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Abstract

Graph-based methods are a useful class of meth-
ods for improving the performance of unsupervised and
semi-supervised machine learning tasks, such as clus-
tering or information retrieval. However, the perfor-
mance of existing graph-based methods is highly depen-
dent on how well the affinity graph reflects the original
data structure. We propose that multimedia such as
images or videos consist of multiple separate compo-
nents, and therefore more than one graph is required
to fully capture the relationship between them. Accord-
ingly, we present a new spectral method – the Feature
Grouped Spectral Multigraph (FGSM) – which com-
prises the following steps. First, mutually indepen-
dent subsets of the original feature space are gener-
ated through feature clustering. Secondly, a separate
graph is generated from each feature subset. Finally,
a spectral embedding is calculated on each graph, and
the embeddings are scaled/aggregated into a single rep-
resentation. Using this representation, a variety of
experiments are performed on three learning tasks –
clustering, retrieval and recognition – on human ac-
tion datasets, demonstrating considerably better perfor-
mance than the state-of-the-art.

1. Introduction

Graph-based algorithms are a powerful way of ex-
ploiting the underlying structure of a dataset to im-
prove the performance of unsupervised and semi-
supervised tasks. To illustrate this, we can consider
three of the most successful graph-based methods:
spectral clustering [8], which can be used to find un-
usually structured clusters; manifold ranking, which
has been applied to information retrieval tasks with
great success [3]; and Laplacian Eigenmaps (LE) [1],
which are applied to dimensionality reduction. In

general, by using graph-based methods, it is possible
to uncover the latent structure of a high-dimensional
dataset, thereby improving the accuracy of unsuper-
vised and semi-supervised learning tasks.

The first step of these graph-based methods is to
generate an affinity matrix, W , which represents the
affinity between every pair of points in dataset X. For
bag-of-features (BoF) histograms (which are the focus
of this paper), it is possible to use a heat kernel applied
to the χ2 distance between every pair of points xi, xj ∈
X:

Wij = exp

(
−χ

2(xi, xj)

σ2

)
(1)

Alternatively, the histogram intersection could be
used. After W is generated, various further operations
are performed on W to get the final result. In certain
methods, such as LE [1], W is made sparse using kNN
or ε neighbourhoods, but in others it is fully connected.

Nonetheless, all graph-based methods for represen-
tation share the same flaw: when W is generated from
X, there is significant information loss from the origi-
nal feature space – only a single affinity value is gen-
erated for every pair of points. The information loss
is particularly severe for small datasets (each row of
W is therefore low-dimensional) or when the dataset’s
original feature space has a high dimensionality.

On high-dimensional data such as histograms, a sin-
gle graph, generated using a single affinity metric, is
not often sufficient to capture the full structure present
in the original feature space. When representing realis-
tic images or videos, there may be multiple statistically
independent components within the histogram – then,
a single graph would not be able to distinguish between
these components. Instead, we suggest that multiple
graphs should be constructed, each corresponding to a
different component of the original images or videos.

In this paper, we present a novel method that gen-
erates multiple graphs from independent subsets of the

1



feature space. First, multiple graphs are found by par-
titioning the feature space into several mutually inde-
pendent subspaces, then generating a different affin-
ity matrix from each subspace. Then, a spectral em-
bedding method is performed on each subspace. Fi-
nally, the embeddings are scaled and concatenated to-
gether, resulting in a single representation for each dat-
apoint. This representation is referred to as the Fea-
ture Grouped Spectral Multigraph (FGSM). We ex-
pect FGSM to result in minimal information loss from
the original feature space compared to ordinary spec-
tral embedding methods. Through experimentation on
several human action datasets, we demonstrate that
FGSM gives superior results compared to the state-of-
the-art algorithms for clustering, retrieval and recogni-
tion tasks.

The rest of this paper is structured as follows. Sec-
tion 2 describes the theory and implementation details
of the Feature Grouped Spectral Multigraph. Section 3
details our various experiments on clustering, retrieval,
and recognition, and Section 4 concludes with a discus-
sion of our findings.

2. Multigraph Representation

The analysis of human actions can come far in the
past decade. While initial attempts to perform human
action recognition have relied on global features such
as silhouettes and HMM modeling, such methods have
proven to be unreliable on the recent “realistic” human
action datasets such as the ubiquitous Hollywood-2 [7].
Instead, most of the best performing works have fo-
cused on extracting local features, such as in Wang et
al. [15] and Yang et al. [19], then constructing BoF
histograms from these features.

When applying FGSM to a dataset, the original fea-
ture space of the dataset should have two properties:
1) the feature space must be high dimensional, and
2) the feature set must be divisible into several disjoint
subsets with high independence between all the subsets
and high dependence within the subsets. We propose
that these properties apply to the histogram represen-
tation of videos due to the locality of the features –
each histogram bin is primarily associated with a dif-
ferent component of the original video. This concept is
illustrated in Figure 1.

In ordinary graph-based learning methods, much of
the information from the original feature space will be
lost in the creation of the affinity graph. FGSM, how-
ever, overcomes this issue by finding multiple indepen-
dent views (subspaces) of the original representation
and generating a separate affinity graph for each view.

The full algorithm for FGSM is shown in Algorithm

11.1

Algorithm 1: FGSM – Multigraph Representa-
tion

Data:
X - a histogram representation of a dataset
m - the number of feature subspaces to find
k - the number of eigenvectors per feature
subspace
Result: Y - a multigraph representation of the

dataset
1 Calculate HSIC affinity matrix between pairs of

columns of X, where Wjk = tr((LT
j Lk)(LT

k Lj))

(Eqn 3)
2 Spectrally cluster W according to Ng et al. [8] to

find m feature clusters: C1..Cm

3 Define functions P1..Pm to project X into feature
subspaces according to C1..Cm

4 for i← 1 to m do
5 Calculate T ← Pi(X)
6 Calculate Wjk ← sum(min(Tj , Tk))

7 Calculate S ← D−1/2LD−1/2, where
L← D −W and D is a diagonal matrix with
Dll equal to the sum of the lth row of W

8 Find first k eigenvectors e1..ek of S,
concatenate them columnwise: Ei ← [e1..ek]

9 Normalise rows of Ei to sum to 1
10 Find λi as the mean distance between rows in

Mi: λi ← σ(dists(Ei))

11 Concatenate scaled E1..Em columnwise to get Y :

Y ← [(λ−11 E1)..(λ−1m Em)]

2.1. Feature Grouping

The first step is to extract several mutually indepen-
dent subspaces from the original feature space. This
can be achieved by spectrally clustering features on an
affinity graph of Hilbert-Schmidt Independence Crite-
rion (HSIC) values, calculated between every pair of
features.

HSIC captures all non-linear dependencies between
two random variables x and y, as described in Gretton
et al. [2], so long as the associated reproducing kernel
Hilbert spaces are universal. It is more suitable for our
purposes than other independence measures, such as
the correlation co-efficient, which only capture linear
dependencies. To demonstrate that it is a true inde-
pendence measure, Gretton et al. show it equals zero if
and only if x and y are independent. For our purposes,

1The MATLAB code for FGSM can be found at
http://www.simonjonesdev.co.uk.
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Figure 1: Certain BoF histogram bins may be associated more with one component of the video than any other.
In this simplified 6-bin example, bins 1 and 2 are strongly associated with the upper body, bins 3 and 4 are
strongly associated with the background, and bins 5 and 6 are strongly associated with the lower body. The high
separability of the three components would make this histogram ideal for FGSM.

it can be empirically estimated from a finite number of
(xi, yi) tuples by the following:

ρh(x, y) =
1

(1− n)2
tr(HKxHKy) (2)

where Hij = δij −n−1, Kx and Ky are the outer prod-
ucts of vectors x and y respectively, and n is the num-
ber of samples. Calculating Kx and Ky, however, takes
O(n2) time and space, which is highly expensive for
larger datasets, so incomplete Cholesky decomposition
is used to find Lx and Ly, such that Kx and Ky can
be approximated as K ′x = LxL

T
x and K ′y = LyL

T
y . The

approximate HSIC can then be calculated using the
following:

ρh(x, y) = tr((LT
xLy)(LT

y Lx)) (3)

This completes in O(nf2) time, where f is the chosen
number of columns in L. On very large datasets, HSIC
estimation can be made more efficient by sparsely sam-
pling the original population. Such sampling can be
done with acceptable loss of accuracy, as the estimated
HSIC approaches the true HSIC at speed 1√

n
.

To perform feature grouping, ρh is calculated on
every pair of features i and j in the original fea-
ture space of dataset x, resulting in affinity graph
Wij = ρh(xi,xj). Spectral clustering is performed on
W according to Ng et al. [8] to find m disjoint fea-
ture subspaces, s1, .., sm ⊂ x. A large range of values
for m give good results, as shown in experiments be-
low, so this choice is not crucial. Nonetheless, m ≥ 20
typically achieves the best results.

2.2. Multigraph Spectral Embedding

Having obtained m disjoint subspaces, it is possible
to find m separate embeddings of the dataset according
to each subspace. For each subspace sm, an affinity
graph W is constructed using:

Wij = sum(min(Pm(xi), Pm(xj))) (4)

where Pm(x) is a function that maps x to the mth
subspace. Rather than using a kNN-neighbourhood or
a ε-neighbourhood graph, as typically used in Lapla-
cian Eigenmaps, W is constructed as a fully connected
graph as in Ng et al.[8]. The choice to use a fully con-
nected graph is made empirically – in preliminary ex-
periments, a fully connected graph gave better results
than a kNN neighbourhood graph for any k.

Spectral embedding is then performed on W as per
steps 2-4 of Ng et al. to find a spectral embedding.
These steps are:

1. Find L = D−1/2WD−1/2, where D is a diagonal
matrix with Dii equal to the sum of the ith row
of W.

2. Find the k highest eigenvectors of L, e1, .., ek, and
construct a matrix E columnwise as [e1..ek].

3. Normalise E so each row sums to 1.

It is notable that this process also differs from Lapla-
cian Eigenmaps, because of step 3, instead follows Ng
et al.[8]. The unit normalisation is important to reduce
the scale variation between them separate embeddings.
The optimal choice of k is likely to vary between spec-
tral embeddings – however, for simplicity a single k is
chosen that is uniform across all embeddings. Future
work might show improved performance heuristically
choosing an individual k per embedding.

The final step to generate the FGSM is to aggregate
the m embeddings. This can be simply and naively
achieved by concatenating all E1, .., Em columnwise:
X = [E1..Em]. Then, row i of X is an m×k length vec-
tor describing sample xi. While this scheme works well,
however, further performance increases can be achieved
by scaling each embedding appropriately before aggre-
gation. The Euclidean distance is calculated between
every pair of rows in Ei and it is used to find λi thus:

distsi,jk = ||ei,j − ei,k||2 (5)

λi = σ(distsi) (6)
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where σ(x) is the standard deviation of the values in
x. Then, to get our final representation, scale each
E1, .., Em with λ1, ..., λm and concatenate columnwise:
X = [(λ−11 E1)..(λ−1m Em)]. As a result, each embedding
is scaled to have a total distance variation of 1.

We do not consider out-of-sample extension in this
paper, which could be necessary when performing time
critical tasks such as recognition or retrieval. However,
the Nyström approximation could be easily applied to
each embedding separately, as in [14], to achieve out-
of-sample extension.

3. Experiments

In this section FGSM is applied to various machine
learning problems to demonstrate its applicability to
real-world machine learning tasks. We specifically con-
sider several realistic human action datasets, although
in future work FGSM could also be applied to image
datasets.

3.1. Datasets

Four real-world datasets are used for experimenta-
tion, and are described below.

The UCF YouTube [5] dataset has 1168 videos of hu-
man activities that have been gathered from YouTube,
and are of low resolution/quality. The actions are in
11 classes.

The UCF Sports [11] dataset has 150 sports videos
recorded from broadcast. There are a total of 13 action
categories recorded from consistent angles.

The Hollywood-2 [7] dataset has 1707 action videos
gathered from Hollywood movies. There are 12 action
categories. The actions vary greatly in appearance,
with many instances of partial occlusion, unusual view-
points, different actors, and varying execution of the
actions.

The Olympic Sports [10] dataset consists of 783
action videos collected from TV footage of olympic
sports. There are 16 action classes. This dataset has
more view variation than the UCF Sports dataset, and
is correspondingly more difficult.

3.2. Setup

To extract a motion representation of the actions,
the publicly available code for dense trajectory fea-
ture extraction is used as presented in Wang et al.
[15], with the default settings of the software. This
results in a series of local features, each feature rep-
resented with 4 descriptors (HOG, HOF, MBH, Tr).
PCA, then k-means, are performed on each of the 4
descriptors in turn. For k-means, k = 4000. A sep-
arate histogram is generated for each descriptor, and

then the histograms are aggregated together. The re-
sult is a 16000-bin histogram per video. When per-
forming FGSM, we grouped features in 30 subspaces
(i.e., m = 30) and extracted 40 eigenvectors for each
manifold (k = 40).

We compare our method for clustering features to
the diffusion map method presented in Liu et al. [6],
which is used for finding semantic words in bag-of-
words models. To create a method for comparison,
steps 1-3 of Algorithm 11 are replaced with the repre-
sentation and clustering algorithm given in section 4 of
[6]. The parameters for diffusion maps are optimised
empirically. In our experimental results, this hybrid
algorithm is referred to as DM (for Diffusion Maps),
and we compare it to FGSM both for clustering and
retrieval below.

3.3. Clustering

We first consider action clustering. Given an action
dataset with k action classes, the goal is to find k dis-
joint subsets of the action dataset so that each subset
contains only one action class. Wang et al. [17] intro-
duced the concept of human action clustering, applying
spectral clustering to features extracted from images
of actions. Niebles et al. [9] use methods from docu-
ment analysis to cluster actions based on their latent
topics. Yang et al. [19] create a highly invariant fea-
ture extractor which can be used for effective clustering
and one-shot learning. However, all of these methods
either focus on improving the feature extraction pro-
cess, or apply existing clustering methods from another
domain to human actions. The FGSM representation
can improve clustering on human actions by finding a
strongly representative low-dimensional embedding of
the original histograms.

To measure a clustering algorithm’s performance in
this paper, we use the same performance metric as in
[19]. If each cluster c contains datapoints x1, .., xn, and
each datapoint is associated with a ground truth label
l1, .., ln, the label lc of cluster c is determined to be:

arg max
lc

n∑
i=1

{
1 if lc = li
0 otherwise

(7)

The accuracy is then percentage of data points
across the whole dataset that have the same label as
their assigned cluster.

The results of various clustering methods are in Ta-
ble 1. SC1 and SC2 are the methods presented in Shi
and Malik [13] and Ng et al. [8], respectively, and
they differ in how they calculate the normalised graph
Laplacian. For both SC1 and SC2, the affinity ma-
trix W is generated using the histogram intersection in
Equation 4. For FGSM, the FGSM representation is

4



Dataset
Clustering Accuracy (%)

SC1 SC2 DM FGSM

YouTube 22.3 39.2 39.9 42.6

UCF Sports 32.6 68.0 27.6 70.8

Hollywood-2 18.2 33.6 34.5 38.6

Ol. Sports 23.1 39.7 40.3 42.8

Table 1: Clustering performance of various methods on
each dataset.

applied to the dataset, followed by ordinary k-means
clustering using the Euclidean distance. Each cluster-
ing algorithm is run for 100 trials and the mean accu-
racy over all results is shown.

As can be seen from the table, FGSM achieves su-
perior results to any of the compared methods on all
four datasets. As stated above, this is likely because
the single graph in SC1/SC2 is unable to capture all
of the information in the original feature space, and
because DM’s feature clustering is not as accurate as
ours. The UCF Sports dataset results are improved
the least by FGSM (2.8% over ordinary spectral clus-
tering) whereas in the Hollywood-2 dataset a 5% ac-
curacy boost is observed. The scale of the improve-
ment appears to be related to the size of the dataset –
the larger the dataset, the larger the improvement that
FGSM gives. This intuitively makes sense, as spectral
embedding methods tend to be more accurate for larger
populations. Performing the initial feature grouping
may also be more accurate on larger datasets.

3.4. Content-based Retrieval with Relevance Feed-
back

Next, we consider content-based video retrieval
(CBVR). This is recently a popular research field, al-
though the bulk of retrieval work is on images rather
than videos. Typically CBVR is aimed at improving
the accuracy of multimedia search engines.

The formal aim of CBVR is as follows: given a query
video, rank the videos in a video database according to
their relevance to the query, and return the most rele-
vant videos. Once a query has been submitted and the
results returned, a user can give relevance feedback to
the system, by marking each result item as “positive”
or “negative”, indicating whic h results are related to
the query or not. The CBVR system can incorporate
this relevance feedback to perform a further query, and
return improved results.

Previous works, such as [4] and [12] have performed
human action retrieval, representing actions using local
features and performing relevance feedback to improve

Data RF
Accuracy of Top 20 Results (%)
HI CD MR DM FGSM

YT
B 53.2 52.4 56.4 56.6 63.5

A 74.4 74.4 75.2 75.9 82.8

U Sp.
B 38.5 38.3 39.5 17.9 41.5

A 48.0 48.6 49.0 28.5 51.7

HW-2
B 25.4 25.2 28.1 26.2 30.4

A 41.0 41.1 42.7 33.9 46.0

Ol. Sp.
B 35.2 34.7 37.7 39.4 41.5

A 51.9 51.4 51.4 54.4 59.6

Table 2: Retrieval performance of various methods on
each dataset, before (B) and after (A) relevance feed-
back (RF).

results. However, the most effective retrieval method
to date was applied to image retrieval: manifold rank-
ing, presented in He et al. [3], which is a graph-based
algorithm. Manifold ranking incorporates the under-
lying structure of the dataset to rank the database
items according to their similarity to the query. It
can also elegantly incorporate positive and negative
feedback to improve its rankings further. Recent work
[18] has shown how manifold ranking can be made effi-
cient enough for practical use on retrieval tasks. How-
ever, the rankings are generated from a single graph,
so FGSM is likely to outperform it.

(a) UCF YouTube
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(d) Olympic Sports
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Figure 2: Precision/recall curves for video retrieval on
various datasets.

We compare the performance between histogram
intersection ranking (HI), χ2 distance ranking (CD),
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manifold ranking (MR) Liu et al’s method [6] (DM)and
FGSM ranking (FGSM) in Table 2, showing retrieval
performance before and after a single round of rele-
vance feedback. Ranking based on one-manifold em-
bedding was considered but is not included in the re-
sults above for reasons of space – in preliminary ex-
periments it uniformly performed worse than manifold
ranking. To test, we set each video in the dataset as
the query in turn, performing retrieval on the remain-
ing videos. We determine the percentage of relevant
videos in the top 20 results, and average this over all
the queries.

To simulate relevance feedback, we mark several of
the top 20 results as positive or negative according to
the ground truth of the dataset, and rerun the query.
For HI, CD, and FGSM we incorporate relevance feed-
back using a kernel SVM. For HI, we use the histogram
intersection kernel; for CD, the χ2 distance; for FGSM,
the RBF kernel. To incorporate positive/negative rel-
evance feedback in manifold ranking, we use scheme 1
as presented in [3], setting γ = 0.25.

As shown in the table, FGSM performs well for re-
trieval, especially after relevance feedback. A multi-
graph representation confers an advantage over mani-
fold ranking (MR) method and DM, and gives the best
performance for all four datasets. In Figure 2 we also
show the precision-recall curves for each dataset, show-
ing the clear advantage of FGSM.
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(d) Olympic Sports
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Figure 3: The effect of varying parameter m on re-
trieval performance in the top 20 results, versus mani-
fold ranking baseline.

Finally, in Figure 3 we show the effects of varying pa-

Dataset
Recognition Accuracy (%)
Orig STP LE FGSM

YouTube 84.1 85.4 74.6 89.0

UCF Sports 88.0 89.1 67.6 87.7

Hollywood-2 58.2 59.9 45.8 58.2

Ol. Sports 74.1 77.2 57.5 74.6

Table 3: Recognition performance of various methods
on each dataset.

rameter m on retrieval performance, compared against
baseline manifold ranking performance. As can be seen
from the figure, performance is vastly increased even
when m = 2, and continues to rise until about m = 30
for all datasets. Performance is weakest compared to
manifold ranking on the UCF Sports dataset, perhaps
due to the small number of videos in that dataset.

3.5. Recognition

Our final experiment is fully-supervised action
recognition using FGSM. Here, we do not expect to
outperform the state-of-the-art. Spectral embedding
methods such as FGSM perform well on unsupervised
and semi-supervised tasks because they make use of
latent structural information in the unlabeled portion
of the dataset. When performing fully supervised ac-
tion recognition, however, all of the training data are
labeled – it is not necessary to find the latent structure
of fully labeled data. Instead, a discriminative classi-
fier such as a kernel SVM can use all of the data to
accurately model the separating hyperplane between
classes even on the original feature space. A spectral
embedding method will lose much information from the
original feature space, making an optimal hyperplane
between classes harder to find.

Instead of outperforming the state-of-the-art, we
only intend to show that our method does not result
in significant loss of recognition accuracy compared to
the original representation, thus demonstrating that
FGSM retains all important components from the orig-
inal feature space.

In Table 3, FGSM is compared against the state-of-
the-art human action recognition work in Wang et al.
[16]. Orig is the dense trajectory histogram method
presented in [16], using a multi-channel chi2 kernel
SVM for classification; STP is the spatio-temporal
pyramid representation in [16] using a multi-channel
chi2 kernel SVM for classification; LE applies Lapla-
cian Eigenmaps to the histogram and uses an RBF
kernel SVM for classification; FGSM is the multigraph
representation presented in this paper. To evaluate
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classification with FGSM, we apply a kernel SVM to
the FGSM representation of a dataset - we determined
empirically that an RBF kernel works better than a
linear or quadratic kernel. For each dataset, we use
the same experimental setup provided in Wang et al.
[16]

As can be seen, on recognition tasks FGSM consis-
tently outperforms Laplacian Eigenmaps, and performs
similarly to the original histogram representation Orig.
This illustrates that our FGSM preserves the under-
lying structure of the dataset far better than a single
spectral embedding. For one of the datasets – YouTube
– FGSM even surpasses the state-of-the-art results in
Wang et al., which is a surprising result, requiring fur-
ther investigation. STP achieves the best results on
the other three datasets, as it takes into account the
spatio-temporal structure of the videos – in future, it
may be possible to achieve even better results by com-
bining STP with FGSM.

4. Discussion

In this paper we have introduced a new method for
representing multimedia data – particularly human ac-
tions – for improved accuracy in clustering, retrieval
and recognition tasks. Based on previous works on
spectral embedding, we generated several spectral em-
beddings on separate subspaces of the original fea-
ture space, postulating that this would maximise the
retained information from the original feature space.
Through comprehensive experiments on four datasets,
we have demonstrated that our new representation –
FGSM – can surpass the state-of-the-art for clustering
and retrieval/relevance feedback tasks on all datasets,
and can also surpass the state-of-the-art recognition
accuracy on certain datasets.
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