes this multi-state problem jointly
via a single global energy function, which leads to less error
than IterSel (see Table 2).

We note that our method assumes the existence of a com-
mon object proposal among the videos, which is a standard
assumption among object-based co-segmentation methods
(e.g., [17, 21]). When common objects exist, but not in all
the videos, our method can still extract them, but will also
extract an unrelated region in videos where the common ob-
ject is missing. How to deal with missing common objects
is a direction for future work.
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Figure 8. Segmentation results on our newly collected multiple foreground video dataset, where different videos in a set are separated by a
line. From top to bottom: input videos, MIC [10], MVC [3], and our ObMiC method. (Best viewed in color.)

5. Conclusion

We proposed an object-based multiple foreground video
co-segmentation method, whose key components are the
use of object proposals as the basic element of process-
ing, with a corresponding co-selection graph that places
constraints among objects in the videos, and the multi-
state selection graph for addressing the problem of multi-
ple foreground objects. Our MSG, which can handle sin-
gle/multiple videos with single/multiple foregrounds, pro-
vides a general and global framework that can be used to
extend any standard graph model to handle multi-state se-
lection while still allowing optimization by existing energy
minimization techniques.
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