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Abstract

We present a new globally optimal algorithm for self-
calibrating a moving camera with constant parameters.
Our method aims at estimating the Dual Absolute Quadric
(DAQ) under the rank-3 and, optionally, camera centers
chirality constraints. We employ the Branch-and-Prune
paradigm and explore the space of only 5 parameters.
Pruning in our method relies on solving Linear Matrix
Inequality (LMI) feasibility and Generalized Eigenvalue
(GEV) problems that solely depend upon the entries of the
DAQ. These LMI and GEV problems are used to rule out
branches in the search tree in which a quadric not satisfy-
ing the rank and chirality conditions on camera centers is
guaranteed not to exist. The chirality LMI conditions are
obtained by relying on the mild assumption that the camera
undergoes a rotation of no more than 90◦ between consec-
utive views. Furthermore, our method does not rely on cal-
culating bounds on any particular cost function and hence
can virtually optimize any objective while achieving global
optimality in a very competitive running-time.

1. Introduction

Self-calibration (retrieving camera’s intrinsic parameters
from image correspondences) of a moving camera is a non-
linear and challenging problem that has been the subject
of extensive research and exciting developments during the
past two decades. Most approaches rely on the ubiquitous
nature of the so-called Absolute Conic (AC): a special conic
lying on the plane at infinity. Early methods [11] exploited
the epipolar relationship between the duals of the images of
the AC (DIACs) which encode the parameters of the imag-
ing cameras. Relying on a set of camera matrices that are
consistent with the same projective scene structure allows
to cope with the artificial degeneracies arising when using
epipolar geometry. Given such cameras/scene set, chiral-
ity inequalities [9] have been used to define bounds on the

location of the plane at infinity allowing for an exhaustive
search alternating location hypotheses and parameter esti-
mation. A similar approach, iterating however on the space
of intrinsic parameters, has also been proposed in [6]. When
the camera parameters are constant though, stratified cam-
era self-calibration can be employed to retrieve the plane
at infinity by first solving the modulus constraints [13] be-
fore linearly retrieving the DIAC. Stratified methods con-
trast with the direct ones that aim at simultaneously locat-
ing the plane at infinity and the camera parameters. Direct
methods rely on the omnipresence of a special virtual plane
quadric, the Dual Absolute Quadric (DAQ) [15, 10], encod-
ing the camera parameters and the plane at infinity.

Recent works on camera self-calibration [5, 3, 4, 1] have
focused on devising deterministic globally convergent al-
gorithms that only require bounds on some initial search
space and that converge to a global minimum with an op-
timality certificate. Such methods are rather appealing as
they sidestep the convergence issues that arise when us-
ing local optimization. Fusiello and Benedetti proposed
in [5] a method based on Interval Analysis and employing
the Branch-and-Bound (B&B) algorithmic paradigm. Their
method was developed to solve the Huang-Faugeras con-
straints on the essential matrix. However, with the degen-
eracies arising from the use of epipolar geometry, possibly
increasing the number of branches, and the complexity of
the considered constraints, the method has proved compu-
tationally quite expensive and applicable only to rather short
image sequences. A B&B-based approach, this time in con-
junction with convex relaxations, was also used by Chan-
draker et al. [3] for stratified camera-self-calibration via the
modulus and chirality constraints. The main drawback of
this method lies in the fact that it employs two independent
algorithms: one for locating the plane at infinity and another
for estimating the DIAC. However, the modulus constraint
is only a necessary condition on the location of the plane
at infinity and likely to admit, in particular for short im-
age sequences, more than one global minimizer. Hence, the
global solution obtained from locating the plane at infinity,



although guaranteed to be global, is not guaranteed to sup-
port a conic that identically project on all views. This may
mainly occur because the search for the plane at infinity
is tackled independently from finding the DIAC. Hence, a
globally optimal algorithm for the self-calibration problem
should simultaneously act on both locating the plane at in-
finity and the DIAC by typically solving the DAQ formula-
tion of the problem. While the latter can be linearized under
some camera parameters assumptions [14], it was shown
in [7] that, by failing to enforce the DAQ’s positiveness and
rank-3 constraints, the linearized equations may yield ar-
tificial critical camera motions. In this regard, Gordjos et
al. [7] proposed to relax the rank constraint and reintroduc-
ing it a posteriori while Bocquillon et al. [1] devised a glob-
ally optimal method for estimating the focal length of the
camera. Another method, in which global optimality was
sought, is the one presented by Chandraker et al. in [4] for
solving the DAQ formulation of the self-calibration prob-
lem. This method not only carries the advantage of estimat-
ing the DAQ while enforcing its rank-degeneracy and posi-
tive semi-definiteness but also allows to enforce the chirality
constraints as well during optimization. In particular, satis-
fying the chirality conditions on the camera centers insures,
at each optimization iteration, that the candidate plane at in-
finity does not cut through the convex hull of cameras which
may otherwise be detrimental to the viability of many cost
functions used for camera self-calibration [12]. The con-
strained DAQ estimation in [4] is stated as a polynomial op-
timization problem subject to polynomial inequalities. The
polynomial optimization method adopted therein initially
requires to transform all constraints, should they be linear,
into nonlinear polynomials (of a degree of at most 4) only
to be linearized or re-linearized using lifting variables and
constraints. The problem is handled by solving a hierarchy
of nested Linear Matrix Inequality (LMI) relaxations of in-
creasing order by gradually introducing lifting variables and
constraints as to linearize monomials up to a given degree.
Although the solutions of the LMI relaxations are guaran-
teed in theory to converge to the global optimum, the or-
der of relaxation allowing for global convergence cannot be
known in advance. Furthermore, with the rapidly increas-
ing number of lifting variables and constraints, the problem
may not even be numerically tractable when, or way before,
the order of relaxation allowing for convergence is reached.

In this paper we present a new globally optimal method
for the rank-constrained estimation of the DAQ possibly,
under some mild camera motion conditions, in conjunction
with chirality conditions on camera centers. Unlike [4], our
method is applicable only in the case of a moving camera
with constant intrinsic parameters. However, we show that,
under such conditions and by exploiting the structure of the
DAQ equations, a rather simple Branch-and-Prune (B&P)
algorithm involving LMIs with no more than 9 variables can

be employed to achieve global optimality in a very compet-
itive running-time in comparison with existing global meth-
ods. Given some bounds on the intrinsic parameters, our
method proceeds by recursively branching and exploring
the DIAC’s parameters space (5 parameters) only to rule out
branches in which a quadric projecting on the same DIAC
on all views and exhibiting the desired rank - and possibly
chirality properties - is guaranteed not to exist. The likely
existence of such quadric within prescribed bounds is ex-
pressed via a set of LMI feasibility problems and LMI gen-
eralized eigenvalue (GEV) problems. All LMI and GEV
problems are expressed in terms of at most 9 variables: the
entries of the DAQ. This includes the rank-3 condition on
the DAQ. We also show that the chirality of camera cen-
ters can be expressed by a set of LMIs in the entries of
the DAQ under the assumption that the camera undergoes
a rotation of no more than 90◦ between consecutive views.
Note that this is a mild assumption implicitly verified when
capturing images with the goal of carrying out point cor-
respondences across consecutive pairs of images. Further-
more, our method can virtually be used with any objective
since it does not rely on calculating bounds on any partic-
ular cost function. This is particularly important since the
DAQ formulation introduces a different unknown scale with
each view and using an appropriate, say normalized, cost
function is highly recommended.

2. Background and notation

The scene is imaged by n pinhole cameras represented,
in some arbitrarily chosen projective frame, by a set of 3×
4 full row-rank camera matrices Pi, i = 1 . . . n. Planes,
image and scene points are represented by homogeneous
coordinate vectors. A scene pointX expressed in this frame
projects in the ith image onto the point xi ∼ PiX (∼ is
the equality up to a scale). We use (.)k to refer to the kth

coordinate of the vector in argument and (.)k` to refer to
the entry at row k and column ` of the matrix in argument.
The identity matrix and the null vector (dimensions are to
be deduced from the context) are denoted by I and 0.
Camera signatures and chirality: Camera (optical) cen-
ters Ci are special points whose coordinates satisfy PiCi =
0. These coordinates can be obtained (with fixed scale)
through the expansion of det

(
Pi

Πᵀ

)
= ΠᵀCi along the

entries of the 4-vector Π. Scene points in front of a pair
of cameras in the true metric configuration may appear in
front of one camera but behind the other in a projective
reconstruction. In such case, the cameras are said to be
twisted by the projective transformation and untwisted oth-
erwise. Based on Hartley’s chirality theory [9] and using
scene points that are visible by each camera pair, Nistér [12]
proposed a simple yet robust twist test on cameras. The test
is carried out by determining the signature ζi ∈ {−1, +1}



of each camera as given by Algorithm 2, p.173 in [12].
Cameras with opposite signatures are twisted. A projec-
tive transformation that twists a pair of cameras moves the
plane at infinity from its canonical position into one that
cuts through the line segment joining their optical centers.
All optical centers of cameras with positive signatures, i.e.
ζi = 1, lie on one side with respect to the plane at infinity.
Those with ζi = −1 lie on the opposite side. The true plane
at infinity, whose coordinate vector is denoted by Π∞, must
satisfy

ζiζjΠ
ᵀ
∞CiC

ᵀ
j Π∞ > 0 for all i, j = 1, . . . n. (1)

Π∞ being homogeneous, (1) can also be expressed by arbi-
trarily choosing a common sign ζiΠ

ᵀ
∞Ci > 0 (or < 0) for

all views. These inequalities are commonly known as the
chirality inequalities of camera centers.
The Dual Absolute Quadric: The position of the plane at
infinity is important in camera self-calibration as it allows
to upgrade the projective scene and cameras to an affine
frame. In particular, once its position is known, the inter-
image homographies induced by the plane at infinity can
be recovered. Given the plane at infinity Πᵀ

∞ = ( πᵀ
∞ 1 )

and arbitrarily choosing the first camera as a reference, i.e.
P1 = [ I | 0 ], such homographies relating the reference
camera with each of the remaining cameras are given by

Pi

[
I
−πᵀ
∞

]
= µiKRiK

−1 for i = 2, . . . n. (2)

In (2), each matrix Ri is a 3×3 orthogonal matrix represent-
ing the rotation between the reference and the ith camera, K
is a 3 × 3 upper-triangular matrix embedding the camera’s
intrinsic parameters, and µi scalars. Given(2), the following

Pi

[
ω n
nᵀ s

]
Pᵀ

i = λiω, i = 1 . . . n (3)

holds for all views for some λi > 0 (since λi = µ2
i ).

The 4 × 4 rank-3 symmetric positive semi-definite matrix[
ω n
nᵀ s

]
represents the DAQ and the 3 × 3 symmetric

positive-definite matrix ω = KKᵀ (with ω33=1) represents
the DIAC, n = −ωπ∞ and s a scalar. Finding the DAQ
is equivalent to simultaneously locating the plane at infinity
and the DIAC. Once the matrix ω is known, we extract the
intrinsic parameters using Cholesky factorization.
Linear matrix inequalities: If matrix A is positive-definite
(resp. positive semi-definite), we denote A > 0 or −A <
0 (resp. A ≥ 0 or −A ≤ 0). Given matrices A and B,
A > B (resp. A ≥ B) means A − B > 0 (resp. A −
B ≥ 0). A LMI is a constraint on a real-valued vector y =
(y0, y1, y2, . . . ym) such that

A(y) > 0 (4)

where A(y) = A0 +
∑m
i=1 yiAi is an affine function of y

involving symmetric matrices A0, . . .Am. A LMI may also

be a negative definiteness constraint A(y) < 0. While (4) is
a strict LMI, the inequality therein may also be non-strict
as to express positive (resp. negative) semi-definiteness
A(y) ≥ 0 (resp. A(y) ≤ 0). A LMI feasibility problem
is a convex optimization problem that can be solved very
efficiently using interior-point methods [2]. Solving such
problem means either finding y that satisfies the considered
LMI or determining that no solution exists. From a practical
point of view, some LMI softwares consider LMIs as non-
strict by default (SeDumi) while in others (Matlab Control
Toolbox) inequalities are considered as strict. Note that, for
a sufficiently small value ε > 0, a strict inequality (resp.
non-strict), e.g. A > 0 (resp. A ≥ 0), can be turned into
a non-strict A ≥ −εI (resp. strict A > εI) inequality. We
recall that the largest eigenvalue λ+ and the smallest eigen-
value λ− of a symmetric matrix A satisfy λ−I ≤ A ≤ λ+I.
The GEVs of two matrices A and B are the values of λ sat-
isfying det(A − λB) = 0. Given affine matrices A(y) and
B(y) in y, the GEV problem consists in finding a y maximiz-
ing (resp. minimizing) their smallest (resp. largest) GEV.
Maximizing the smallest GEV can be obtained by solving

max
y

λ

s.t. A(y) ≥ λB(y), B(y) ≥ 0, C(y) ≥ 0
(5)

possibly subject to additional constraints C(y) > 0. This is
a quasiconvex problem that can be solved by bisection on
λ. LMIs are used to solve a variety of problems which can
be brought on the form (4) or its non-strict counterpart. In
particular, some problems can be reformulated as LMIs by
using the Schur complement lemma [2].

Lemma 2.1 Given a real symmetric block-partitioned ma-
trix D =

[
A B

Bᵀ C

]
and the Schur complement

S = C− BᵀA−1B of (the symmetric block) A in D,

if A > 0, then D ≥ 0⇔ S ≥ 0. (6)

3. LMI conditions on the DAQ

Proposition 3.1 Let λ−i be the maximum value of the small-
est GEV obtained by solving

max
ω,n,s

λ

s.t. Pi

[
ω n
nᵀ s

]
Pᵀ

i ≥ λω, Ω ≥ 0, ω > 0,

(ω)k` ≤ (ω)k` ≤ (ω)k`, k, ` = 1, 2, 3

(7)

over the unknown vector n, scalar s and the also unknown ω
whose entries are bounded. If the entries of the true DIAC
are within the bounds (ω)k` and (ω)k`, then λ−i is bounded
from above and the LMI

Pi

[
ω n
nᵀ s

]
Pᵀ

i ≤ λ
−
i ω (8)

is feasible for at least the true DIAC and DAQ.



Proof The DAQ projection equation (3) conveys the in-
formation that, for the true DAQ and DIAC, the ma-
trices Pi

[
ω n
nᵀ s

]
Pᵀ

i and ω admit λi as a GEV since

det(Pi

[
ω n
nᵀ s

]
Pᵀ

i − λiω) = 0. More importantly, λi
is a GEV with algebraic multiplicity 3. This can be easily
seen by noticing that the GEVs of these two matrices are
the eigenvalues of ω−1Pi

[
ω n
nᵀ s

]
Pᵀ

i which simplifies to

λiI. As a consequence, if we allow ω and
[

ω n
nᵀ s

]
to

possibly be the true DIAC and true DAQ, then λ−i ≥ λi and
the inequality (8) holds.

The claim in this proposition is that bounds on the entries
of ω suffice for the GEV problem (7) to be bounded: no
bounds on n and s are necessary. To demonstrate this, we
use the fact that the DAQ projection equation (3) implies
the well-known Kruppa’s equations

[ qi ]×HiωHᵀ
i [ qi ]ᵀ× = λi[ qi ]×ω[ qi ]ᵀ× (9)

where Pi = [ Hi | qi ] and [ qi ]× is the skew-symmetric ma-
trix constructed from qi and associated with the cross-
product. Because of the congruence transformation
any λ satisfying Pi

[
ω n
nᵀ s

]
Pᵀ

i ≥ λω also satisfies

[ qi ]×HiωHᵀ
i [ qi ]ᵀ× ≥ λ[ qi ]×ω[ qi ]ᵀ×. Hence the solution

set of the former is included in the solution set of the latter.
If the entries of ω are bounded, all entries of the matrices on
both sides of the equality in (9) are also bounded. Moreover,
because ω > 0, the diagonal entries of both matrices ought
to be strictly positive. This implies that any λ satisfying the
LMI version of Kruppa’s equation subject to ω > 0 must be
bounded from above. Hence, the maximum of the smallest
GEV of Pi

[
ω n
nᵀ s

]
Pᵀ

i and ω is also bounded.

This proof allows to deduce the following Corollary.

Corollary 3.2 Let λ−i be the value of λ obtained by solving
the problem

max
ω,n,s

λ

s.t. [ qi ]×HiωHᵀ
i [ qi ]ᵀ× ≥ λ[ qi ]×ω[ qi ]ᵀ×,

ω > 0,

(ω)k` ≤ (ω)k` ≤ (ω)k`, k, ` = 1, 2, 3

(10)

for some unknown but bounded ω. If the entries of the true
DIAC are within the bounds (ω)k` and (ω)k`, then λ−i is
bounded from above and the LMI (8) is feasible for at least
the true DIAC and DAQ.

Proposition 3.3 Assuming ω > 0, LMI (8) is feasible for
a rank-3 matrix

[
ω n
nᵀ s

]
where s = nᵀω−1n if and only

if (11) is feasible[
ω [ ω n ]Pᵀ

i

Pi

[
ω
nᵀ

]
λ−i ω

]
≥ 0. (11)

Proof The proof then boils down to applying
Schur’s lemma Lemma 2.1 after noticing that
Pi

[
ω n
nᵀ nᵀω−1n

]
Pᵀ

i = Pi

[
ω
nᵀ

]
ω−1[ ω n ]Pᵀ

i and

that λ−i ω−Pi

[
ω
nᵀ

]
ω−1[ω n ]Pᵀ

i is the Schur complement
of the matrix on the left hand-side of inequality (11).

Proposition 3.4 The following LMI

ζiζjPi

[
ω n
nᵀ s

]
Pᵀ

j + ζiζjPj

[
ω n
nᵀ s

]
Pᵀ

i ≥ 0 (12)

is feasible for at least the true DAQ and DIAC when the ro-
tation angle between two distinct views i and j of the cam-
era (about an arbitrary axis) is at most 90◦.

Proof The proof relies on the fact that
Pi

[
ω n
nᵀ s

]
Pᵀ

j = µiµjKRijK
ᵀ (see (2)) where

Rij = RiR
ᵀ
j is the rotation between the two views. Consider

the eigendecomposition Rij = Udiag(eJθ, e−Jθ, 1)U−1

where diag(. . .) is the diagonal matrix of (unit norm, two
of which are complex conjugate) eigenvalues of Rij and
θ is the rotation angle between the two views. Because
R−1

ij = Rᵀ
ij , we also have Rᵀ

ij = Udiag(e−Jθ, eJθ, 1)U−1.
We can hence deduce that the eigendecomposition
of the symmetric matrix Rij + Rᵀ

ij is of the form
Rij + Rᵀ

ij = Udiag(2 cos(θ), 2 cos(θ), 2)U−1. For
rotations not exceeding 90◦, we have Rij + Rᵀ

ij ≥ 0
which remains true under a congruence trans-
formation, i.e. K(Rij + Rᵀ

ij )Kᵀ ≥ 0. Since

Pi

[
ω n
nᵀ s

]
Pᵀ

j + Pj

[
ω n
nᵀ s

]
Pᵀ

i = µiµjK(Rij + Rᵀ
ij )Kᵀ

matrix on the left-hand side is either positive or neg-
ative semi-definite. In particular, positive or negative
definiteness is dependent upon the sign of µiµj and
can be set by considering the signatures of the involved
projection matrices. Indeed, one my use (2) to show that
µ3
i = det

(
Pi

[
I
−πᵀ
∞

])
= det

(
Pi

−πᵀ
∞ 1

)
which expands

to µ3
i = Πᵀ

∞Ci. Because sign(µiµj) = sign(µ3
iµ

3
j ), we

have sign(µiµj) = sign(Πᵀ
∞CiC

ᵀ
j Π∞). Using (1), we

deduce that sign(ζiζjµiµj) > 0 thus implying (12) is
feasible.

Proposition 3.5 If the LMIs

ω > 0,

ζiζi+1Pi

[
ω n
nᵀ s

]
Pᵀ

i+1 + ζiζi+1Pi+1

[
ω n
nᵀ s

]
Pᵀ

i ≥ 0

for all i = 1 . . . n

(13)

are simultaneously feasible for some rank-3
[

ω n
nᵀ s

]
,

then the candidate plane at infinity, with coordinates Π =
(−nᵀω−1 1)ᵀ, is guaranteed to satisfy chirality inequali-
ties with respect to camera centers for all views; that is, all
ζiΠ

ᵀCi for i = 1 . . . n carry the same sign.



Proof The real parts of the eigenvalues of a matrix, whose
sum with its transpose (i.e symmetric part) is definite, carry
the same signs as those of its symmetric part. In our
case, the eigenvalues of the matrix on the left-hand side
of (13) are positive and so should be the determinant of
ζiζi+1Pi

[
ω n
nᵀ s

]
Pᵀ

i+1. Furthermore, using the rank-3
condition on the quadric and ω > 0, imply that the fea-
sible quadric must be of the form

[
I

nᵀω−1

]
ω[ I ω−1n ].

In this case, the determinant of ζiζi+1Pi

[
ω n
nᵀ s

]
Pᵀ

i+1

is positive if and only if the det(ζi[ I ω−1n ]Pᵀ
i ) and

det(ζi+1[ I ω−1n ]Pᵀ
i+1) carry the same sign. These de-

terminants respectively expand to ζiΠᵀCi and ζi+1ΠᵀCi+1

hence demonstrating that both expressions carry the same
sign which naturally generalizes to all camera centers when
considering all views.

4. LMI-based Branch-and-Prune DAQ search

The B&P algorithmic paradigm requires that an initial
bounded space of the sought parameters, containing the op-
timal solution, to be given. The parameters’ space is re-
cursively subdivided into subspaces some of which are dis-
carded while the others are kept for further investigation.
This results in a dynamically generated search tree that is
branched through subdivision and pruned through the elimi-
nation of subspaces. The B&P algorithm we propose shares
with the well-known B&B the branching and pruning of the
parameters space. It however differs from B&B in that a
bounding function on the targeted objective is not needed.
Our method assumes that only bounds on the DIAC’s pa-
rameters are available and no bounds on the plane at infin-
ity are needed. Bounds on the intrinsic parameters can be
easily translated into bounds on the 5 unknown entries of
the DIAC’s matrix ω while (ω)33 = 1. These bounds ac-
count for the initial parameters space to be subdivided and
searched. At each iteration of our algorithm, we are given
lower bounds (ω)k` and upper bounds (ω)k` on the entries
of ω for which a decision on whether this bounded subspace
is to be investigated further or discarded following some
LMI feasibility/infeasibility pruning conditions.

In the first step, one computes, for each view (except the
first), the maximum value λ−i of the smallest GEV by solv-
ing either problem (7) in Proposition 3.1 or (10) in Corol-
lary 3.2. Note however that (10) is computationally less
expensive as it involves only 5 unknowns instead of 9 when
using (7). We have used (10) in all the experiments whose
results are reported in Section 5. GEV bounds obtained
by (10) are generally less tight than those obtained by (7)
possibly resulting in more branching. However, the subse-
quent pruning step, which we present next, is rather efficient
in discarding parameter subspaces and the overall search is
significantly faster when using (10).

In the second step, we carry out a LMI feasibil-
ity/infeasibility pruning test within the bounds of ω at hand
and involving simultaneously all views. The LMIs to be
tested for feasibility/infeasibility depend on whether one
would like to consider chirality of camera centers or not.
We recall that the chirality/rotation LMIs (13) can be con-
sidered only when the rotation between consecutive images
is known to be at most 90◦. Given all λ−i calculated in the
previous step, the pruning test is as follows:

Rank-3 pruning test (without chirality): Test the simulta-
neous feasibility/infeasibility of LMIs (11) i = 2 . . . n when
considering all views with ω > 0 and the bound constraints
(ω)k` ≤ (ω)k` ≤ (ω)k`, k, ` = 1, 2, 3 (ω33 = 1). From
Proposition 3.3, we understand that if these LMIs are infea-
sible, a positive semi-definite rank-3 quadric satisfying the
DAQ projection equations (3) for all views is guaranteed not
to exist for the specified bounds of ω. In such case, the con-
sidered subspace defined by the bounds of ω is discarded.
The subspace of ω is kept for further subdivision if these
LMIs are simultaneously feasible.

Rank-3 and chirality test: Test the simultaneous feasibil-
ity/infeasibility of LMIs (11) i = 2 . . . n along with the chi-
rality/rotation LMIs (13) i = 1 . . . n− 1 between consecu-
tive views with ω > 0,

[
ω n
nᵀ s

]
≥ 0 and the bound con-

straints (ω)k` ≤ (ω)k` ≤ (ω)k`, k, ` = 1, 2, 3 (ω33 = 1).
If these LMIs are infeasible, then a positive semi-definite
rank-3 quadric, satisfying (3) and leading to a candidate
plane at infinity satisfying the chirality inequalities with re-
spect to camera centers, is guaranteed not to exist within
the considered bounds of ω. This is due to Propositions 3.4
and 3.5. Again, the subspace of ω is kept for further subdi-
vision if these LMIs are simultaneously feasible.

Every subspace of ω in which the LMIs are satisfied is
considered ”alive”. Alive subspaces are stored in a list that
is maintained sorted with respect to some objective evalu-
ated at some feasible solution of the subspace. Although
this might not be the best value of the objective in the con-
sidered subspace, we use this information as an indication
on which subspace is more (or less) likely to contain the op-
timal solution. This indication becomes particularly more
reliable with every reduction of the subspaces. The search
tree generated by the subdivision of the space is explored
following a best-first search strategy. This is carried out by
visiting first, at each iteration, the alive subspace of parame-
ters whose feasible solution yielded the smallest value of the
objective. Branching is carried out along the longest edge;
that is, assuming (ω)k` ≤ (ω)k` ≤ (ω)k`, then the subspace
is subdivided into two subspaces midway along the DIAC’s
parameter for which |(ω)k` − (ω)k`| is the largest. Each of
these subspaces is then either alive (feasible LMIs) or dis-
carded (infeasible LMIs). Note that a branch ceases to be
explored when the bounds on ω are tight enough. The algo-



rithm stops when the value of the objective for the best fea-
sible solution is within some arbitrarily small value ε from
the global optimum. If such solution fails to exist, the algo-
rithm stops once there are no more alive subspaces and the
best feasible solution is returned. All the results reported in
this paper were obtained by minimizing (F: Frobenius)

max
i=2...n

||
Pi

[
ω n
nᵀ nᵀω−1n

]
Pᵀ

i

||Pi

[
ω n
nᵀ nᵀω−1n

]
Pᵀ

i ||F
− ω

||ω||F
||F . (14)

Remark: Note that, as in [7], relaxing the rank constraint
(for a posteriori enforcement) is possible in our method and
boils down to checking the infeasibility of (8) instead of that
of (11) after solving the GEV problems. However, while
enforcing the rank a posteriori works well in [7] for the
Dual Linear method, it proved computationally inefficient
for our B&P algorithm. This is because subspaces contain-
ing only full-rank quadrics satisfying (8) are not pruned but
rather kept for further investigation yielding an increase in
the branching and hence more GEVs and LMIs to solve.

5. Experiments
We tested our method using synthetic and real images.

Normalization of image points was used throughout. Pro-
jective reconstruction was obtained by [8] and refined via
Bundle Adjustment (BA) using Rabaud’s SfM Toolbox
vision.ucsd.edu/˜vrabaud. The algorithm was imple-
mented in MATLAB2012a and all the LMI problems were
solved using its LMI control toolbox. All experiments were
carried out on a Pentium i5/2.50GHz/6GB RAM.
Simulations: We generated a set of 120 random 3D points
scattered within a sphere of radius 100 units for each scene
simulation. The cameras were placed about 280±75 units
away from the center of the sphere. The motion of the cam-
era was restricted so that all views face the scene and the
rotation between consecutive images was at most 90◦ about
an arbitrary axis passing nearby the center of the sphere.
All scene points were projected on 256×256 images using a
camera of constant intrinsic parameters with horizontal and
vertical focal lengths fx = fy = 300, zero-skew α = 0, and
principal point u0 = 128 and v0 = 128. The synthetic im-
ages were obtained by adding various levels of zero-mean
Gaussian noise to the pixel coordinates. For each image se-
quence length and noise level (std. dev. from 0 to 2.0 with
0.5 step), we ran 100 independent tests. We conducted two
separate tests with and without our chirality/rotation LMIs.
For each data set, the stratified method [3], starting form
exactly the same initial bounds on the intrinsic parameters,
was also used for comparison. The results obtained were
refined by minimizing the sum of squares of the DAQ pro-
jection error using Levenberg-Marquardt algorithm. A test
was considered successful if the individual error in focal

lengths and principal points are within 20% and |α| < 20.
The accuracy of the 3D reconstruction was evaluated by
computing the RMS error after aligning the reconstructed
point cloud with the original cloud through the best metric
transformation in a least-square sense. Both point clouds
are normalized while keeping their mean distance equal to√

2 before computing the error. The projective structure
is upgraded to metric with the help of the change of ba-
sis transformation, which can easily be improved by other
refinement techniques like BA. If f ix, f

i
y, α

i, ui0, v
i
0, i =

1 . . . N are intrinsic parameters obtained form N differ-
ent calibrations, the RMS errors are computed as fol-

lows: ∆frms = (

∑N
i=1(f ix − fx)2 + (f iy − fy)2

N((fx)2 + (fy)2)
)1/2,

∆uvrms = (

∑N
i=1(ui0 − u0)2 + (vi0 − v0)2

N((u0)2 + (v0)2)
)1/2 and

∆αrms = (

∑N
i=1(αi − α)2

N
)1/2. Various measurements

of the success rate and accuracy for different methods are
shown in Figures 1-4. Our results suggest that the proposed
method is stable from as few as 4 views. When rotation
LMIs are added or more views are used, the success rate
improves as expected. Our method does not consider all the
reconstructed points to be in front of the camera, which in
fact may be unreliable in the presence of noise. This may
be one reason behind the failure of the stratified method.
On the other hand, two globally optimal solutions of the
stratified method may not necessarily be the global solu-
tion as a whole. It is important to notice that there may
be multiple global solutions in some cases. We have how-
ever considered only the first solution found. The termina-
tion of the algorithms before exploring all possible solutions
could be another reason of failure in such cases for both
methods. Incorporating the chirality/rotation LMIs and/or
increasing the number of views customarily decreases the
3D reconstruction error. The results in Figure 2(right) show
few abnormalities with higher levels of noise in 5-7 views.
This is probably due to the change in the number of sam-
ples for error computation. The samples that would have
failed with only 5 views but succeeded with 7 are likely to
give larger errors and hence increase the overall error. Our
method with and without the rotation LMIs, as shown in
Figure 3, is significantly faster than the stratified one while
providing good quality intrinsic parameters (Figure 4 for 5
views) that require only little refinement. It is observed that
the optimization with chirality/rotation LMIs is computa-
tionally more expensive. This results in an increase of the
overall running-time even when the number of iterations is
substantially decreased. Note that we have been unable to
conduct a meaningful comparison of our method against the
polynomial method in [4]. Unlike in [4], in most cases with
our data, the method failed to converge to the optimal DAQ
with a relaxation order of 2. We found that [4] gives the
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Figure 1. Success rate for 1 pixel noise (left) and 5 views (right).

Figure 2. 3D RMS error for 1 pixel noise (left), 5 views (middle), and variable views and noise (right).

right results with an order of relaxation 3 but with about 30
minutes of running-time on the conducted tests.

Real Images: We present the results obtained with three
image sequences. Our method without chirality/rotation
LMIs, with chirality/rotation LMIs and the stratified method
are labeled as A, B and C respectively. The first sequence
consists of 9 3000 × 4000 images of a standard-sized foot-
ball, Figure 5(left), in which 14 common points were man-
ually selected. These points are corners of the truncated
icosahedron present on its surface. The wire-frame re-
construction of our method with chirality/rotation LMIs is
shown in Figure 5(middle-right). In this figure, the structure
was upgraded to Euclidean (the real world measurement of
the sides of polygons is known to be 4.5cm) and a sphere
was fitted to the reconstructed 3D points and shown. The
qualitative results of our method with and without chiral-
ity/rotation LMIs are not shown separately because of them
being very similar. However, the quantitative results are
presented. The following geometric parameters were com-
puted and compared in Table 1 against those of FIFA:

1. LS: RMS error of the length of sides.
2. AH: RMS error of the internal angles of hexagons.
3. AP: RMS error of the internal angles of pentagons.
4. A-HP: Mean(M) and Variance(V) of Dihedral angles

between hexagons and pentagons (expected: 142.62).
5. A-HH: Dihedral angle between two hexagons (ex-

pected: 138.19).
6. CS: Sphere circumference (expected: 68-70 cm).

Figure 5. Football (left), fitted sphere/Method B (middle-right)

LS AH AP A-HP A-HH CS
(cm) M V (cm)

A 0.16 1.01 0.88 141.52 2.53 135.93 68.05
B 0.16 1.03 0.083 141.51 2.54 135.93 68.06
C 2.12 5.64 11.03 161.37 1.57 160.48 134.63

Table 1. Geometric measurements.

The second image sequence we used is the ”Model
house” from www.robots.ox.ac.uk/˜vgg with 95 im-
age points common in 6 576 × 768 images. Our meth-
ods with and without chirality/rotation LMIs produced the
same results whereas the stratified method failed to provide
a valid result. Figure 6 shows one of the images and two
views of the reconstructed surface before and after texture
mapping. The ground truth being available, the 3D RMS
error computed for this sequence is 0.0109.

The third image sequence (results in Table 2) consisted
of 8 1200×1600 images (not shown) with 16 feature points
common to all views. The camera parameters were obtained
using the pattern-based calibration technique followed by
methods A, B and C.

www.robots.ox.ac.uk/~vgg


Figure 3. Median time taken for 1 pixel noise (left) and 5 views (right).

Figure 4. RMS error in intrinsic parameters before and after the refinement for 5 views.

Figure 6. Model house reconstruction with method B.

fx fy u0 v0 α
A 1615.49 1610.70 810.73 615.21 0.63
B 1611.90 1610.45 812.09 611.55 0.49
C 1603.86 1597.58 749.04 645.37 -32.29

Pattern-based 1601.32 1606.14 808.87 613.59 0.00
Table 2. Camera intrinsic parameters.

6. Conclusion

We have presented a new globally optimal algorithm
for estimating the DAQ under the rank-3 and, optionally,
camera centers chirality constraints. The proposed method
employs the Branch-and-Prune algorithmic paradigm and
requires to explore the space of only 5 parameters. Our
algorithm relies on some new results providing LMI fea-
sibility/infeasibility pruning conditions. Our LMI chiral-
ity/rotation conditions were obtained under the mild as-
sumption that the camera undergoes a rotation of no more
than 90◦ between consecutive views.
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