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Abstract

Many computer vision problems require optimization of
binary non-submodular energies. We propose a general op-
timization framework based on local submodular approxi-
mations (LSA). Unlike standard LP relaxation methods that
linearize the whole energy globally, our approach itera-
tively approximates the energies locally. On the other hand,
unlike standard local optimization methods (e.g. gradient
descent or projection techniques) we use non-linear sub-
modular approximations and optimize them without leav-
ing the domain of integer solutions. We discuss two specific
LSA algorithms based on trust region and auxiliary function
principles, LSA-TR and LSA-AUX. These methods obtain
state-of-the-art results on a wide range of applications out-
performing many standard techniques such as LBP, QPBO,
and TRWS. While our paper is focused on pairwise ener-
gies, our ideas extend to higher-order problems. The code
is available online 1.

1. Introduction
We address a general class of binary pairwise non-

submodular energies, which are widely used in applications
like segmentation, stereo, inpainting, deconvolution, and
many others. Without loss of generality, the corresponding
binary energies can be transformed into the form2

E(S) = STU + STMS, S ∈ {0, 1}Ω (1)

where S = {sp | p ∈ Ω} is a vector of binary indicator
variables defined on pixels p ∈ Ω, vector U = {up ∈
R | p ∈ Ω} represents unary potentials, and symmetric ma-
trix M = {mpq ∈ R | p, q ∈ Ω} represents pairwise po-
tentials. Note that in many practical applications matrix M
is sparse since elements mpq = 0 for all non-interacting
pairs of pixels. We seek solutions to the following integer
quadratic optimization problem

min
S∈{0,1}Ω

E(S). (2)

1http://vision.csd.uwo.ca/code/
2Note that such transformations are up to a constant.
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(a) global linearization (b) local linearization
Figure 1. Standard linearization approaches for (1)-(2). Black dots
are integer points and ∗ corresponds to the global optimum of (2).
Colors in (b) show iso-levels of the quadratic energy (1). This
energy can be linearized by introducing additional variables and
linear constraints, see a schematic polytope in (a) and [24]. Vector
∇E is the gradient of the global linearization of (1) in (a) and the
gradient of the local linear approximation of (1) at point S0 in (b).

When energy (1) is submodular, i.e. mpq ≤ 0 ∀(p, q),
globally optimal solution for (2) can be found in a low-
order polynomial time using graph cuts [3]. The general
non-submodular case of problem (2) is NP hard.

1.1. Standard linearization methods

Integer quadratic programming problems is a well-
known challenging optimization problem with extensive lit-
erature in the combinatorial optimization community, e.g.
see [15, 9, 3]. It often appears in computer vision where it
can be addressed with many methods including spectral and
semi-definite programming relaxations, e.g. see [19, 12].

Methods for solving (2) based on LP relaxations, e.g.
QPBO [21] and TRWS [13], are considered among the most
powerful in computer vision [11]. They approach integer
quadratic problem (2) by global linearization of the objec-
tive function at a cost of introducing a large number of ad-
ditional variables and linear constraints. These methods at-
tempt to optimize the relaxed LP or its dual. However, the
integer solution can differ from the relaxed solution circled
in Fig.1(a). This is a well-known integrality gap problem.
Most heuristics for extracting an integer solution from the
relaxed solution have no a priori quality guarantees.

Our work is more closely related to local linearization

1
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techniques for approximating (2), e.g. parallel ICM, IPFP
[16], and other similar methods [6]. Parallel ICM iteratively
linearizes energy E(S) around current solution S0 using
Taylor expansion and makes a step by computing an integer
minimizer Sint of the corresponding linear approximation,
see Fig.1(b). However, similarly to Newton’s methods, this
approach often gets stuck in bad local minima by making
too large steps regardless of the quality of the approxima-
tion. IPFP attempts to escape such minima by reducing the
step size. It explores the continuous line between integer
minimizer Sint and current solution S0 and finds optimal
relaxed solution Srlx with respect to the original quadratic
energy. Similarly to the global linearization methods, see
Fig.1(a), such continuous solutions give no quality guaran-
tees with respect to the original integer problem (2).

1.2. Overview of submodularization

Linearization has been a popular approximation ap-
proach to integer quadratic problem (1)-(2), but it often re-
quires relaxation leading to the integrality gap problem. We
propose a different approximation approach, which we re-
fer to as submodularization. The main idea is to use sub-
modular approximations of energy (1). We propose several
approximation schemes that keep submodular terms in (1)
and linearize non-submodular potentials in different ways
leading to very different optimization algorithms. Standard
truncation of non-submodular pairwise terms3 and some ex-
isting techniques for high-order energies [10, 17, 22, 2] can
be seen as submodularization examples, as discussed later.
Common properties of submodularization methods is that
they compute globally optimal integer solutions of the ap-
proximation and do not need to leave the domain of discrete
solutions avoiding integrality gaps. Sumbodularization can
be seen as a generalization of local linearization methods
since it uses more accurate higher-order approximations.

One way to linearize non-submodular terms in (1) is to
compute their Taylor expansion around current solution S0.
Taylor’s approach is similar to IPFP [16], but they linearize
all terms including submodular ones. In contrast to IPFP,
our overall approximation of E(S) at S0 is not linear; it be-
longs to a more general class of submodular functions. Such
non-linear approximations are more accurate while still per-
mitting efficient optimization in the integer domain.

We also propose a different mechanism for controlling
the step size. Instead of exploring relaxed solutions on con-
tinuous interval [S0, Sint] in Fig.1b, we compute integer
intermediate solutions S by minimizing local submodular
approximation over {0, 1}Ω under additional distance con-
straints ||S − S0|| < d. Thus, our approach avoids inte-
grality gap issues. For example, even linear approximation
model in Fig.1b can produce solution S∗ if Humming dis-
tance constraint ||S − S0|| ≤ 1 is imposed. This local sub-

3 Truncation is known to give low quality results, e.g. Fig.4, Tab.1.

modularization approach to (1)-(2) fits a general trust region
framework [8, 25, 19, 10] and we refer to it as LSA-TR.

Our paper also proposes a different local submodular-
ization approach to (1)-(2) based on the general auxiliary
function framework [14, 17, 2]4. Instead of Taylor expan-
sion, non-submodular terms in E(S) are approximated by
linear upper bounds specific to current solution S0. Com-
bining them with submodular terms in E(S) gives a sub-
modular upper-bound approximation, a.k.a. an auxiliary
function, for E(S) that can be globally minimized within
integer solutions. This approach does not require to con-
trol the step sizes as the global minimizer of an auxiliary
function is guaranteed to decrease the original energyE(S).
Throughout the paper we refer to this type of local submod-
ular approximation approach as LSA-AUX.

Some auxiliary functions were previously proposed in
the context of high-order energies [17, 2]. For example,
[17] divided the energy into submodular and supermodu-
lar parts and replaced the latter with a certain permutation-
based linear upper-bound. The corresponding auxiliary
function allows polynomial-time solvers. However, exper-
iments in [22] (Sec. 3.2) demonstrated limited accuracy of
the permutation-based bounds [17] on high-order segmen-
tation problems. Recently, Jensen inequality was used in [2]
to derive linear upper bounds for several important classes
of high-order terms that gave practically useful approxima-
tion results. Our LSA-AUX method is first to apply auxil-
iary function approach to arbitrary (non-submodular) pair-
wise energies. We discuss all possible linear upper bounds
for pairwise terms and study several specific cases. One of
them corresponds to the permutation bounds [17] and is de-
noted by LSA-AUX-P.

Recently both trust region [8, 25, 19] and auxiliary func-
tion [14] frameworks proved to work well for optimization
of energies with high-order regional terms [10, 2]. They de-
rive specific linear [10] or upper bound [2] approximations
for non-linear cardinality potentials, KL and other distances
between segment and target appearance models. To the best
of our knowledge, we are the first to develop trust region
and auxiliary function methods for integer quadratic opti-
mization problems (1)-(2).

Our contributions can be summarized as follows:

• A general submodularization framework for solving
integer quadratic optimization problems (1)-(2) based
on local submodular approximations (LSA). Unlike
global linearization methods, LSA constructs an ap-
proximation model without additional variables. Un-
like local linearization methods, LSA uses a more ac-
curate approximation functional.
• In contrast to the majority of standard approximation

4Auxiliary functions are also called surrogate functions or upper-
bounds. The corresponding approximate optimization technique is also
known as the majorize-minimize principle [14].



methods, LSA avoids integrality gap issue by working
strictly within the domain of discrete solutions.
• State-of-the-art results on a wide range of applications.

Our LSA algorithms outperform QPBO, LBP, IPFP,
TRWS, its latest variant SRMP, and other standard
techniques for (1)-(2).

2. Description of LSA Algorithms

In this section we discuss our framework in detail. Sec-
tion 2.1 derives local submodular approximations and de-
scribes how to incorporate them in the trust region frame-
work. Section 2.2 briefly reviews auxiliary function frame-
work and shows how to derive local auxiliary bounds.

2.1. LSA-TR

Trust region methods are a class of iterative optimization
algorithms. In each iteration, an approximate model of the
optimization problem is constructed near the current solu-
tion S0. The model is only accurate within a small region
around the current solution called “trust region”. The ap-
proximate model is then globally optimized within the trust
region to obtain a candidate solution. This step is called
trust region sub-problem. The size of the trust region is ad-
justed in each iteration based on the quality of the current
approximation. For a detailed review of trust region frame-
work see [25].

Below we provide details for our trust region approach to
the binary pairwise energy optimization (see pseudo-code in
Algorithm 1). The goal is to minimizeE(S) in (1). This en-
ergy can be decomposed into submodular and supermodular
parts E(S) = Esub(S) + Esup(S) such that

Esub(S) = STU + STM−S

Esup(S) = STM+S

where matrix M− with negative elements m−pq ≤ 0 repre-
sents the set of submodular pairwise potentials and matrix
M+ with positive elements m+

pq ≥ 0 represents supermod-
ular potentials. Given the current solution St energy E(S)
can be approximated by submodular function

Et(S) = Esub(S) + STUt + const (3)

where Ut = 2M+St. The last two terms in (3) are the first-
order Taylor expansion of supermodular part Esup(S).

While the use of Taylor expansion may seem strange in
the context of functions of integer variables, Figure 2(a,b)
illustrates its geometric motivation. Consider individual
pairwise supermodular potentials f(x, y) in

Esup(S) =
∑
pq

m+
pq · spsq =

∑
pq

fpq(sp, sq).

Coincidentally, Taylor expansion of each relaxed super-
modular potential f(x, y) = α · xy produces a linear ap-
proximation (planes in b) that agrees with f at three out of
four possible discrete configurations (points A,B,C,D).

The standard trust region sub-problem is to minimize ap-
proximation Ẽ within the region defined by step size dt

S∗ = argmin
||S−St||<dt

Et(S). (4)

Hamming, L2, and other useful metrics ||S − St|| can be
represented by a sum of unary potentials [5]. However, op-
timization problem (4) is NP-hard even for unary metrics5.
One can solve Lagrangian dual of (4) by iterative sequence
of graph cuts as in [23], but the corresponding duality gap
may be large and the optimum for (4) is not guaranteed.

Instead of (4) we use a simpler formulation of the trust
region subproblem proposed in [10]. It is based on uncon-
strained optimization of submodular Lagrangian

Lt(S) = Et(S) + λt · ||S − St|| (5)

where parameter λt controls the trust region size indirectly.
Each iteration of LSA-TR solves (5) for some fixed λt and
adaptively changes λt for the next iteration (Alg.1 line 10),
as motivated by empirical inverse proportionality relation
between λt and dt discussed in [10].

Once a candidate solution S∗ is obtained, the quality of
the approximation is measured using the ratio between the
actual and predicted reduction in energy. Based on this ra-
tio, the solution is updated in line 8 and the step size (or λ)
is adjusted in line 10. It is common to set the parameter τ1
in line 8 to zero, meaning that any candidate solution that
decreases the actual energy gets accepted. The parameter
τ2 in line 10 is usually set to 0.25 [25]. Reduction ratio
above this value corresponds to good approximation model
allowing increase in the trust region size.

Algorithm 1: GENERAL TRUST REGION APPROACH

1 Initialize t = 0, S0, λ0

2 Repeat
3 //Solve Trust Region Sub-Problem
4 S∗ ←− argminS∈{0,1}Ω Lt(S) // as defined in (5)
5 P = Et(St)− Et(S

∗) //predicted reduction in energy
6 R = E(St)− E(S∗) //actual reduction in energy
7 //Update current solution

8 St+1 ←−
{
S∗ if R/P > τ1
St otherwise

9 //Adjust the trust region

10 λt+1 ←−
{
λt/α if R/P > τ2
λt · α otherwise

11 Until Convergence

5By a reduction to the balanced cut problem.



(a) supermodular potential α · xy (b) “Taylor” based local linearizations (c) Upper-bound linearization
Figure 2. Local linearization of supermodular pairwise potential f(x, y) = α · xy for α > 0. This potential defines four costs f(0, 0) =
f(0, 1) = f(1, 0) = 0 and f(1, 1) = α at four distinct configurations of binary variables x, y ∈ {0, 1}. These costs can be plotted as four
3D points A, B, C, D in (a-c). We need to approximate supermodular potential f with a linear function v · x + w · y + const (plane or
unary potentials). LSA-TR: one way to derive a local linear approximation is to take Taylor expansion of f(x, y) = α · xy over relaxed
variables x, y ∈ [0, 1], see the continuous plot in (a). At first, this idea may sound strange since there are infinitely many other continuous
functions that agree with A, B, C, D but have completely different derivatives, e.g. g(x, y) = α · x2√y. However, Taylor expansions of
bilinear function f(x, y) = α · xy can be motivated geometrically. As shown in (b), Taylor-based local linear approximation of f at any
fixed integer configuration (i, j) (e.g. blue plane at A, green at B, orange at C, and striped at D) coincides with discrete pairwise potential
f not only at point (i, j) but also with two other closest integer configurations. Overall, each of those planes passes exactly through three
out of four points A, B, C, D. LSA-AUX: another approach to justify a local linear approximation for non-submodular pairwise potential
f could be based on upper bounds passing through a current configuration. For example, the green or orange planes in (b) are the tightest
linear upper bounds at configurations (0, 1) and (1, 0), correspondingly. When current configuration is either (0, 0) or (1, 1) then one can
choose either orange or green plane in (b), or anything in-between, e.g. the purple plane passing though A and D in (c).

2.2. LSA-AUX

Bound optimization techniques are a class of iterative
optimization algorithms constructing and optimizing upper
bounds, a.k.a. auxiliary functions, for energy E. It is as-
sumed that those bounds are easier to optimize than the
original energy E. Given a current solution St, the func-
tion At(S) is an auxiliary function of E if it satisfies the
following conditions:

E(S) ≤ At(S) (6a)
E(St) = At(St) (6b)

To approximate minimization ofE, one can iteratively min-
imize a sequence of auxiliary functions:

St+1 = arg min
S

At(S) , t = 1, 2, . . . (7)

Using (6a), (6b), and (7), it is straightforward to prove that
the solutions in (7) correspond to a sequence of decreasing
energy values E(St). Namely,

E(St+1) ≤ At(St+1) ≤ At(St) = E(St).

The main challenge in bound optimization approach is
designing an appropriate auxiliary function satisfying con-
ditions (6a) and (6b). However, in case of integer quadratic
optimization problem (1)-(2), it is fairly straightforward to
design an upper bound for non-submodular energy E(S) =
Esub(S) + Esup(S). As in Sec.2.1, we do not need to ap-
proximate the submodular part Esub and we can easily find
a linear upper bound for Esup as follows.

Similarly to Sec.2.1, consider supermodular pairwise po-
tentials f(x, y) = α ·xy for individual pairs of neighboring
pixels according to

Esup(S) =
∑
pq

m+
pq · spsq =

∑
pq

fpq(sp, sq) (8)

where each fpq is defined by scalar α = m+
pq > 0. As

shown in Figure 2(b,c), each pairwise potential f can be
bound above by linear function u(x, y)

f(x, y) ≤ u(x, y) := v · x+ w · y

for some positive scalars v and w. Assuming current solu-
tion (x, y) = (xt, yt), the table below specifies linear upper
bounds (planes) for four possible discrete configurations

(xt, yt) upper bound u(x, y) plane in Fig.2(b,c)
(0,0) α

2 x+ α
2 y purple

(0,1) αx green
(1,0) αy orange
(1,1) α

2 x+ α
2 y purple

As clear from Fig.2(b,c), there are many other possible lin-
ear upper bounds for pairwise terms f . Interestingly, the
“permutation” approach to high-order supermodular terms
in [17] reduces to linear upper bounds for f(x, y) where
each configuration (0,0) or (1,1) selects either orange or
green plane randomly (depending on a permutation). Our
tests showed inferior performance of such bounds for pair-
wise energies. The upper bounds using purple planes for
(0,0) and (1,1), as in the table, work better in practice.
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Figure 3. Binary deconvolution of an image created with a
uniform 3 × 3 filter and additive Gaussian noise (σ ∈
{0.05, 0.1, 0.15, 0.2}). No length regularization was used. We
report mean energy (+/-2std.) and time as a function of noise level
σ. TRWS, SRMP and LBP are run for 5000 iterations.

Summing upper bounds for all pairwise potentials fpq in
(8) using linear terms in this table gives an overall linear
upper bound for supermodular part of energy (1)

Esup(S) ≤ STUt (9)

where vector Ut = {utp|p ∈ Ω} consists of elements

utp =
∑
q

m+
pq

2
(1 + stp − 2stps

t
q)

and St = {stp|p ∈ Ω} is the current solution configuration
for all pixels. Defining our auxiliary function as

At(S) := STUt + Esub(S) (10)

and using inequality (9) we satisfy condition (6a)

E(S) = Esup(S) + Esub(S) ≤ At(S).

Since STt Ut = Esup(St) then our auxiliary function (10)
also satisfies condition (6b)

E(St) = Esup(St) + Esub(St) = At(St).

Function At(S) is submodular. Thus, we can globally opti-
mize it in each iterations guaranteeing energy decrease.
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Figure 4. Segmentation with repulsion and attraction. We used
µfg=0.4, µbg=0.6, σ=0.2 for appearance, λreg=100 and c=0.06.
Repulsion potentials are shown in blue and attraction - in red.

3. Applications

Below we apply our method in several applications such
as binary deconvolution, segmentation with repulsion, cur-
vature regularization and inpainting. We report results for
both LSA-TR and LSA-AUX frameworks and compare to
existing state of the art methods such as QPBO [21], LBP
[20], IPFP [16], TRWS and SRMP [13] in terms of en-
ergy and running time6. For the sake of completeness, and
to demonstrate the advantage of non-linear submodular ap-
proximations over linear approximations, we also compare
to a version of LSA-TR where both submodular and su-
permodular terms are linearized, denoted by LSA-TR-L. In
the following experiments, all local approximation meth-
ods, e.g. IPFP, LSA-AUX, LSA-AUX-P, LSA-TR, LSA-
TR-L are initialized with the entire domain assigned to the
foreground. All global linearization methods, e.g. TRWS,
SRMP and LBP, are run for 50, 100, 1000 and 5000 itera-
tions. For QPBO results, unlabeled pixels are shown in gray
color. Running time is shown in log-scale for clarity.

3.1. Binary Deconvolution

Figures 3 (top-left) shows a binary image after convo-
lution with a uniform 3 × 3 and adding Gaussian noise
(σ = 0.05). The goal of binary deconvolution is to recover

6We used http://pub.ist.ac.at/∼vnk/software.html code for SRMP and
www.robots.ox.ac.uk/∼ojw code for QPBO, TRWS, and LBP. The corre-
sponding version of LPB is sequential without damping.
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Figure 5. Curvature regularizer [7] is more difficult to optimize when regularizer weight is high. We show segmentation results for
λcurv = 0.1 (top row), λcurv = 0.5 (middle row), λcurv = 2 (bottom row) as well as energy plots. We used µfg = 1, µbg = 0, λapp = 1.

the original binary image and the energy is defined as

E(S) =
∑
p∈Ω

(Ip −
1

9

∑
q∈Np

sq)
2 (11)

HereNp denotes the 3×3 neighborhood window around
pixel p and all pairwise interactions are supermodular. We
did not use length regularization, since it would make the
energy easier to optimize. Fig. 3 demonstrates the per-
formance of our approach (LSA-TR/LSA-AUX) and com-
pares to standard optimization methods such as QPBO,
LBP, IPFP, TRWS and SRMP. In this case LSA-TR-L and
LSA-TR are identical since energy (11) has no submodular
pairwise terms. The bottom of Fig. 3 shows the mean en-
ergy as a function of noise level σ. For each experiment the
results are averaged over ten instances of random noise. The
mean time is reported for the experiments with σ = 0.05.

3.2. Segmentation with Repulsion

In this section we consider segmentation with attraction
and repulsion pairwise potentials. Adding repulsion is sim-
ilar to correlation clustering [1], where data points either
attract or repulse each other. Using negative repulsion in
segmentation can avoid the bias of submodular length reg-
ularizer to short-cutting, whereby elongated structures are

shortened to avoid high length penalty. Figure 4 (top-left)
shows an example of an angiogram image with elongated
structures. We use 16-neighborhood system and the pair-
wise potentials are defined as follows:

ω(p, q) =
−∆(p, q) + c

dist(p,q)
.

Here dist(p,q) denotes the distance between image pixels p
and q and ∆(p, q) is the difference in their respective inten-
sities (see pairwise potentials in Fig. 4, bottom-left). The
constant c is used to make neighboring pixels with similar
intensities attract and repulse otherwise. Being supermod-
ular, repulsions potentials make the segmentation energy
more difficult to optimize, but are capable to extract thin
elongated structures. To demonstrate the usefulness of “re-
pulsion” potentials we also show segmentation results with
graph-cut a la Boykov-Jolly [4] where negative pairwise po-
tentials were removed/truncated (top-right).

3.3. Curvature

Below we apply our optimization method to curvature
regularization. We focus on the curvature model proposed
in [7]. The model is defined in terms of 4-neighborhood
system and accounts for 90 degrees angles. In combina-
tion with appearance terms, the model yields discrete bi-



nary energy that has both submodular and non-submodular
pairwise potentials. Originally, the authors of [7] pro-
posed using QPBO for optimization of the curvature regu-
larizer. We show that our method significantly outperforms
QPBO and other state-of-the-art optimization techniques,
especially with large regularizer weights.

First we deliberately choose a toy example (white cir-
cle on a black background, see Fig. 5) where we know
what an optimal solution should look like. When using 4-
neighborhood system, as the weight of the curvature reg-
ularizer increases, the solution should minimize the num-
ber of 90 degrees angles (corners) while maximizing the
appearance terms. Therefore, when the weight of curva-
ture regularizer is high, the solution should look more like
a square than a circle. Consider the segmentation results
in Fig. 5. With low curvature weight, i.e., λcurv = 0.1
, all compared methods perform equally well (see Fig. 5
top row). In this case appearance data terms are strong
compared to the non-submodular pairwise terms. However,
when we increase the curvature weight and set λcurv = 0.5
or 2 there is a significant difference between the optimiza-
tion methods both in terms of the energy and the resulting
solutions (see Fig. 5 middle and bottom).

Next, we selected an angiogram image example from [7]
and evaluate the performance7 of the optimization meth-
ods with two values of regularizer weight λcurv = 19 and
λcurv = 21 (see Fig. 7). Although the weight λ did not
change significantly, the quality of the segmentation deteri-
orated for all global linearization methods, namely QPBO,
TRWS, LBP. The proposed methods LSA-TR and LSA-
AUX seem to be robust with respect to the weight of the
supermodular part of the energy.

3.4. Chinese Characters Inpainting

Below we consider the task of in-painting in binary im-
ages of Chinese characters, dtf-chinesechar [11]. We used a
set of pre-trained unary and pairwise potentials provided by
the authors with the dataset. While each pixel variable has
only two possible labels, the topology of the resulting graph
and the non-submodularity of its pairwise potentials makes
this problem challenging. Figure 6 shows two examples of
inpainting. Table 1 reports the performance of our LSA-
TR and LSA-AUX methods on this problem and compares
to other standard optimization methods reported in [11], as
well as, to truncation of non-submodular terms. LSA-TR is
ranked second, but runs three orders of magnitudes faster.

4. Conclusions and Future Work
There are additional applications (beyond the scope of

this paper) that can benefit from efficient optimization of
7For QPBO, we only run QPBO-I and do not use other post-processing

heuristics as suggested in [7], since the number of unlabeled pixel might
be significant when the regularization is strong.

LSA-TRInput Img Ground Truth

Figure 6. Examples of Chinese characters inpainting.

Alg.
Name

Mean
Runtime

Mean
Energy

#best
/100

Rank

MCBC 2053.89 sec -49550.1 85 1
BPS (LBP)∗ 72.85 sec -49537.08 18 3
ILP 3580.93 sec -49536.59 8 6
QPBO 0.16 sec -49501.95 0 8
SA NaN sec -49533.08 13 4
TRWS 0.13 sec -49496.84 2 7
TRWS-LF 2106.94 sec -49519.44 11 5
Truncation 0.06 sec -16089.2 0 8
LSA-AUX 0.30 sec -49515.95 0 8
LSA-AUX-P 0.16 sec -49516.63 0 8
LSA-TR 0.21 sec -49547.61 35 2

Table 1. Chinese characters in-painting database [11]. We tested
three methods (at the bottom) and compared with other techniques
(above) reported in [11]. * - To the best of our knowledge, BPS
in [11] is the basic sequential version of loopy belief-propagation
without damping that we simply call LBP in this paper.

binary non-submodular pairwise energies. For instance,
our experiments show that our approach can improve non-
submodular α-expansion and fusion moves for multilabel
energies. Moreover, while our paper focuses on pairwise
interactions, our approach naturally extends to high-order
potentials that appear in computer vision problems such
as curvature regularization, convexity shape prior, visibil-
ity and silhouette consistency in multi-view reconstruction.
In the companion paper [18] we apply our method for opti-
mization of a new highly accurate curvature regularization
model. The model yields energy with triple clique interac-
tions and our method achieves state-of-the-art performance.
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[12] J. Keuchel, C. Schnörr, C. Schellewald, and D. Cremers. Bi-
nary partitioning, perceptual grouping, and restoration with
semidefinite programming. 25(11):1364–1379, 2003. 1

[13] V. Kolmogorov and T. Schoenemann. Generalized seq. tree-
reweighted message passing. arXiv:1205.6352, 2012. 1, 5

[14] K. Lange, D. R. Hunter, and I. Yang. Optimization transfer
using surrogate objective functions. Journal of Computa-
tional and Graphical Statistics, 9(1):1–20, 2000. 2

[15] R. Lazimy. Mixed integer quadratic programming. Mathe-
matical Programming, 22:332–349, 1982. 1

[16] M. Leordeanu, M. Hebert, and R. Sukthankar. An integer
projected fixed point method for graph matching and map
inference. In Neural Information Processing Systems (NIPS),
pages 1114–1122, 2009. 2, 5

[17] M. Narasimhan and J. A. Bilmes. A submodular-
supermodular procedure with applications to discriminative
structure learning. In UAI, pages 404–412, 2005. 2, 4

[18] C. Nieuwenhuis, E. Toeppe, L. Gorelick, O. Veksler, and
Y. Boykov. Efficient Squared Curvature. In IEEE conf. on
Comp. Vision and Pattern Recognition (CVPR), 2014. 7

[19] C. Olsson, A. Eriksson, and F. Kahl. Improved spectral relax-
ation methods for binary quadratic optimization problems.
Comp. Vis. & Image Underst., 112(1):3–13, 2008. 1, 2

[20] J. Pearl. Reverend bayes on inference engines: A distributed
hierarchical approach. In National Conference on Artificial
Intelligence, pages 133–136, 1982. 5

[21] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szum-
mer. Optimizing binary MRFs via extended roof duality. In
IEEE conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1–8, 2007. 1, 5

[22] C. Rother, V. Kolmogorov, T. Minka, and A. Blake. Coseg-
mentation of Image Pairs by Histogram Matching - Incorpo-
rating a Global Constraint into MRFs. In Computer Vision
and Pattern Recognition (CVPR), pages 993 – 1000, 2006. 2

[23] J. Ulen, P. Strandmark, and F. Kahl. An efficient optimiza-
tion framework for multi-region segmentation based on La-
grangian duality. IEEE Transactions on Medical Imaging,
32(2):178–188, 2013. 3

[24] M. J. Wainwright and M. I. Jordan. Graphical models, expo-
nential families, and variational inference. Foundations and
Trends in Machine Learning, 1(1-2):1–305, 2008. 1

[25] Y. Yuan. A review of trust region algorithms for optimiza-
tion. In Proceedings of the Fourth International Congress on
Industrial & Applied Mathematics (ICIAM), 1999. 2, 3


