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Abstract

A scene category imposes tight distributions over the
kind of objects that might appear in the scene, the appear-
ance of those objects and their layout. In this paper, we
propose a method to learn scene structures that can encode
three main interlacing components of a scene: the scene
category, the context-specific appearance of objects, and
their layout. Our experimental evaluations show that our
learned scene structures outperform state-of-the-art method
of Deformable Part Models in detecting objects in a scene.
Our scene structure provides a level of scene understanding
that is amenable to deep visual inferences. The scene struc-
tures can also generate features that can later be used for
scene categorization. Using these features, we also show
promising results on scene categorization.

1. Introduction
What is behind the black box in Figure 1? What are the

cues that enables human vision to make an intelligent guess
about the object behind the box? How can human vision
go beyond category prediction and reason about details of
pose, style, and material? Such predictions require complex
reasoning about several interlacing components that define
a scene. The fact that this picture shows a dinning room
scene suggests the existence of dinning chairs, dinning ta-
ble, walls, and windows. By considering the layout of the
room and relative locations of the table, walls, windows and
other chairs we expect to see a chair behind the black box.
But do we expect to see an office chair? How about a rock-
ing chair? By knowing the layout and the scene category
we can also make strong predictions about fine-grained cat-
egories in the scene. Is the chair behind the box facing the
camera? Or we expect to see a lateral view of the chair?
The layout of the scene, along with the appearance of other
parts in the scene suggests that the chair should be at the
3/4 view, facing away from the camera and to the table.

We argue that the scene type imposes a tight distribu-
tion over the categories of objects in the scene, their layout,
and also their context-specific appearance. For example,
in an office scene we expect to see a desk, an office chair,
and a monitor. The desk should probably be located against

∗The authors contributed equally to this work.

Figure 1. What is behind the black box? Human observer can
make predictions about the category of the object behind the box,
its orientation, pose, material and style. By joint reasoning over
scene categories, objects, their type, layout and context-specific
appearances our method can make correct predictions about what
is hidden behind the black box. Four image patches at the bottom
are the ones selected by our method based on how well they can
fill in the black box.

the wall, the monitor should be on the desk, and the chair
should face the desk. The appearance of the chair is affected
by its pose (side views of chairs look different from their
front views), type (office chairs typically have one central
leg whereas dinning room chairs have four wooden legs),
and possible predictable occlusions that one should expect
in an office (in an office, chairs are occluded by desks or
other office chairs in predictable patterns).

In this paper, we propose joint learning of scene cate-
gories, the context-specific layout of the prominent objects
in the scene, and their context-specific appearance. To this
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end, we need to know the underlying structure of object lay-
outs. This structure can be discovered by exploiting spa-
tially consistent relations among objects with similar ap-
pearance.

We cast the problem of joint learning of the scene cat-
egory, the object layout and their appearance models as a
structure learning problem where both the topology of the
structure and its parameters are to be learned. The struc-
ture corresponds to the spatial relationships between ob-
jects; For example, monitors tend to appear on the desks.
The layout corresponds to the locations and scales of ob-
jects in a scene. Learning the structure of the layout re-
quires optimizing challenging objective functions that aim
at incorporating the layout topology, the layout parameters,
and the appearance of objects all together. In this paper we
propose approximate solutions to this challenging problem.

Our experimental evaluations show that joint learning
of scene categories, object categories, their context-specific
layouts and appearance models improves not only object
detection but also scene classification. Our method outper-
forms state-of-the-art Deformable Part Models (DPM [3])
as well as context based object detection [1] and provides a
level of scene understanding that allows deeper inferences
about scenes such as those necessary to do Black Box Test
(BBT). Also, our method outperforms a strong baseline that
observes the content of the image behind the box in BBT.

2. Related Work
Our work is related to the efforts done in scene recog-

nition. Space does not allow a comprehensive review of
the literature. Here, we briefly mention few related work.
Scene recognition has long been regarded as a global classi-
fication task and several methods have utilized holistic fea-
tures for scene categorization [21, 7, 12, 5, 23]. However,
as shown in [14], holistic image features fail to provide de-
tailed scene information that is amenable for discrimination
between large number of scenes with various configuration
of similar objects. Large scale indoor scene classification is
an example of such a task. [14] proposed training a clas-
sifier using global features combined with local features
captured from manually segmented salient regions of the
scenes. Following this approach, [13, 17, 15] explore the
problem of scene recognition through automatically discov-
ering discriminative scene parts using various techniques.
Pandy and Lazebnik [13], utilized Deformable Part Models
(DPM) object detector [3] to automatically find the salient
scene regions. Sadeghi and Tappen [15] represent a scene
via discriminatively discovered scene parts called Latent
Pyramidal Regions (LPR). [17] and [2] learn scene parts
in a jointly unsupervised/weakly-supervised manner. All
these recent approaches [13, 15, 17] seek the use of parts
as an intermediate representation of scenes but do not pro-
vide any semantics for the discovered parts. [19] presents an
exemplar-based approach to image parsing. In an earlier ef-
fort, Xiao et. al. proposed the extensive Scene UNderstand-

ing (SUN) dataset with 899 scene categories [22]. In [22] a
subset of well-sampled categories (397 categories) of SUN
are used to evaluate the state-of-the-art holistic features in
scene recognition. To the best of our knowledge, non of the
recent scene classification algorithms has considered SUN
dataset for evaluation. This is mainly due to the large num-
ber of categories and images in this challenging dataset.

On the other side of the spectrum, an object-centric ap-
proach represent an image as a pool of pre-trained object
detectors (called Object Bank [8]). Scene recognition is per-
formed by learning a scene category classifier using the ob-
ject score-map as new features [8]. The main limitation of
this approach is that the object detectors fail to provide ac-
curate object localization because object models are learned
independent from each other and the scene information. In
addition, several scene components (e.g. sky, grass, wall,
road) can hardly be modeled with object templates while
they can be efficiently recognized if the context model is
taken into account. In our method we show that learning
the scene structure and the layout of prominent scene ob-
jects (semantic scene parts) can boost the performance of
both scene recognition and object localization.

For improving object detection, [1] proposes an exten-
sion of non-maximum suppression that uses contextual in-
formation in the form of a single cooccurrences relation
tree. [1] takes independently trained detector responses as
input and smartly prunes out contextually irrelevant ones
which results in improveing precision but not recall. How-
ever, we have scene specific trees that takes into account
the scene specific appearances of objects (chairs in offices
look different from chairs in family rooms) and their spa-
tial/contextual relationships in a single framework. Also,
we jointly train our detectors and contextual model and im-
prove both object detection and scene recognition.

3. Our Approach
Learning the underlying structure of the layout entails

reasoning about the appearance of the scene, the context-
specific appearance and layout of prominent objects in the
scene, and the topology of objects layouts. We cast this joint
learning problem as learning the underlying layout structure
and the structure parameters.

To setup the notations, assume that X = {x1, ..., xn} is
the set of training images that belong to one of the scene
categories C = {c1, ..., cm}. Each image xi might depict
a set of objects Oi = {o1i , ..., o

qi
i } where qi corresponds to

the number of objects in the ith image. Each training image
has a ground truth layout Hi that indicates the location of
bounding boxes of each object Hi = {hi,1, hi,2, ..., hi,qi},
hi,1 corresponds to the location and scale of the first ob-
ject in the ith image. Each scene category c imposes a la-
tent structure (topology) Gc over the layout. A scene struc-
ture S for the scene c correspond to the layout of objects,
their relative locations, and their appearance models Sc =
{Wa

c ,Wd
c ,Gc} whereWa

c = {W a
c,1,W

a
c,2, ...,W

a
c,pc} is the
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set of pc appearance models for the objects in the cth scene,
andWd

c corresponds to the set of weight vectors that encode
relative locations of objectsWd

c = {W d
c,j,k|j, k = 1 : pc}.

The function D measures how well a scene structure Sc is
aligned with an observation xi:

D(xi,Hi,Wa
c ,Wd

c ,Gc) = (1)
pc∑
j=1

(W a
c,jφ(xi,Hi,Gc) +

pc∑
k=1

W d
c,j,kψ(Hi,j ,Hi,k,Gc))

where φ encodes unary appearance features (in our case
vectorized HOG features) and ψ corresponds to binary de-
formation features ( in our case quadratic distance transform
function [3]). Discovering scene structures for a scene cat-
egory c can be formulated as a structure discovery problem:

min
Gc,Wa

c ,Wd
c ,H,ξ

pc∑
j=1

‖W a
c,j‖22 +

pc∑
j,k=1

‖W d
c,j,k‖22 + λ1

n∑
i=1

ξi + λ2‖Gc‖•

D(xi,Hi,Wa
c ,Wd

c ,Gc) ≥
max
H∗
D(xi,H∗i ,Wa

c ,Wd
c ,Gc) + ∆(Hi,H∗i )− ξi ∀i

ξi ≥ 0 ∀i (2)

where ‖G‖• is a form of complexity regularizer over the
topology of the structure, and ∆ is a form of structured loss.

Joint optimization over the topology of the structure and
the parameter of the structure, the appearance and deforma-
tion models of objects, is extremely challenging. This is
an optimization over highly interleaving parameters G and
H. In fact, this is an NP-Hard problem. To approximate
this hard optimization we decouple the optimization over
G from the rest of the parameters. If G is known, we can
rewrite the optimization 2 as a form of margin based struc-
ture learning problem. Fixing G and putting Wa and Wd

together intoW results in:

min
W,H,ξ

‖W‖22 + λ1

n∑
i=1

ξi

D(xi,Hi,W) ≥ max
H∗
D(xi,H∗i ,W) + ∆(Hi,H∗i )− ξi

ξi ≥ 0 ∀i. (3)

We use hamming loss for the structured loss ∆ and solve
this optimization problem by cutting plane method [18, 24].

Optimizing for G is a challenging problem and requires
approximation. Learning for G entails reasoning about
which objects will make it to the final layout and what is the
topology of the graph connecting these prominent objects.
To approximate this, we make use of domain knowledge.
Distribution of objects in scenes is known to follow Zipf’s
law [22]. Meaning that there are large number of objects
which occur very rarely in each scene and have small cor-
relation with other objects in the scene. At the same time, a

limited subset of objects exposes strong correlation across
instances of a scene category. This suggests pruning scene-
specific objects that are rare and relations (edges) that are
spatially inconsistent. To this end, we form a Scene-Object
graph SOGc = (Vc, Ec) whose nodes correspond to ob-
jects that appeared in scene c. The edges Ec correspond
to spatial consistency of two objects with respect to each
other across samples of scene c. Starting from a full graph
SOGc, discovering G can be formulated as selecting a set of
nodes and edges that maximizes the prominence of objects
and spatial consistency of their relations. Since the discov-
ered structure will be used for further inferences, a crucial
constraint would be to avoid loops in the resultant structure.
More formally, the discovered G∗ can be represented as the
optimized set of nodes V ∗ and edges E∗ such that:

max
σe,σv

∑
v∈V

σvΩ(v) +
∑
e∈E

σeΓ(e)

Subject to∑
v∈V

σv ≤ pc∑
e∈E(N )

σe ≤ |N | − 1, ∀N ⊂ V,N 6= ∅

σe ∈ {0, 1}, σv ∈ {0, 1} (4)

where σe and σv are binary indicator variables that indi-
cate which nodes and edges will make it to the final scene
structure, Ω(v) is proportional to the prominence of each
object in a scene, and Γ(e) is proportional to the spatial con-
sistency between two objects in a scene and pc is the total
number of objects in scene c. The second constraint avoids
loop in the final structure. This optimization can be reduced
to a form of weighted maximum spanning tree problem. We
initialize the tree with the vertex with maximum Ω(v) and
grow the tree by adding one edge at a time which brings the
maximum gain to the equation 4. We stop this process un-
til there is no edge that increases the total gain more than a
certain threshold. In our experiments the prominence func-
tion Ω(v) corresponds to the frequency of object v in the
instances of scene c. The spatial consistency Γ(e) is set to
1
σ where σ is the variance of the Gaussian distribution for
the relative spatial location of each pair of objects.

Our learned scene structures include a set of context-
specific appearance filters for prominent objects in a scene
category and their corresponding deformation models. To
be more expressive, we use mixture models for the appear-
ance and deformations for prominent objects. This allows
our model to capture context-specific variations within a
scene category. Our model encodes the relationships be-
tween the layout of the objects and their appearance. For
example, the pose of a chair affects the appearance model
of the nearby desk.

Inference involves computing equation 1 for all possi-
ble scene structures and picking the highest scoring one for
each image. More specifically, we first find the part convo-
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lution scores for all mixtures and take the maximum among
mixtures for computing part score in every location of the
image. Then distance transform is used to efficiently pass
messages from child nodes to their parents. The maximum
collected score in the root node is considered as the best
scene structure. In the message passing, we save the loca-
tion of maximum score for each node and use them as the
detection of all scene parts for the best inferred structure.

This provides not only the scene category labels but also
the layout of prominent objects and their spatial relation-
ships. The scene structures provide a level of understanding
for scenes that is much richer than just scene category la-
bels. Our experimental evaluations show that our model can
localize objects in a scene significantly more accurate than
state-of-the-art object detectors that trained independently.

4. Experiments
We train our scene structures using the SUN dataset that

includes 397 scene categories. We use 390 categories which
contained enough annotated images. We experimentally
evaluate the benefits of using the discovered scene struc-
tures in object detection, the Black Box Test and also scene
recognition.

4.1. Object Detection
At inference, the maximum scoring scene structure con-

tains information about objects, their appearance and also
layout. Layout contains bounding box information about
prominent objects in a scene.

To better encode the appearance and deformations of
stuff we consider a three part model for each stuff. This
allows our model to detect stuff more reliably by leverag-
ing the structured boundaries of stuff with other prominent
objects in the scene. For example, for the abbey scene, our
model can reliably localize sky be leveraging the fact that
the boundaries of sky with the abbey structure produces a
very context-specific pattern (Fig. 2). Fig. 3 also includes
interesting detection results for stuff and also objects.

We compare the performance of object detection using
our scene structure versus that of Deformable part models
trained in Object Bank (OB) [8]. We use 7249 annotated
images in SUN database from all 390 scene categories. For
evaluation, in each image we only consider the labeled ob-
jects for which there is a node in our method and also an
object detector trained in OB. The precision of object lo-
calization is measured by computing the intersection over
union of object localization mask Bl and ground truth poly-
gon Pgt (i.e. Bl∩Pgt

Bl∪Pgt
).

For DPM models in OB, we apply models on each im-
age and compute the score map in different levels of feature
pyramid. Then the score of each level is propagated in a
window with the same size as that of HOG filter as object
mask. The score of all levels is pooled over each pixel us-
ing max pooling. Similar to standard object detection crite-
ria we threshold the object score map with different thresh-

olds and compute the object localization precision for each
threshold. The threshold with the best precision is used for
comparison with our method in Fig. 4.

As shown in Fig. 4 the scene layout information encoded
in our scene structures help object detection. In fact, our
method outperforms DPM by large margins. Our mean Av-
erage Precision is 24.10 compared to 19.13 of DPM. Ex-
amples of detected objects along with their best scoring
scene structures that produces those detections are shown in
Fig. 3. It is interesting to see that some of the occluded ob-
jects have been correctly detected using our method. Scenes
in our experiments vary from indoor to outdoor, from scenes
with more dominant layout such as ”Street” to scenes with
very complex layout like ”Dorm room”. Our method can
also localize stuff such as sky, grass, road, etc. See Fig. 3
for examples. We have also compared our method with the
context modeling approach of [1] using their publicly avail-
able context tree model for object detection on SUN dataset.
The average precision of [1] is 22.22% compared to 24.10%
of our method.

4.2. The Black Box Test
Our scene structures provide a level of scene understand-

ing that enables deep inferences such as the one used in
Black Box Test. This test is inspired by Antonio Torralba’s
Context challenge [20] and has also been studied in [9]. To
be successful in BBT one needs to understand the scene cat-
egory, and the context-specific layout and appearance mod-
els. For example, in Fig. 1, our model understands that be-
cause of the location of the wall and the table the expected
chair should be in 3/4 view. To test the performance of our
model in BBT, we randomly select 120 images and black
out examples of stoves, chairs, windows, beds, sofas, and
cars in these images. We then use these blacked out images
to find the highest scoring scene structures. To avoid arti-
facts due to the black box, we cancel out the effects (both
appearance and deformation) of nodes that have any overlap
with the black box. The best scoring scene structure con-
tains information about the layout of the scene. This struc-
ture also encodes information about the missing part. For
example, if there is a wall in a specific location and there is
desk at the wall, there should be a chair with a specific pose
at the desk. We use the part filters in the best scoring struc-
ture that has enough overlap with the black box to retrieve
image patches. Fig. 1 and 6 show samples of image patches
suggested by our method. Note that, our method not only
finds the object of the right category but also its right pose.

To evaluate the quality of suggested patches by our
method, we compare it against a baseline that can see what
is behind the box. We also use the information about what
objects we expect to see. This optimistic baseline uses the
HOG2x2 descriptors of the whole image (including the ob-
ject behind the box) to retrieve images of similar appear-
ance. We then use the corresponding DPM model to obtain
the best scoring patches among the retrieved images with
similar appearance.
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Abbey Bedroom Conference room Dining room Kitchen

Figure 2. The visualization of the model for five scenes. Each scene is shown in different column. Row 1: the average of training images
which shows if we use one filter for the entire image the model would be vague. Row 2: the average of image patches after finding best
scene layout in each training image. The constellation of scene parts shows the discriminative shapes in each scene such as bed in bedroom
and table in Dining room. Row 3: the semantic object label for each scene part and their learned layout as a tree. Row 4: visualization of
the appearance models learned for each scene. Note that both the appearance models and their learned locations are context-specific.

To compare the quality of the patches retrieved by our
method to that of the baseline we perform a human subject
forced choice task where subjects were asked to choose be-
tween the patches produced by our method and those of the
baseline. For each image, we gather between 3 to 4 anno-
tations. On average, the annotators preferred our patches
to those of the baseline on 74.74% of cases. Fig. 5 shows
the results of the human subject test on BBT for different
categories of objects. For objects such as Stove and win-
dow that appear in more structured scenes like kitchen and
rooms our method shows larger gain compared to objects
like cars in less structured scenes such as streets. Fig. 6
shows qualitative results of the BBT.

4.3. Scene Category Recognition

We also exploit the scene structures to generate features
that can later be used for scene recognition. To this end, we
run all of our scene structure models on all test images and
pick the k best scoring structures per scene category. We
then record the structure scores of the k best structures as
features and append the convolution scores of the objects in
the best structures, and their normalized locations. We also
include relative locations of objects using the parents in the

stove chair window bed sofa car
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Figure 5. Human subject experiments for the Black Box Test: In
our forced choice human subject task, annotators prefered our
method on 75% of the cases compared to a baseline that can ac-
tually see what is behind the box. For objects like Stove and Bed
which appear in more structured scenes our method produces bet-
ter results compared to objects like cars that tend to appear in less
structured scenes.

best scoring structures. Then, for each scene category, we
train an SVM with HI kernel using this feature vector.

To evaluate the performance of the structures in scene
categorization, we use SUN as well as the MIT indoor-
67 dataset as test beds. In both these datasets we report
the average per class accuracy obtained by our method and
compare it with other state-of-the-art methods. We use half
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Figure 3. Sample of best scoring scene structures that lead to accurate object detection in several challenging cases. In this image we
show four different categories: Street, Office, Kitchen and Dorm room. Each row shows samples of one scene category. Discovered scene
structures are superimposed into each image and objects are color-coded according to the legend on the right most column. Our model can
detect the objects accurately even in very different layouts of a scene. Stuffs such as buildings and walls are also detected precisely using
our flexible mixture of parts. The edges between objects correspond to the layout discovered by our method. For example, our method
discovered that chairs are typically at desks and desks are typically located by the wall or windows in office scenes.
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Figure 4. Average precision of object localization using our scene structures (ours) compared to Deformable Part Models. This plot shows
the gain over DPM. Positive values corresponds to the case where our method outperforms DPM and negative values correspond to cases
where DPM works better than our method. Our method outperforms DPM by significant margin. The biggest gain corresponds to objects
or stuffs that are hard to detect but can be detected with the help of contextual information encoded in our scene structure. The green bars
correspond to stuffs and blue bars to objects. For very small objects like bottle or objects that typically appear in less structured scenes like
airplanes DPM performs better. For most of the stuff our method outperforms DPM.

of the annotated images in each SUN category for learning
scene structures. For categorization task on SUN, we ran-
domly choose 100 (50 test, 50 train) images from the unan-
notated portion of each category which is not used in the
training set of our structure learning. For the MIT indoor-67
we use the standard train/test split which is available in [14].
In scene recognition task on MIT indoor-67 dataset we use

the scene structures trained on SUN. It is not possible to
train our scene structures for MIT indoor 67 because object-
level annotations are not available.

Tables 1 and 2 compare our results with the state-of-the-
art methods in scene recognition. Following [22, 13, 17] we
also combine our result with other state-of-the-art holistic
features to encode global scene appearance information. We

6



bed sofa window stove

o
u
rs

b
a
se
lin
e

Figure 6. Black Box Test: What is behind the black box? Our scene structures provide a level of scene understanding that allows deep
inferences such as the one necessary to complete the back box test. Our method not only predicts what is behind the box but it also provides
interesting detailed information about object poses.

use Locally-constrained Linear Coding(LLC) [21], Self-
Similarity (SSIM) [16], Local Binary Patterns (LBP) [11]
and Texton [10] features. We observe that combining
our feature vectors with other global features boosts our
recognition performance in both MIT indoor-67 and SUN
database. Our scene structures provide information orthog-
onal to the state-of-the-art holistic features.

According to the results of Table 1 scene structures pro-
duce promising results in scene categorization (accuracy of
45.91%). When combined with other state-of-the-art holis-
tic features, the accuracy boosts to 52.41% .Note that our
scene structures are trained on SUN dataset and tested on
MIT indoor-67 dataset whereas other methods have trained
their models on the MIT indoor-67 dataset.

Table 2 compares our scene recognition results with
state-of-the-art models on SUN database. We have provided
the recognition accuracy of the state-of-the-art holistic fea-
tures using our test and train splits. The best single-feature
scene classification accuracy is 27.2% which is obtained by
HOG2x2 [22]. As reported in [22], the recognition accu-
racy can be boosted up to 38% by combining 15 different
feature types. According to Table 2, our method obtain an
accuracy of 28.45% in SUN. After combining our method
with four holistic features ( LLC, SSIM, Texton and LBP)
we have reached the accuracy of 35.95% which is on par
with the combination of 15 features. Note that [6, 2] are
using very high dimensional features to produce state-of-
the-art results.

5. Discussion
We introduced a model that can link up the scene cate-

gories, the context-specific layout and appearance models
for prominent objects and stuff in a scene. Our experimen-
tal evaluations show that the learned scene structures are
capable of localizing objects significantly better that state

Figure 7. Scene recognition and object detection accuracy spec-
trum. Our method can recognize the scene label and detect objects
simultaneously. For other methods since they do not have object
detection step, we use object detectors of Object bank for their
object detection step.

of the art detectors. We also show that our scene structure
enables the level of scene understanding that is amenable
to deep inferences such as those required in BBT. We com-
pared our method with a baseline that sees what is behind
the black box and show significant improvement in a forced
choice human subject task. We also show promising results
in scene recognition.

Our scene structures enables both scene categorization
and object localization. To better understand the space of
scene understanding methods in terms of both object local-
ization and scene categorization we propose to consider a
joint evaluation. Fig. 7 compares the performance of our
method in the scene recognition and scene-object local-
ization tasks with other state-of-the-art scene recognition
methods. In this graph, the x-axis shows the scene recogni-
tion accuracy whereas the y-axis represents the scene-object
localization precision. This can be measured as multipli-
cation of scene recognition performance and scene-object
localization. Most conventional scene recognition methods
focus on the categorization and do not provide object-level
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Method Accuracy Method Accuracy
LBP 18.12 GIST-color+SP+DPM [13] 43.1
HOG [13] 22.8 LPR [15] 44.84
ROI-GIST [14] 26.5 Ours 45.91
GIST-color [13] 29.7 Ours+LBP 47.64
DPM [13] 30.4 Ours+Texton 49.36
SSIM 33.45 Ours+LLC 49.38
Spatial Pyramid (SP)[7] 34.4 MLD Patches+GIST+SP+DPM [17] 49.4
Texton 35.98 Ours+SSIM 49.62
Object bank [8] 37.6 Ours+LLC+SSIM+Texton+LBP 52.41
LLC 37.53 BoP+IFV [6] 63.10
MLD Patches [17] 38.1 Midlevel elements+IFV [2] 66.87

Table 1. Scene categorization results on MIT indoor: The average per-class accuracy results on MIT indoor-67 dataset.

Method Accuracy Method Accuracy
LBP 6.84 Ours 28.45
SSIM 21.06 Comb 15 features [22] 38
Texton 22.04 Ours+LBP 28.59
Object bank [8] 22.93 Ours+Texton 31.57
LLC 26.23 Ours+SSIM 31.58
RH [4] 26.9 Ours+LLC 33.45
HoG2x2 [22] 27.2 Ours+LLC+SSIM+Texton+LBP 35.95

Table 2. Scene categorization results on SUN: The average per-class accuracy results on SUN database.

information. To make a fair comparison, we use the avail-
able pre-trained detectors of OB [8] as the object detection
step for state-of-the-art methods. We assume that for other
methods we first run the scene recognition for each image
and then use scene label for applying the corresponding ob-
ject detectors on that image. As shown in Fig. 7, our method
outperforms other state-of-the-art methods in terms of both
scene recognition accuracy and object detection precision.
In this plot an ideal method would be located on the top
right corner. Our method takes advantage of the scene lay-
out to improve the object localization and uses the object
localization to improve scene recognition.
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