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Abstract

In this paper we present a depth-guided photometric 3D
reconstruction method that works solely with a depth cam-
era like the Kinect. Existing methods that fuse depth with
normal estimates use an external RGB camera to obtain
photometric information and treat the depth camera as a
black box that provides a low quality depth estimate. Our
contribution to such methods are two fold. Firstly, instead of
using an extra RGB camera, we use the infra-red (IR) cam-
era of the depth camera system itself to directly obtain high
resolution photometric information. We believe that ours is
the first method to use an IR depth camera system in this
manner. Secondly, photometric methods applied to complex
objects result in numerous holes in the reconstructed sur-
face due to shadows and self-occlusions. To mitigate this
problem, we develop a simple and effective multiview recon-
struction approach that fuses depth and normal information
from multiple viewpoints to build a complete, consistent and
accurate 3D surface representation. We demonstrate the ef-
ficacy of our method to generate high quality 3D surface
reconstructions for some complex 3D figurines.

1. Introduction
The availability of inexpensive depth cameras such as

the Kinect has opened up new areas of work and also en-
abled researchers to revisit some classical problems. While
the Kinect was originally intended for estimating human
pose it has been used to reconstruct three-dimensional
representations of a scene. We may broadly group such
approaches into two categories, i.e. 3D model acquisition
by a moving depth camera and depth-guided photometric
methods. This paper is a contribution towards the later
category of photometric approaches for which prior work
includes [16, 15, 5].

Following the original contribution of [11], the methods
of [16, 15, 5] develop a variety of approaches to combine
depth information with estimates of the surface normals as

given by photometric constraints. All of these approaches
use an RGB image in combination with depth information.
While [15] uses the Kinect’s RGB image, the methods
of [16, 5] use an additional external high-resolution RGB
camera to obtain radiometric information of the scene. As
will be described below, we use the same infra-red (IR)
camera on the Kinect sensor to obtain both depth informa-
tion as well as images for the photometric constraints. Like
other methods we use the raw depth information provided
by the Kinect’s IR projector-camera pair. However, by
switching off the IR projector through software, we are
also able to obtain a raw IR radiometric image using the IR
camera of the Kinect. This enables us to use the Kinect’s IR
camera for both depth and radiometric sensing, obviating
the need for any additional RGB camera. We believe that
our work is the first approach to use the Kinect’s IR camera
as a radiometric sensor by switching off the projector.
Apart from not requiring an additional camera, using the IR
camera for both depth and radiometric sensing has specific
advantages that will be described later.

1.1. Relevant Literature

In our brief survey of relevant literature, we will only
describe methods of direct relevance to our approach.
Assuming a point source of lighting and a Lambertian
reflectance model, the pioneering work of Woodham [14]
estimated the normal of a surface point by observing it
under lighting from three or more directions. Once the
normals are estimated, they can be integrated to obtain
a 3D representation of the surface being imaged. While
effective, the photometric stereo method of [14] required
precisely known calibration of multiple light sources. An
alternate method proposed by Horn [8, 7] takes a single
image and solves for a surface representation by variational
minimisation using the Lambertian photometric constraint
on the surface normals. This approach, known as shape-
from-shading (SFS) has resulted in a very large body of
literature of which [4, 9] are only some representative ex-
amples. Surveys of such approaches are available in [17, 3].
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Figure 1. Device setup and axis conventions used in this paper.

Despite the large body of literature, the SFS problem
is difficult to solve as the ill-posedness of the photometric
constraint results in a local bas-relief ambiguity. To amelio-
rate this problem, Nehab et. al. [11] proposed to combine
two independent sources of information, i.e. a depth map
(obtained by stereo estimation or range imaging) and a
normal map of the surface (estimated from photometric
constraints). We follow this approach whereby the low
frequency information obtained from a noisy Kinect depth
map is fused with the high frequency feature information
provided by photometric constraints obtained from the
Kinect’s IR camera. In [16], the authors modify the method
of [11] to incorporate adaptive weighting for surface gradi-
ent estimation and also incorporate a Laplacian smoothness
penalty. In [15], the authors use clustering of pixels to
estimate relative albedos for an SFS method with hole
repairing to improve the surface normals obtained from the
Kinect. The method of [5] uses a combination of a global
lighting model and a local lighting model to optimize
normal estimation over a patch of pixels that are fused with
a depth map.

2. Photometric Estimation
The first novelty of our approach is that we use the

Kinect’s IR camera for both depth and normal estimation.
As mentioned earlier, our approach appears to be the first
such method which uses the same IR camera for depth
and radiometric sensing. A significant advantage of this
approach is that we do not require an additional RGB
camera. Consequently, apart from being cheaper, we do
not need an additional step to calibrate the Kinect’s depth
map and the external RGB camera as is required by the
methods of [16, 5]. In addition, when viewing complex
surfaces, the Kinect’s depth map would contain holes due
to self-occlusion of the surface. Since the external RGB
camera is displaced with respect to the Kinect, the RGB
image would also contain additional occlusion regions and

holes. In contrast, in our setup, since we use the Kinect’s
IR camera, both the depth map and radiometric image are
obtained in the same co-ordinate system. This reduces the
number of holes in the surface representation.

Using the Kinect’s IR camera : The Kinect consists
of a depth sensor (IR projector and camera) and an RGB
camera. While the depth map and RGB image outputs
of the Kinect are 640 × 480 pixels, both the IR and
RGB cameras actually have a true higher resolution of
1280× 1024 pixels. Since the raw depth maps provided by
Kinect are of lower resolution and tend to be rather noisy,
we exploit the higher resolution of the IR camera to extract
high resolution details with the aid of an IR source, see
Fig. 1. By turning off the Kinect’s IR projector and turning
on the IR source, we can obtain high resolution IR images
of the scene that can be utilised in a photometric sense to
obtain high resolution details that cannot be observed in the
coarse Kinect depth map.

2.1. Photometric Relations

Assuming a point source at infinity and Lambertian re-
flectance of the surface, we arrive at the simplest radiomet-
ric model for the observed image intensity,

Ip = Aαp max(0,Np ·V) (1)

where A is the strength of the light source at infinity and
Ip and αp are the observed image intensity and albedo of
the p-th pixel. Furthermore, Np is the normal at the surface
point that is imaged at pixel p and V is the direction of
the lighting source. Throughout we shall assume that the
lighting directions are such that V lies in the half-sphere
defined by Np, i.e. Np.V > 0. Assuming uniform albedo
we can simplify Eqn. 1 to account for the observed image
under different lighting conditions as

Ikp = Np · Sk (2)

where S = AαV and the superscript k indexes different
lighting conditions.

2.2. Estimating Lighting

Since the observed intensities are a product of both light-
ing and normal directions, we can solve for one given the
other. Since a noisy depth map is provided by Kinect, we
can utilise it to obtain a preliminary estimate of the sur-
face normals. In our approach, we apply a bilateral filter
to smoothen the Kinect’s depth map and obtain normal es-
timates which can be used in Eqn. 2 to linearly solve for the
individual lighting Sk. In practice, to account for various
errors, we use a robust estimator to solve for Sk,
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(a) Edge Weighting (b) 3D Model

(c) Our Normal Weighting

(d) Depth Weighting of [16]

Figure 2. Weighting functions used in our fusion algorithm. (a) shows the edge weighting measure used in Eqn. 7. (c) and (d) show the
reconstructions obtained using our normal weighting function of Eqn. 10 and that of [16] respectively. A higher level of detail is preserved
in our reconstruction. (b) shows the 3D object where the region corresponding to (c) and (d) is indicated in red. Please view this figure in
colour.

min
Sk

∑
i

ρσ
(
Ikp −Np · Sk

)
(3)

where ρ(x) is the Huber loss function given by

ρσ (x) =

{
x2 if |x| ≤ σ

2σ |x| − σ2 if |x| > σ
(4)

In solving Eqn. 3 we iteratively estimate the appropriate
scale factor of σ from the data itself. From the residual
errors of fitting Eqn. 3, we compute the median absolute
deviation (MAD) and set σ = 1.48 MAD. This normalized
median absolute deviation is a robust statistical measure of
the variability of a univariate sample [12]. The estimated σ
is iteratively updated till convergence.

For the Lambertian assumption used, S ∈ R3 represents
the global lighting function. Despite the fact that the
Kinect depth map is not very accurate, we can accurately
recover S since it has only 3 unknowns and we have as
many observations as 640 × 480 depth map pixels. Thus,
unlike photometric setups that require accurate calibration
of the lighting sources, we are able to estimate the lighting
direction from the Kinect depth map itself.

2.3. Normal Estimation

Having obtained the light sources Sk, we can re-estimate
the normals using photometric constraints. Given 3 or more

lighting conditions, from Eqn. 2 we can linearly and inde-
pendently solve for the normals of all pixels. Using the
Huber loss function allows us to account for shadows (i.e.
Ikp = 0) and robustly estimate the normals as

min
Np

∑
k

ρ
(
Ikp − Sk ·Np

)
. (5)

3. Fusion of Depth and Normal Estimates
Once we have the normals estimated for individual pix-

els, we can fuse the depth and normal estimates to gener-
ate a 3D representation of the surface. In this section we
describe our fusion method that is adapted from those pre-
sented in [11, 16] but also crucially differs in certain key
attributes. Specifically, we choose appropriate weighting
schemes that carefully account for the relative reliabilities
of the depth and normal estimates used. Consider the 2D
depth map Z(x, y) which represents the depth of the sur-
face point that is imaged at pixel location (x, y). Therefore,
for focal length f we have the location of the 3D point as

P (x, y) =
[
−x
f
Z (x, y) − y

f
Z (x, y) Z (x, y)

]T
(6)

The cost function that we optimise in our fusion scheme
consists of three terms that capture different attributes that
we desire in our final reconstruction.
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Depth Information : For the observed depth Z and es-
timated depth Ẑ, the depth component of our cost function
Ed is given as

Ed

(
Ẑ
)
=
∑
p

wp‖µp‖2
(
Zp − Ẑp

)2
(7)

where for the p-th pixel, µp =
[
−x
f
− y
f

1
]T

and wp
is an adaptive weighting function. The weighting by the
norm ‖µp‖ penalises the net displacement in 3D for a given
change in Z. While existing fusion approaches [11, 16] use
a uniform weighting for all depth pixels, in our approach we
use an adaptive weight that reflects the expected reliability
of the depth map. Most depth map estimates, including that
of the Kinect, are less reliable at a depth discontinuity and
the depth information should correspondingly have a lower
influence. Since the normal estimates provided by Eqn. 5
are locally more reliable than the Kinect’s depth estimate,
we use this normal information to adaptively weight the
depth estimate. For every pixel p in the depth map, we
compute the normal tensor N =

∑
q∈S(p) NqNq

T where
S(q) is a patch centered on p. Following [10], we define
an edge saliency measure based on the eigen-values of N .
For eigen-values λ3 ≥ λ2 ≥ λ1, our edge saliency is given
as λ2−λ1

λ3
which is large for strong edges and small for flat

regions. In turn, we define our weighting function as i.e.
η = 1 − λ2−λ1

λ3
∈ [0, 1] . Accordingly we adaptively vary

the weighting functionwp = w0+(1−w0)ηp. We typically
set w0 = 0.9. Fig. 2(a) shows a representative weighting
function obtained using our edge saliency measure where
the depth information is given lower weightage at sharp
changes or discontinuities in depth.

Normal Information : For fusing normal information,
we need to account for the consistency of the estimated
depth with the observed normals given by solving Eqn. 5.
From Eqn. 6 we have surface tangents at 3D point P(x, y)
specified as

Tx =
∂P

∂x
=

[
− 1

f

(
Z + x

∂Z

∂x

)
− 1

f
y
∂Z

∂x

∂Z

∂x

]T
(8)

Ty =
∂P

∂y
=

[
− 1

f
x
∂Z

∂y
− 1

f

(
Z + y

∂Z

∂y

)
∂Z

∂y

]T
.

It will be observed that the tangents defined in Eqn. 8 are
linear in the depth Z. If for a given estimate of depth Ẑ, the
tangents are to be consistent with the normal information,
then ideally the projection of the tangents along the normal
direction have to be equal to zero. With this in mind we can
define a penalty term based on the normal information as

En

(
Ẑ
)
=
∑
p

(Np ·Tx)
2
+ (Np ·Ty)

2 (9)

(a) RGB Image of a T-shirt

(b) 3D Reconstruction

Figure 3. RGB image of a T-shirt draped on a chair and its 3D
reconstruction. In (a), we have cropped out the background in
the RGB image for easy visualisation. Our method is able to ac-
curately recover minute changes in depth such as the horizontal
stitch at the bottom of the T-shirt.

where the tangent vectors Tx and Ty are evaluated on
the estimated depth map Ẑ at pixel p. While our normal
penalty term is similar in spirit to that of [11] we use a
weighting scheme to adaptively improve the estimates for
the tangent vectors. In [16], the authors compute the depth
derivatives by adaptively weighting the forward and back-
ward difference. Their weights are dependent on the sim-
ilarity of pixel depths, see Eqn. 10 of [16]. In contrast
we choose to weight the forward and backward difference
terms of the derivative by a term that depends on the sim-
ilarity of the estimated normals of the pixels. Thus, while
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calculating derivatives for estimating tangents, for two ad-
jacent pixels p and q that are part of a difference function,
our weighting term is given as

w(p, q) = exp−
1

2σ2
(1−NT

pNq) (10)

It will be observed from Eqn. 10 that our weighting
function can adaptively refine the tangent estimates de-
pending on the local curvature of the surface. In Fig. 2(c)
and (d) we show a comparison of results obtained using
our normal based weighting function of Eqn. 10 and the
depth-based weighting function of [16] respectively. As
can be observed, our weighting function helps preserve fine
features to a greater extent than that of [16].

Laplacian Smoothness : In addition, we also use a
smoothness cost Es given by the discrete version of the
conventional Laplacian penalty∇2(Ẑ).

Combining the three penalty terms we can represent the
solution for fusion of depth and normal estimates as the
minimisation of the cost function

E
(
Ẑ
)
= Ed

(
Ẑ
)
+ λnEn

(
Ẑ
)
+ λsEs

(
Ẑ
)

(11)

We note that Eqn. 11 can be efficiently solved as a lin-
ear system of equations for the resultant depth map Z. The
reader may also note that since we optimize over the depth
map, unlike the methods of [9, 5], we do not need to explic-
itly enforce integrability of the normal map.

4. Results
In this section we present some results of using our

method for 3D surface reconstruction. In all cases we use a
single Kinect and a single bright light source that also has
an IR component. Since we robustly estimate the lighting
S we can freely place the light source without requiring
a calibrated setup. Throughout we first upsample the raw
Kinect depth map to match the IR image size of 1280×960
pixels and apply a bilateral smoothing filter to remove
noise and high frequency artifacts that are often present in
raw Kinect depth maps. Subsequently we further upsample
both the IR and depth map images by a factor of 2. Such
upsampling provides our reconstruction method with an
increased number of vertices. The extra vertices allow us to
accurately recover narrow 3D edges that might be as thin
as a single pixel in the original IR images. We also note
here that in our scenario, to acquire fine scale details, we
need to place the Kinect close to the object. This results in
the blurring of the Kinect’s projected pattern that is used
in depth estimation. To mitigate this problem, we reduce
the brightness of the projector by software and are able
to place the Kinect as close as 40 cm to the object being

reconstructed.

In Fig. 3 we show our reconstruction of a T-shirt draped
on a chair. This reconstruction is obtained by using 5 dif-
ferent lighting conditions to estimate the pixelwise normals
in Eqn. 5 which is used in the fusion step of minimizing
Eqn. 11. As can be seen we are able to accurately capture
the 3D shape of the T-shirt including a fine scale horizontal
stitch at the bottom. We further illustrate the ability of
our method in Fig. 4(a) that shows our reconstruction of
a complex clay figurine of the Hindu god Ganesh that is
about 40 cm in height. As the reconstructions shown in
Fig. 4(b) demonstrate, we are able to obtain an accurate 3D
reconstruction that preserves many of the fine scale details
and depth discontinuities.

5. Multiview Reconstruction
Although the results in Sec. 4 demonstrate that our

fusion method can accurately recover 3D information,
reconstructing surfaces from a single viewpoint is often
inadequate. The 3D objects we have chosen for our
experiments are challenging due to their shape complexity.
As a result, despite using the Kinect’s IR camera for
depth and normal estimation, the reconstructions from a
single viewpoint contain a large number of holes due to
shadow regions, self-occlusions etc. and are inadequate
for representing the full object. This is quite evident from
the reconstruction in Fig. 4(a) where the 3D details are
accurately preserved but many holes are also present.
Consequently, we need to reconstruct the object surface
from multiple viewpoints and then merge the individual
reconstructions to present a unified representation for the
object of study. It may be noted here that all the results
presented in [11, 16, 15, 5] are single viewpoint reconstruc-
tions applied to relatively simpler surfaces compared to the
objects used for our results.

The canonical geometric approach to merging individual
3D representations is the Iterative Closest Point (ICP)
algorithm [13]. However, we note that the reconstructions
from individual viewpoints obtained by optimizing Eqn. 11
are independent of each other. Therefore, while each
reconstruction estimates the 3D surface by fusing depth and
normal information, they do not enforce consistency across
the reconstructions. The result is that the individual recon-
structions are no longer rigidly related to each other. The
ICP algorithm assumes that the surfaces being registered
are rigidly related by a single 3D rotation and translation.
In Fig. 5 we show an example of the registration of two
reconstructions of a Buddha figurine which are represented
in two different colours. While the two surfaces are well
aligned in a global sense, the local surface non-rigidity
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(a) 3D Reconstruction (b) Detail of 3D Reconstruction

Figure 4. (a) shows our reconstruction of a clay figurine of the Hindu god Ganesh. (b) shows some of the details of this reconstruction.
Please note that these details are from different viewpoints and all do not corresponding to the reconstruction in (a).

of the two surfaces is evident from the patchiness of the
coloured regions. In this figure we have also indicated
a cross-section of the registered representations which
clearly shows the non-rigid deformations. An important
consequence of the non-rigid nature of our reconstructions
is that a straightforward geometric registration of individual
reconstructions is inadequate. Instead, we require an
approach to unify the information across the individual re-
constructions to generate a single 3D object representation.

Although the use of multiview photometric stereo is
limited in the literature, there do exist some significant
methods that utilise all photometric constraints available
to solve for a unified object representation [6, 1]. In
our case, since we can accurately estimate the surface
normals in each individual reconstruction we choose to
use them directly instead of indirectly fitting all available
photometric constraints. In our experiments, we took
multiple views of the objects, each with 5 different lighting
conditions. To generate a unified 3D representation for
the object, we first carry out individual reconstructions
and create meshes from each of the individual viewpoints.
These individual reconstructions are subsequently aligned
by using a robust version of the point-to-plane distance
based Iterative Closest Point (ICP) [13] algorithm. From
these registered meshes, we build a single representation
using the volumetric merging algorithm (VCG) of [2]
that provides an intermediate reconstruction. Although

the merged model is a complete representation, since the
individual reconstructions are inherently non-rigid and the
ICP routine may introduce registration inaccuracies we
need to refine this reconstruction to develop a unified and
consistent estimate of the 3D surface. This refinement can
be achieved by recovering the normal information from the
individual reconstructions as the normals are an accurate
representation of the local nature of the surface.

For every vertex in the mesh generated by VCG, we
shoot rays back into the individual IR camera planes
and recover the corresponding normals estimated using
Eqn. 5. It will be noted that since we have a unified
representation, each vertex will recover normals from only
those individual views that are imaging the said vertex.
Since the VCG representation is an intermediate one that
averages the individual non-rigid representations, averag-
ing these normals will result in the loss of detail. Instead,
to be able to preserve detail, we select only one of the
available normals using a priority ordering of the individual
reconstructions. In our scheme, we prefer normals from
the frontal scan over those with a larger viewing angle with
respect to the frontal scan. Thus, for each vertex, whenever
it is available, we pick a corresponding normal from the
frontal scan and select normals from other scans only when
necessary. Such a priority ordering ensures that except
at viewpoint transition boundaries, neighbouring vertices
on the mesh will have normals obtained from the same
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Figure 5. Individual reconstructions are non-rigidly related to each
other. The two registered reconstructions are shown in different
colours. A zoomed-in cross-section also illustrates the non-rigid
deformations present. Please view this figure in colour.

individual reconstruction. Now we have both a depth value
and normal associated with each mesh vertex which are
fused using the mesh-based method of [11]. This results in
a single unified and consistent 3D reconstruction.

We show the results of our full multiview reconstruction
method on two complex clay figurines of Ganesh and the
Buddha in Fig. 6. As can be seen, our approach provides an
accurate and complete photometric reconstruction of com-
plex objects using an IR-based depth camera for both depth
and normal estimation.

6. Conclusions

In this paper we have presented an approach to combine
depth and normal estimates. Apart from introducing a novel
technique that utilises a depth camera system for both depth
and radiometric measurements, we estimate lighting direc-
tion as well as develop adaptive weighting mechanisms that
carefully balance the relative reliability of depth and normal
estimates. To estimate the 3D representation of complex
objects we develop a multiview reconstruction method that
solves for a complete, consistent and accurate representa-
tion of complex objects.
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(a) Different views of our reconstruction of the Ganesh figurine

(b) Different views of our reconstruction of the Buddha figurine

Figure 6. Unified multiview photometric reconstructions of (a) Ganesh and (b) Buddha both of which are about 40 cm in height.
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