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Abstract

A method for online, real-time learning of individual-
object detectors is presented. Starting with a pre-trained
boosted category detector, an individual-object detector is
trained with near-zero computational cost. The individual
detector is obtained by using the same feature cascade as
the category detector along with elementary manipulations
of the thresholds of the weak classifiers. This is ideal for on-
line operation on a video stream or for interactive learning.
Applications addressed by this technique are reidentifica-
tion and individual tracking. Experiments on four challeng-
ing pedestrian and face datasets indicate that it is indeed
possible to learn identity classifiers in real-time; besides
being faster-trained, our classifier has better detection rates
than previous methods on two of the datasets.

1. Introduction

Detecting objects in image collections and video is a
rich area of application of visual recognition. Technical ap-
proaches change significantly depending on whether one fo-
cuses on individual-objects [35] or on categories [6, 16, 19]
and the two challenges are pursued as distinct research
questions. While this separation is useful in academic re-
search, real-world systems require a combination of cate-
gory and individual detection.

For concreteness, we describe two such scenarios. The
first is tracking. Applications include tracking of pedes-
trians in railway stations and airports, vehicles on the
road for traffic monitoring and faces for interfacing people
with computers. A common approach used is tracking-by-
repeated-detection. In its simplest form this consists of a
frame-by-frame category detector followed by an algorithm
that combines detections across space and time into trajec-
tories [3, 5]. Trajectory smoothness constraints confer a de-
gree of robustness to false detections; the main challenge
is continuing trajectories when detection fails over multiple
frames because of occlusion, unusual pose or unfavourable
lighting conditions. Once an object (a pedestrian) has been
detected by the category detector (or by a human opera-
tor), tracking is made more robust by training an individual-

Figure 1. Tracking individuals across a video sequence: faces (top)
and pedestrians (bottom). The first column shows the detections
made by a category detector. These detections are used to initialise
three individual face detectors, and a single individual pedestrian
detector, and are then evaluated on the subsequent frames in the
video sequence. Individual detector outputs are colour-coded.

object detector exploiting the specifics of the individual’s
appearance (a person with a red sweater and backpack) [38].

Reidentification is another scenario with applications in
video surveillance [10] and content-based indexing of im-
age collections, consumer videos and commercial video li-
braries. After a category detector detects instances of the
category, individual detectors are trained to cluster and clas-
sify the individuals that appear in the collection [17]. Indi-
vidual reidentification across networks of cameras is simi-
larly important [7, 8, 28, 46].

It is clear from these examples that it is useful to detect
objects both as members of categories and as individuals.
In the first scenario, individual detectors trained on-the-fly
improve tracking robustness. In the second scenario, in-
dividual classifiers reveal recurring individuals in an entire
collection or video stream. In both cases it is crucial that an
individual detector is trained in real-time and that its run-
time cost does not add significantly to the overall computa-
tional cost of the system.

Here we present a method for real-time, online training
of individual detectors from individuals that are detected by
a category detector. We make three main contributions:
1. A unified boosting-based approach for simultaneous cat-
egory and individual detection.
2. A method for training individual detectors in real-time
from a single training example.
3. Two novel challenging datasets of faces and pedestrians.

1



2. Related work

Researchers in visual categorisation agree that objects
are best represented as constellations of visually distinctive
parts that appear in flexible geometrical arrangements [21,
33, 6, 19]. A variety of practical approaches to detect-
ing parts and representing mutual positions have been pro-
posed, where the representation of shape is either ex-
plicit [20, 19] or implicit [34, 39, 43, 14]; best perfor-
mance is currently obtained with discriminatively trained
part detectors [14, 19]. This work is based on boosted cas-
cades of classifiers [43, 4, 14] because they deliver state-of-
the-art detection performance at video-rate computational
speeds [2].

Researchers focusing on individual detection [35] and
re-identification [10] focus both on the design of (domain-
specific) features [28, 7, 46] and on efficient algorithms
for detection and classification [35]. In our work we are
feature-agnostic, in that our framework allows the imple-
mentation of a large variety of different features, and we
rely on the computational efficiency of cascaded boosted
classifiers.

Online learning of detectors for tracking individual ob-
jects, given an operator-supplied initial training window, is
a topic of much interest [9, 31]; the main challenge is drift-
ing from the original target. The closest work to our own are
the online boosted trackers of Grabner et al. [24, 23, 25]. In
their work, boosted individual-object detectors are trained
online and are paired with a prior to limit drift. The in-
dividual detectors operate at frame rates of between 10–15
frames-per-second on a video with a resolution of 640x480;
however, this cost is in addition to the cost of running a cat-
egory detector, the output of which initialises the individual
detector.

Our work aims to produce a unified approach for si-
multaneous category and individual detection to ensure that
real-time operation can be achieved. We focus on two ques-
tions that have, to our knowledge, not yet been studied: as-
suming that a category detector is available, (a) how to de-
sign individual detectors whose additional run-time cost is
small or zero; (b) how to train such individual detectors on-
the-fly with minimal computational cost once one or more
training examples become available from the category de-
tector.

3. Approach

Our approach is based on using cascaded boosted clas-
sifiers both for category and individual detection [42, 43,
14, 13]. Detectors of this form have been shown to be fast
and have state-of-the-art detection performance [2]. In or-
der to make this paper self-contained, we review cascaded
boosted classifiers (Sec. 3.1); discuss the implementation
of category detectors (Sec. 3.2) and finally outline the ap-

0 0.2 0.4
Feature 1

0.35 0.450.4
Feature 2

0 0.2 0.4
Feature 3

0 0.2 0.4
Feature 4

0 0.2 0.4 0.6
Feature 5

0 0.2 0.4
Feature 6

0 0.2 0.4
Feature 7

0 0.2 0.4 0.6
Feature 8

0 0.1 0.2 0.3
Feature 9

Faces Indvl 1 Indvl 2 Indvl 3 Indvl 4

Figure 2. The empirical distributions of a set of faces and four
individual faces across the first nine features selected by AdaBoost
for the category detector. The set of faces was used to train the
category detector (refer to Sec. 4 for details). The four individuals
represent a single sequence of an individual lasting for at least
fifty-five frames from a test video in the FPOQ dataset (Sec. 4).

proach for designing individual detectors (Sec. 3.3).

3.1. Boosting

A boosted classifier takes feature vector x ∈ RD as input
and outputs a binary decision:

H(x) = sign

(
M∑

m=1

αmhm(x)− τ

)
(1)

where the threshold τ is chosen to produce the desired
tradeoff between false reject rate and false alarm rate. Given
a labelled training set {xi, yi}i of N samples, the boosted
classifier is trained by greedily minimising a loss function
(which depends on the type of boosting being used: Ad-
aBoost, LogitBoost, etc.). This means that at each iteration
m up until the maximum number of iterations M an opti-
mal weak classifier hm(x) and weight αm are selected. For
training, each data sample xi is assigned a weight wm

i (de-
pends on the loss function). At each iteration, samples that
are classified incorrectly are weighted more heavily which
means the penalty for classifying them incorrectly in subse-
quent iterations increases.

3.2. Category Detector

In this work category detectors are trained offline using
AdaBoost [22]. The family of weak classifiers used are
stumps. This means that given an input x ∈ RD, the de-
cision only depends on the j-th dimension of x, a threshold
θ ∈ R and a polarity p ∈ {±1}

hm(x) =

{
1, pmxjm > pmθm

−1, otherwise
(2)



During training, the optimal weak classifier at the m-th it-
eration of boosting is selected by choosing j, θ and p so
that the number of the N weighted training examples that
are misclassified is minimised. Choosing these parameters
at each of the M iterations is O (MND) and is the most
computationally expensive part of training a boosted clas-
sifier. Note that any boosting method and decision trees of
any depth could be used to train the category detector; our
proposed method is agnostic to these choices. For the sake
of clarity, in the following discussion we will continue to
refer to AdaBoost and decision stumps.

3.3. Individual Detectors

The proposed approach for designing individual detec-
tors relies on four key principles: 1) the individual detector
has the form of a cascade of boosted classifiers (Eqn. 1);
2) an individual detector is learnt from a single instance of
the individual; 3) the training and 4) the runtime costs of
an individual detector must be minimal to guarantee online,
real-time operation.

The most obvious strategy for training an individual de-
tector is to repeat the AdaBoost training process using an
object identified by the category detector as a positive train-
ing example. Recent work has made the training stage of
AdaBoost faster [1]; however, it is still a computationally
expensive process and remains ill-suited for real-time oper-
ation. In the following exposition we will look at the lim-
itations of a traditional boosting approach and examine a
set of constraints that can be placed on the individual detec-
tors to avoid the computationally costly steps of a traditional
boosted detector.

The first design goal requires individual detectors to be
of the same form as the category detector. This is a rea-
sonable restriction to place on the individual detectors since
cascades are fast, making them suitable for real-time oper-
ation and their performance is state-of-the-art as has been
previously mentioned. This requirement also ensures there
is simplicity in design and a unified approach for both cate-
gory and individual detection.

The second principle, that an individual detector is learnt
from a single instance of an individual is also a reasonable
requirement. Training using a traditional boosting approach
is possible by jittering or transforming the original exam-
ple. This results in multiple, slightly altered versions of the
original instance which can all be used as positive training
examples. The drawback here is that negative examples are
now required. This either requires precomputed negatives
to be stored in memory (which may be limited) or for neg-
ative examples to be mined online which is another costly
computation.

To ensure design goals 3) and 4) are satisfied it is impor-
tant to examine the most computationally expensive steps
in the object detection pipeline. The first of which is feature
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Figure 3. The empirical distributions of the median spread (Eqn. 3)
for the M features selected by a boosted category detector of
the faces in the FPOQ (solid) and of the pedestrians in the CRP
(dashed) datasets (Sec. 4). The red curves correspond to the me-
dian spread of individuals across multiple sequences; the pink,
to individuals in a single sequence; the green, to 30 consecutive
frames of an individual and the blue to 10 consecutive frames of
an individual.

computation.
Computing features is expensive; however, some fea-

tures have already been computed for the category detec-
tor. If we can re-use the same features for the individual
detector, the additional runtime and training costs for an in-
dividual detector due to feature computation are zero. For
this reason, individual detectors will be constrained to
only use features that have already been computed for
category detection.

A second computationally expensive stage to consider
is feature selection during training. This is equivalent
to choosing parameter j at the m-th boosting iteration
(Sec. 3.2). Typically, D, the dimensionality of the fea-
ture space is large so performing this optimisation is costly;
however, this optimisation can be avoided if the individ-
ual detectors are constrained to use only the M features
that were selected by AdaBoost for the category detec-
tor. We will denote this set of features by J = (j1, . . . , jM )
where jm ∈ {1, . . . , D} and the importance of each feature
through the weights α = (α1, . . . , αM ). The additional
training cost due to feature selection is thus zero.

It is not intuitive that category detection features (fea-
tures that are good at distinguishing faces from back-
ground), are also useful for individual identification (distin-
guishing faces from other faces). It is reasonable to expect
that the features AdaBoost would select for a face detec-
tor are features that are common to all faces; consequently,
these common features should be uninformative for distin-
guishing between faces. Consequently, constraining the in-
dividual detectors to only use theM features of the category
detector ought to doom it to failure. However, this intuition
is not necessarily correct.

For a category detector to perform well, it needs to be
able to detect many different types of faces in different light-
ing conditions. It is not necessary for an individual stump



to cover the complete range of feature values; it only needs
to capture a narrow range. Breadth is achieved by combin-
ing multiple stumps. It would then be reasonable to expect
that the feature distributions for an individual are localised
within narrower intervals that are contained within the cat-
egory distribution for that particular feature.

Plots in Figure 2 show the empirical distribution of
nine features from faces used to train the category detector
(grey) as well as the distributions for four different individ-
uals (colour); the individual distributions are obtained from
video sequences lasting at least fifty-five frames from a test
video in the FPOQ dataset (Sec. 4). (In video, a sequence is
a consecutive set of frames in which an individual appears.
Individuals occur in multiple sequences across the length of
the video.) Each subplot is for one of the first nine features
selected by AdaBoost for the category detector. This plot
suggests that the distribution of a feature for a particular
individual is localised within the broader category distribu-
tion. To substantiate this claim, a statistical analysis across
many different individuals is required.

Let X+ ∈ RNxM be the matrix of M -dimensional fea-
ture vectors of the N positive examples of a category. The
N positive examples consist of multiple instances of the
same individual, possibly under different pose and lighting
conditions. The range of feature j for the entire category
can then be defined as r+j = Q0.95(Xj)−Q0.05(Xj) where
Qp is the p-th quantile and Xj is the j-th column of X+.
The range of feature j for an individual across multiple se-
quences is rij = Q0.95(X

i
j) − Q0.05(X

i
j) where Xi

j is the
j-th column of X+ but only with the rows that correspond
to individual i. The median spread lj across all individuals
for feature j is then defined as:

lj = median
i

(
rij

r+j
) (3)

The median spread of an individual in a single sequence, in
30 consecutive frames and in 10 consecutive frames is also
considered and can be defined similarly. Figure 3 shows the
empirical distributions of the median spread for the features
for all faces in the FPOQ and all pedestrians in the CRP
datasets (Sec. 4) .

Figure 3 suggests that reidentifying individuals within
sequences (pink curves) or within 30 (green curves) or 10
(blue curves) frames of each other is possible since most
features are localised (the spread is small with respect to
the category distribution). It also suggests that reidentifying
individuals across sequences (red curves) may be problem-
atic since there are more features with higher spread val-
ues; however, the architecture of a cascaded boosted clas-
sifier provides some robustness to this variability between
sequences. If there are enough features that exhibit lim-
ited variability (FPOQ (solid red) has a number of features
with a spread of less than 0.5) then an individual detector

Figure 4. (Left) The faces of five different people from the FPOQ
dataset. (Right) Examples of five different pedestrians (one for
each row) from the Roadside Pedestrian Dataset. The individuals
were sampled randomly from a video in each of the datasets. Faces
are quasi-frontal; lighting varies between overcast and direct sun-
light; a variety of expressions are present as individuals are filmed
while talking. Pedestrians show a wide range of poses, lighting
conditions and backgrounds.

may still classify an individual correctly across sequences
because there is sufficient evidence to suggest that the indi-
vidual is present.

The third and final computationally expensive stage in a
traditional boosting approach is threshold selection during
training. Even if features have already been selected (pa-
rameter j has been fixed), the optimal threshold θ, at the
m-th boosting iteration still needs to be chosen (Sec. 3.2).
This is once again computationally expensive; however, this
optimisation can be avoided if we consider an alternative
approach.

Selecting the thresholds for a single weak classifier
h′(x′), which depends on a single feature x′ ∈ R, can be
achieved at almost zero computational cost by using trans-
fer learning. Consider the single instance of an individual
that has been detected by the category detector and call γ′

the value of feature x′ for this instance. Figure 2 suggests
that the distribution of features for an individual tends to
be localised. The average spread σ′ of feature x′ across
many individuals may be estimated offline using a valida-
tion set composed of images grouped by individual. An
interval (γ′ − βσ′, γ′ + βσ′) can then be defined where β
is a free parameter that can be tuned experimentally. This
interval represents the most likely values that the feature x′

will take for the individual detected by the category detec-
tor. According to this strategy, the weak classifier h′(x′)
may be obtained directly from one training example:

h′(x′; γ′, σ′) =

{
1 γ′ − βσ′ < x′ < γ′ + βσ′

−1 otherwise.
(4)

This weak classifier provides evidence for an individual be-
ing present (absent) if the feature x′ lies inside (outside) the



interval (γ′ − βσ′, γ′ + βσ′). The training cost for select-
ing the thresholds for a single weak classifier is thus a small
constant.

Using the ideas presented, an individual detector in the
form of a cascaded boosted classifier can now be con-
structed. Given the set of features J and weights α that
were selected for the category detector, the first instance uk

of the k-th individual detected by the category detector, and
an estimate of the spread σ = (σ1, . . . , σM ) of the features
J a classifier F k(x) for the k-th individual can be defined
by:

F k(x;γk,σ) =

M∑
m=1

αmh
′(xjm ; γkm, σm) (5)

where γk = (γk1 . . . γ
k
M ) with γkm = ukjm . The total com-

putational cost for learning an individual detector using the
outlined approach is only O(M). This is significantly less
expensive than if the individual detector was trained using
standard AdaBoost which is O(DMN).

4. Experiments

To assess the performance of our procedure for training
individual detectors (we call it IDBoost), as well as to de-
termine the limitations and applicability of the approach,
two types of experiments, that illustrate two possible oper-
ating regimes for the individual detectors, are considered.
The experiments are evaluated on two different categories:
faces and pedestrians. All experiments are carried out using
the multi-scale detection framework of Dollar [13], with the
channels of brightness, colour, gradient magnitude and gra-
dient orientation used as features; the code is available in
Dollar’s publicly available Image and Video Matlab Tool-
box. In all experiments, the parameter β = 0.6; this choice
ensured detectors operated at a fast enough rate whilst main-
taining performance.

4.1. Datasets

To carry out the experiments it was necessary to col-
lect two new challenging video datasets that contain many
different individuals that reappear at different moments in
time.

The first dataset is the Fifty People One Question
(FPOQ) face dataset. It contains 6 videos with 222 an-
notated individuals across 725 sequences (in video, a se-
quence is a consecutive set of frames in which an indi-
vidual appears). Each annotation contains the bounding
box, the identity and the sequence number of the face. In
total the are 68,676 bounding boxes; 78,181 frames; and
57,274 frames that contain faces. The videos were col-
lected from YouTube (e.g. http://youtu.be/csHddXn91YE)
and involve either a single individual or groups of individu-
als being asked a question in front of a fixed camera. Their

Figure 5. A demonstration of the reidentification of individuals in
(left) the FPOQ and (right) the CRP datasets using IDBoost. Col-
umn 1 shows the instance used to train the individual detector, it
is the first instance of that individual detected by the category de-
tector. Columns 2–6 show the top, 50th, 100th, 200th and 300th
best scoring results returned by the individual detector after being
evaluated on the ∼10,000 detections made by the category detec-
tor. For the CRP dataset columns 2–6 show the top, 5th, 10th, 20th
and 30th best scoring results from ∼2500 detections.

responses are edited in such a way so that an individual’s re-
sponse is interspersed between the responses of others. This
means individuals can appear at any time point within the
video. Examples of the different individuals as well as the
different appearances of those individuals throughout the
video are displayed in Figure 4. The face category detector
was trained using 800 different faces extracted from single
frames across 26 other videos (these videos are in the same
style as the FPOQ videos). The faces used to train the face
detector are not used during testing. The spread σ of the
features selected by the face detector averaged over many
individuals is estimated from a video in the FPOQ dataset.
The other 5 videos are used for testing.

The second dataset is the Caltech Roadside Pedestrian
(CRP) dataset. It contains 2 videos with 170 annotated
individuals across 263 sequences. In total there are 7450
bounding boxes; 77,450 frames; and 5606 frames that con-
tain pedestrians. Each video is captured by mounting a
rightwards-pointing video camera to the roof of a car. The
car then completes two laps of a ring road within a park
where there are many walkers and joggers. This dataset
is more challenging than the face dataset due to the con-
siderable differences in lighting and pose for an individual.
Figure 4 displays a few examples of the pedestrians in this
set. The pedestrian category detector was trained using 64
of the individuals in the CRP dataset; σ was also estimated
from this set. the remaining 106 individuals were used for
testing.

For completeness we also evaluate our method on two
existing re-identification datasets, VIPeR [26], which con-
tains 632 person image pairs and ETHZ [41, 15] which con-
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Figure 6. Reidentification performance. ROC curves for reiden-
tification averaged over the (left) 207 individuals in the FPOQ
dataset and the (right) 106 individuals in the CRP dataset. The
category detector extracts all instances of an object in the video
(in the FPOQ dataset there are 9375–15521 face detections per
video; in the CRP dataset there are ∼2500 pedestrians detected
per video). An individual detector is then trained (using either
IDBoost, AdaBoost, OSS+LDA, L2 or KISSME) for each of the
individuals present in the video using the very first instance of that
individual. Each detector is then applied to every other instance
that was detected by the category detector in the video. An roc
curve is generated for each of the individual detectors and the av-
erage roc across all individuals is then computed. A true positive
occurs when an individual detector fires on the same individual
that it was trained on. The mean equal error rate is also given for
each of the methods. Our method has the best performance on
both datasets.

tains multiple windows of people extracted from 3 video
sequences. For conciseness we only report the results on
ETHZ Sequence 2 which contains 35 persons across 1961
images.

4.2. Reidentification

Individual detectors can operate in two modes, the first is
as a classifier, evaluated on the single windows indicated by
the category detector to contain an object of interest. The
reidentification problem involves reidentifying instances of
an individual (each instance varies in pose, lighting, back-
ground and occlusion) from a set of many different individ-
uals. The reidentification experiments are run on both the
FPOQ and the CRP datasets. Each new individual is deter-
mined by a human operator, an individual detector is learnt
using this example and it is then evaluated on all detections
made by the category detector (even the category detections
that occur in the frames prior to the individual detector be-
ing created). Experiments are also run on VIPeR and ETHZ
SEQ2 to examine the cross-dataset performance of IDBoost
(CRP is used for training, VIPeR/ETHZ for testing).

We compare the performance of individual detectors
trained using our method to individual detectors trained us-
ing three other methods: AdaBoost [22]; the One-Shot Sim-
ilarity score using LDA (OSS+LDA) [45] (code obtained
from the authors website); and an l2 distance as a base-
line. These methods use a single example for training to
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Figure 7. Cross-dataset performance of our method (IDBoost) (red
curves). IDBoost was trained (learning σ (Eqn 4)) using the vali-
dation subset of CRP and tested on ETHZ SEQ2 (left) and VIPeR
(right). For reference we provide the performance curves of a
number of methods that were trained on those datasets[18, 40].
ID boost performs comparably to the other methods on the ETHZ
dataset, whose statistics are close to CRP’s since individuals were
sampled by a moving camera. On the VIPeR dataset IDBoost per-
forms less well than methods which were trained on VIPeR; this
is probably because individuals were imaged by separate cameras
with different lighting conditions. For a fairer comparison, we
take the state-of-the-art method KISSME [32] and train it using
the validation subset of CRP. KISSME-CRP performs poorly on
both VIPeR and ETHZ. It over-fits the training data, so is unable
to generalise to new datasets with different statistics. This result
suggests that IDBoost has a greater capacity to generalise across
datasets.

provide a fair comparison. We also make a comparison to
KISSME [32] a metric learning algorithm that has state-of-
the-art performance on the VIPeR dataset (code obtained
from the authors website). To learn an individual detector
from a single example using AdaBoost, virtual positives are
created by applying slight transformations to the example
whilst negative examples are sampled from the background
of the frame; this is similar to the initialisation stage of the
online boosting trackers [24, 25]. KISSME is trained using
the same FPOQ and CRP validation subsets that IDBoost is
trained on unless otherwise specified.

The results of our experiments are in Figure 6 with exam-
ples in Figure 5. They indicate that reidentification of faces
is fairly easy due to the interview style of the videos with the
pose, background and lighting of the face changing mini-
mally so an individual looks the same from the first instance
to its last. Reidentifying pedestrians is much more difficult
due to the large changes in appearance that occur due to
lighting and pose. From the ROC curves of Figure 6 it is
clear that our method (IDBoost) performs equally or better
than any of the other methods, despite the fact that its com-
putational cost is a tiny fraction as shown in Figure 9 (top).
Figure 7 gives the results of cross-dataset performance with
IDBoost doing significantly better than KISSME-CRP.

4.3. Tracking

An individual detector can also operate as a sliding-
window detector, evaluated on every window in every frame
of a video. The additional runtime cost in this mode of op-
eration is higher than in the reidentification scenario since
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Figure 8. Tracking performance. The miss rate averaged over the
(left) 680 sequences of individuals in the FPOQ dataset and over
the (right) 199 sequences of individuals in the CRP dataset. For
each sequence, the output of the category detector evaluated on the
first frame of the sequence is used to initialise an individual tracker
(either an IDBoost, OnlineBoost or MeanShift tracker). The miss
rate (the number of times the tracker misses the individual it was
initialised to track) is then computed for each sequence and the
average miss rate over all sequences is the computed. Our method
has the best performance on the both datasets.

individual detectors are now being applied to every win-
dow rather than just the windows that the category detector
fires on. However, this extra cost is still very small since
our method utilises the features that have already been com-
puted by the category detector.

Experiments were carried out on both the FPOQ and the
CRP datasets to test this mode of operation. In this experi-
ment sequences of individuals (a consecutive set of frames
in which an individual occurs) were extracted and the cate-
gory detector is evaluated on the first frame of the sequence.
The output of the category detector is used to initialise an
individual detector created using our method. The individ-
ual detector is then evaluated on the remaining frames in
the sequence. This is a form of tracking by repeated de-
tection using an appearance model. A motion model is not
incorporated (it would be easy to implement this and would
further reduce the additional runtime cost, but it would risk
confusing the results of the experiments) and so the individ-
ual detector is evaluated on every window in a frame. Per-
formance is measured by the number of times the tracker
misses the individual it has been trained to track.

We compare the performance of our tracker to two
other tracking methods: the Semi-Supervised Online Boost-
ing Tracker [25] (OnlineBoost) (code obtained from au-
thors website); and the Mean Shift or Kernel-based object
tracker [9] (using the implementation in Dollar’s toolbox).
Both methods are initialised with the category detector out-
put. Our method only uses the first instance of an individual
from the first frame of a sequence whereas the other meth-
ods update the model of the individual over time.

The results in Figure 8 indicate that our method (ID-
Boost) has the best performance in terms of miss rate. Per-
formance could be further improved by allowing the ID-
Boost tracker to update based on the appearance of the in-
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Figure 9. Computational performance. The average time it takes
to train and evaluate an individual detector (either per window
or per frame depending on the application) versus error rate for
the (top) reidentification and (bottom) tracking scenarios using the
CRP dataset. Our method (IDBoost) operates just as fast as L2
and KISSME but has the best performance for the reidentification
scenario. In the tracking scenario our method still achieves real-
time operation with the best performance. This could be faster
if a motion model was included. MeanShift is exceptionally fast
for this reason but it’s performance is poor. All experiments were
conducted on a single core of a 3.20 GHz processor. The ideal
performance is in the bottom left corner of the plot.

dividual at the current frame rather than just using the ap-
pearance of the individual in the first frame of the sequence.
Figure 9 (bottom) also shows that the additional computa-
tional cost of IDBoost is reasonable since real-time opera-
tion is still possible even without a motion model. Videos
of our results can be found in the supplementary materials.

5. Discussion and Conclusions

We presented a method for training detectors of indi-
vidual objects from a boosted category detector. Training
happens in real-time using a single instance of an individ-
ual as a positive training example. The individual detectors
make use of the category detector’s feature computations;
the thresholds for a single weak classifier are set using trans-
fer learning. This ensures that the additional training and
run-time costs for the individual detectors are minimal.

We carried out experiments on four datasets contain-
ing faces and pedestrians. The experiments were designed
to test whether our simple and inexpensive strategy would
work on real-world videos. We carried out two experiments:
the first, designed to test reidentification, where the same in-
dividual is discovered across an entire video or image col-
lection. The second, designed to test tracking, where an
individual is tracked across consecutive video frames.

Our experiments suggest three conclusions: (a) both
training and runtime computation of individual detectors
is extremely inexpensive; (b) our method has both bet-
ter tracking and reidentification performance than previ-



ous methods on the FPOQ and CRP datasets; (c) the
cross-dataset performance of our method is better than
KISSME [32], a state-of-the-art, reidentification method.

Since our results show that individual object detectors
can be trained quickly it suggests that a tracking system ro-
bust to drift, could be implemented. In this system, indi-
vidual object detectors are used to track individuals and are
updated using the appearance of the individual on a frame-
by-frame basis rather than only using the first example of
the individual, as is done in this work.
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